import gradio as gr # To solve problems with pathlib in load_learner import pathlib import platform plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath from fastai.vision.all import load_learner, PILImage learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Bear Classifier" description = "A prototype bear classifier developed with fastaiwith images from ddg. Created as a demo for Gradio and HuggingFace Spaces." examples = [r'examples/grizzly_bear.jpg'] demo = gr.Interface(fn=predict, inputs="image", outputs="label", examples=examples) demo.launch()