# coding=utf-8 # Copyright 2021 The IDEA Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fengshen.models.zen2.modeling import ZenForSequenceClassification from fengshen.models.zen2.ngram_utils import ZenNgramDict from fengshen.models.zen2.tokenization import BertTokenizer from pytorch_lightning.callbacks import LearningRateMonitor import csv from dataclasses import dataclass import logging import math import numpy as np import os from tqdm import tqdm import json import torch import pytorch_lightning as pl import argparse from pytorch_lightning.callbacks import ModelCheckpoint from torch.utils.data import Dataset, DataLoader logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None, qid=0): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label self.qid = qid class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, ngram_ids, ngram_starts, ngram_lengths, ngram_tuples, ngram_seg_ids, ngram_masks, ngram_freqs, qid=-1): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.qid = qid self.ngram_ids = ngram_ids self.ngram_starts = ngram_starts self.ngram_lengths = ngram_lengths self.ngram_tuples = ngram_tuples self.ngram_seg_ids = ngram_seg_ids self.ngram_masks = ngram_masks self.ngram_freqs = ngram_freqs class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_examples(self, data_path, mode): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: # if sys.version_info[0] == 2: # line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines @classmethod def _read_json(cls, input_file): """Reads a jsonl file.""" with open(input_file, "r", encoding="utf-8") as f: lines = f.readlines() samples = [] for line in tqdm(lines): data = json.loads(line) samples.append(data) return samples class TnewsProcessor(DataProcessor): """Processor for the tnews data set (HIT version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") def get_examples(self, data_path, mode): return self._create_examples( self._read_json(data_path), set_type=mode ) def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): # if i == 0: # continue guid = "%s-%s" % (set_type, i) # text_a = line[0] text_a = line['sentence'] label = line['label'] if 'label' in line.keys() else None examples.append( InputExample(guid=guid, text_a=text_a, label=label)) return examples class OcnliProcessor(DataProcessor): """Processor for the ocnli or cmnli data set (HIT version).""" def get_examples(self, data_path, mode): return self._create_examples( self._read_json(data_path), set_type=mode ) def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): # if i == 0: # continue guid = "%s-%s" % (set_type, i) # text_a = line[0] text_a = line['sentence1'] text_b = line['sentence2'] label = line['label'] if 'label' in line.keys() else None # 特殊处理,cmnli有label为-的 if label == '-': label = None examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class IflytekProcessor(DataProcessor): """Processor for the iflytek data set (HIT version).""" def get_examples(self, data_path, mode): return self._create_examples( self._read_json(data_path), set_type=mode ) def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): # if i == 0: # continue guid = "%s-%s" % (set_type, i) # text_a = line[0] text_a = line['sentence'] label = line['label'] if 'label' in line.keys() else None examples.append( InputExample(guid=guid, text_a=text_a, label=label)) return examples def convert_examples_to_features(examples, label_map, max_seq_length, tokenizer, ngram_dict): """Loads a data file into a list of `InputBatch`s.""" # label_map = {label : i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambigiously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) if tokens_b: tokens += tokens_b + ["[SEP]"] segment_ids += [1] * (len(tokens_b) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length # ----------- code for ngram BEGIN----------- ngram_matches = [] # Filter the word segment from 2 to max_ngram_len to check whether there is a word max_gram_n = ngram_dict.max_ngram_len for p in range(2, max_gram_n): for q in range(0, len(tokens) - p + 1): character_segment = tokens[q:q + p] # j is the starting position of the word # i is the length of the current word character_segment = tuple(character_segment) if character_segment in ngram_dict.ngram_to_id_dict: ngram_index = ngram_dict.ngram_to_id_dict[character_segment] ngram_freq = ngram_dict.ngram_to_freq_dict[character_segment] ngram_matches.append([ngram_index, q, p, character_segment, ngram_freq]) # shuffle(ngram_matches) ngram_matches = sorted(ngram_matches, key=lambda s: s[0]) # max_word_in_seq_proportion = max_word_in_seq max_word_in_seq_proportion = math.ceil((len(tokens) / max_seq_length) * ngram_dict.max_ngram_in_seq) if len(ngram_matches) > max_word_in_seq_proportion: ngram_matches = ngram_matches[:max_word_in_seq_proportion] ngram_ids = [ngram[0] for ngram in ngram_matches] ngram_positions = [ngram[1] for ngram in ngram_matches] ngram_lengths = [ngram[2] for ngram in ngram_matches] ngram_tuples = [ngram[3] for ngram in ngram_matches] ngram_freqs = [ngram[4] for ngram in ngram_matches] ngram_seg_ids = [0 if position < len([id for id in segment_ids if id == 0]) else 1 for position in ngram_positions] ngram_mask_array = np.zeros(ngram_dict.max_ngram_in_seq, dtype=np.bool) ngram_mask_array[:len(ngram_ids)] = 1 # Zero-pad up to the max word in seq length. padding = [0] * (ngram_dict.max_ngram_in_seq - len(ngram_ids)) ngram_ids += padding ngram_positions += padding ngram_lengths += padding ngram_seg_ids += padding ngram_freqs += padding # ----------- code for ngram END----------- label_id = label_map[example.label] if example.label is not None else 0 # if ex_index < 5: # logger.info("*** Example ***") # logger.info("guid: %s" % (example.guid)) # logger.info("tokens: %s" % " ".join( # [str(x) for x in tokens])) # logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) # logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) # logger.info( # "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) # logger.info("label: %s (id = %d)" % (example.label, label_id)) # logger.info("ngram_ids: %s" % " ".join([str(x) for x in ngram_ids])) # logger.info("ngram_positions: %s" % " ".join([str(x) for x in ngram_positions])) # logger.info("ngram_lengths: %s" % " ".join([str(x) for x in ngram_lengths])) # logger.info("ngram_tuples: %s" % " ".join([str(x) for x in ngram_tuples])) # logger.info("ngram_seg_ids: %s" % " ".join([str(x) for x in ngram_seg_ids])) # logger.info("ngram_freqs: %s" % " ".join([str(x) for x in ngram_freqs])) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, ngram_ids=ngram_ids, ngram_starts=ngram_positions, ngram_lengths=ngram_lengths, ngram_tuples=ngram_tuples, ngram_seg_ids=ngram_seg_ids, ngram_masks=ngram_mask_array, ngram_freqs=ngram_freqs, qid=example.qid)) return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() class TaskDataset(Dataset): def __init__(self, data_path, processor, mode='train'): super().__init__() self.data = self.load_data(data_path, processor, mode) def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index] def load_data(self, data_path, processor, mode): if mode == "train": examples = processor.get_examples(data_path, mode) elif mode == "test": examples = processor.get_examples(data_path, mode) elif mode == "dev": examples = processor.get_examples(data_path, mode) return examples @dataclass class TaskCollator: args = None tokenizer = None ngram_dict = None label2id = None def __call__(self, samples): features = convert_examples_to_features(samples, self.label2id, self.args.max_seq_length, self.tokenizer, self.ngram_dict) # logger.info(" Num examples = %d", len(samples)) input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long) # qids = torch.tensor([f.qid for f in features], dtype=torch.long) ngram_ids = torch.tensor([f.ngram_ids for f in features], dtype=torch.long) ngram_starts = torch.tensor([f.ngram_starts for f in features], dtype=torch.long) ngram_lengths = torch.tensor([f.ngram_lengths for f in features], dtype=torch.long) # ngram_seg_ids = torch.tensor([f.ngram_seg_ids for f in features], dtype=torch.long) # ngram_masks = torch.tensor([f.ngram_masks for f in features], dtype=torch.long) ngram_freqs = torch.tensor([f.ngram_freqs for f in features], dtype=torch.long) batch_size = len(samples) ngram_positions_matrix = torch.zeros( size=(batch_size, self.args.max_seq_length, self.ngram_dict.max_ngram_in_seq), dtype=torch.int) for batch_id in range(batch_size): ngram_id = ngram_ids[batch_id] ngram_start = ngram_starts[batch_id] ngram_length = ngram_lengths[batch_id] for i in range(len(ngram_id)): ngram_positions_matrix[batch_id][ngram_start[i]:ngram_start[i] + ngram_length[i], i] = ngram_freqs[batch_id][i] ngram_positions_matrix[batch_id] \ = torch.div(ngram_positions_matrix[batch_id], torch.stack([torch.sum(ngram_positions_matrix[batch_id], 1)] * ngram_positions_matrix[batch_id].size(1)).t() + 1e-10) return { 'input_ids': input_ids, 'input_ngram_ids': ngram_ids, 'ngram_position_matrix': ngram_positions_matrix, 'attention_mask': input_mask, 'token_type_ids': segment_ids, 'labels': label_ids } # return default_collate(sample_list) class TaskDataModel(pl.LightningDataModule): @staticmethod def add_data_specific_args(parent_args): parser = parent_args.add_argument_group('TASK NAME DataModel') parser.add_argument('--data_dir', default='./data', type=str) parser.add_argument('--num_workers', default=8, type=int) parser.add_argument('--train_data', default='train.json', type=str) parser.add_argument('--valid_data', default='dev.json', type=str) parser.add_argument('--test_data', default='test.json', type=str) parser.add_argument('--train_batchsize', default=16, type=int) parser.add_argument('--valid_batchsize', default=32, type=int) parser.add_argument('--max_seq_length', default=128, type=int) parser.add_argument('--texta_name', default='text', type=str) parser.add_argument('--textb_name', default='sentence2', type=str) parser.add_argument('--label_name', default='label', type=str) parser.add_argument('--id_name', default='id', type=str) parser.add_argument('--dataset_name', default=None, type=str) parser.add_argument('--vocab_file', type=str, default=None, help="Vocabulary mapping/file BERT was pretrainined on") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--task_name', default='tnews', type=str) return parent_args def __init__(self, args): super().__init__() self.train_batchsize = args.train_batchsize self.valid_batchsize = args.valid_batchsize self.collator = TaskCollator() self.collator.args = args self.collator.tokenizer = BertTokenizer.from_pretrained(args.pretrained_model_path, do_lower_case=args.do_lower_case) self.collator.ngram_dict = ZenNgramDict.from_pretrained(args.pretrained_model_path, tokenizer=self.collator.tokenizer) processors = { 'afqmc': OcnliProcessor, 'tnews': TnewsProcessor, 'ocnli': OcnliProcessor, 'cmnli': OcnliProcessor, 'iflytek': IflytekProcessor, } if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() if args.dataset_name is None: self.label2id, self.id2label = self.load_schema(os.path.join( args.data_dir, args.train_data), args) self.train_data = TaskDataset(os.path.join( args.data_dir, args.train_data), processor, mode='train') self.valid_data = TaskDataset(os.path.join( args.data_dir, args.valid_data), processor, mode='dev') self.test_data = TaskDataset(os.path.join( args.data_dir, args.test_data), processor, mode='test') self.collator.label2id = self.label2id else: import datasets ds = datasets.load_dataset(args.dataset_name) self.train_data = ds['train'] self.valid_data = ds['validation'] self.test_data = ds['test'] self.save_hyperparameters(args) def train_dataloader(self): return DataLoader(self.train_data, shuffle=True, batch_size=self.train_batchsize, pin_memory=False, collate_fn=self.collator) def val_dataloader(self): return DataLoader(self.valid_data, shuffle=False, batch_size=self.valid_batchsize, pin_memory=False, collate_fn=self.collator) def predict_dataloader(self): return DataLoader(self.test_data, shuffle=False, batch_size=self.valid_batchsize, pin_memory=False, collate_fn=self.collator) def load_schema(self, data_path, args): with open(data_path, 'r', encoding='utf8') as f: lines = f.readlines() label_list = [] for line in tqdm(lines): data = json.loads(line) labels = data[args.label_name] if args.label_name in data.keys( ) else 0 if labels not in label_list: label_list.append(labels) label2id, id2label = {}, {} for i, k in enumerate(label_list): label2id[k] = i id2label[i] = k return label2id, id2label class LitModel(pl.LightningModule): @staticmethod def add_model_specific_args(parent_args): parser = parent_args.add_argument_group('BaseModel') parser.add_argument('--num_labels', default=2, type=int) return parent_args def __init__(self, args): super().__init__() self.model = ZenForSequenceClassification.from_pretrained(args.pretrained_model_path, num_labels=args.num_labels) self.save_hyperparameters(args) def setup(self, stage) -> None: if stage == 'fit': train_loader = self.trainer._data_connector._train_dataloader_source.dataloader() # Calculate total steps if self.trainer.max_epochs > 0: world_size = self.trainer.world_size tb_size = self.hparams.train_batchsize * max(1, world_size) ab_size = self.trainer.accumulate_grad_batches self.total_steps = (len(train_loader.dataset) * self.trainer.max_epochs // tb_size) // ab_size else: self.total_steps = self.trainer.max_steps // self.trainer.accumulate_grad_batches print('Total steps: {}' .format(self.total_steps)) def training_step(self, batch, batch_idx): loss, logits = self.model(**batch) acc = self.comput_metrix(logits, batch['labels']) self.log('train_loss', loss) self.log('train_acc', acc) return loss def comput_metrix(self, logits, labels): y_pred = torch.argmax(logits, dim=-1) y_pred = y_pred.view(size=(-1,)) y_true = labels.view(size=(-1,)).float() corr = torch.eq(y_pred, y_true) acc = torch.sum(corr.float())/labels.size()[0] return acc def validation_step(self, batch, batch_idx): loss, logits = self.model(**batch) acc = self.comput_metrix(logits, batch['labels']) self.log('val_loss', loss) self.log('val_acc', acc) def predict_step(self, batch, batch_idx): output = self.model(**batch) return output.logits def configure_optimizers(self): from fengshen.models.model_utils import configure_optimizers return configure_optimizers(self) class TaskModelCheckpoint: @staticmethod def add_argparse_args(parent_args): parser = parent_args.add_argument_group('BaseModel') parser.add_argument('--monitor', default='train_loss', type=str) parser.add_argument('--mode', default='min', type=str) parser.add_argument('--dirpath', default='./log/', type=str) parser.add_argument( '--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str) parser.add_argument('--save_top_k', default=3, type=float) parser.add_argument('--every_n_train_steps', default=100, type=float) parser.add_argument('--save_weights_only', default=True, type=bool) return parent_args def __init__(self, args): self.callbacks = ModelCheckpoint(monitor=args.monitor, save_top_k=args.save_top_k, mode=args.mode, every_n_train_steps=args.every_n_train_steps, save_weights_only=args.save_weights_only, dirpath=args.dirpath, filename=args.filename) def save_test(data, args, data_model): with open(args.output_save_path, 'w', encoding='utf-8') as f: idx = 0 for i in range(len(data)): batch = data[i] for sample in batch: tmp_result = dict() label_id = np.argmax(sample.numpy()) tmp_result['id'] = data_model.test_data.data[idx]['id'] tmp_result['label'] = data_model.id2label[label_id] json_data = json.dumps(tmp_result, ensure_ascii=False) f.write(json_data+'\n') idx += 1 print('save the result to '+args.output_save_path) def main(): total_parser = argparse.ArgumentParser("TASK NAME") total_parser.add_argument('--pretrained_model_path', default='', type=str) total_parser.add_argument('--output_save_path', default='./predict.json', type=str) # * Args for data preprocessing total_parser = TaskDataModel.add_data_specific_args(total_parser) # * Args for training total_parser = pl.Trainer.add_argparse_args(total_parser) total_parser = TaskModelCheckpoint.add_argparse_args(total_parser) # * Args for base model from fengshen.models.model_utils import add_module_args total_parser = add_module_args(total_parser) total_parser = LitModel.add_model_specific_args(total_parser) args = total_parser.parse_args() checkpoint_callback = TaskModelCheckpoint(args).callbacks lr_monitor = LearningRateMonitor(logging_interval='step') trainer = pl.Trainer.from_argparse_args(args, callbacks=[checkpoint_callback, lr_monitor] ) data_model = TaskDataModel(args) model = LitModel(args) trainer.fit(model, data_model) if __name__ == "__main__": main()