import torch Tensor = torch.Tensor Device = torch.DeviceObjType Dtype = torch.Type pad = torch.nn.functional.pad def _compute_zero_padding(kernel_size: tuple[int, int] | int) -> tuple[int, int]: ky, kx = _unpack_2d_ks(kernel_size) return (ky - 1) // 2, (kx - 1) // 2 def _unpack_2d_ks(kernel_size: tuple[int, int] | int) -> tuple[int, int]: if isinstance(kernel_size, int): ky = kx = kernel_size else: assert len(kernel_size) == 2, '2D Kernel size should have a length of 2.' ky, kx = kernel_size ky = int(ky) kx = int(kx) return ky, kx def gaussian( window_size: int, sigma: Tensor | float, *, device: Device | None = None, dtype: Dtype | None = None ) -> Tensor: batch_size = sigma.shape[0] x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) if window_size % 2 == 0: x = x + 0.5 gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) return gauss / gauss.sum(-1, keepdim=True) def get_gaussian_kernel1d( kernel_size: int, sigma: float | Tensor, force_even: bool = False, *, device: Device | None = None, dtype: Dtype | None = None, ) -> Tensor: return gaussian(kernel_size, sigma, device=device, dtype=dtype) def get_gaussian_kernel2d( kernel_size: tuple[int, int] | int, sigma: tuple[float, float] | Tensor, force_even: bool = False, *, device: Device | None = None, dtype: Dtype | None = None, ) -> Tensor: sigma = torch.Tensor([[sigma, sigma]]).to(device=device, dtype=dtype) ksize_y, ksize_x = _unpack_2d_ks(kernel_size) sigma_y, sigma_x = sigma[:, 0, None], sigma[:, 1, None] kernel_y = get_gaussian_kernel1d(ksize_y, sigma_y, force_even, device=device, dtype=dtype)[..., None] kernel_x = get_gaussian_kernel1d(ksize_x, sigma_x, force_even, device=device, dtype=dtype)[..., None] return kernel_y * kernel_x.view(-1, 1, ksize_x) def _bilateral_blur( input: Tensor, guidance: Tensor | None, kernel_size: tuple[int, int] | int, sigma_color: float | Tensor, sigma_space: tuple[float, float] | Tensor, border_type: str = 'reflect', color_distance_type: str = 'l1', ) -> Tensor: if isinstance(sigma_color, Tensor): sigma_color = sigma_color.to(device=input.device, dtype=input.dtype).view(-1, 1, 1, 1, 1) ky, kx = _unpack_2d_ks(kernel_size) pad_y, pad_x = _compute_zero_padding(kernel_size) padded_input = pad(input, (pad_x, pad_x, pad_y, pad_y), mode=border_type) unfolded_input = padded_input.unfold(2, ky, 1).unfold(3, kx, 1).flatten(-2) # (B, C, H, W, Ky x Kx) if guidance is None: guidance = input unfolded_guidance = unfolded_input else: padded_guidance = pad(guidance, (pad_x, pad_x, pad_y, pad_y), mode=border_type) unfolded_guidance = padded_guidance.unfold(2, ky, 1).unfold(3, kx, 1).flatten(-2) # (B, C, H, W, Ky x Kx) diff = unfolded_guidance - guidance.unsqueeze(-1) if color_distance_type == "l1": color_distance_sq = diff.abs().sum(1, keepdim=True).square() elif color_distance_type == "l2": color_distance_sq = diff.square().sum(1, keepdim=True) else: raise ValueError("color_distance_type only acceps l1 or l2") color_kernel = (-0.5 / sigma_color**2 * color_distance_sq).exp() # (B, 1, H, W, Ky x Kx) space_kernel = get_gaussian_kernel2d(kernel_size, sigma_space, device=input.device, dtype=input.dtype) space_kernel = space_kernel.view(-1, 1, 1, 1, kx * ky) kernel = space_kernel * color_kernel out = (unfolded_input * kernel).sum(-1) / kernel.sum(-1) return out def bilateral_blur( input: Tensor, kernel_size: tuple[int, int] | int = (13, 13), sigma_color: float | Tensor = 3.0, sigma_space: tuple[float, float] | Tensor = 3.0, border_type: str = 'reflect', color_distance_type: str = 'l1', ) -> Tensor: return _bilateral_blur(input, None, kernel_size, sigma_color, sigma_space, border_type, color_distance_type) def adaptive_anisotropic_filter(x, g=None): if g is None: g = x s, m = torch.std_mean(g, dim=(1, 2, 3), keepdim=True) s = s + 1e-5 guidance = (g - m) / s y = _bilateral_blur(x, guidance, kernel_size=(13, 13), sigma_color=3.0, sigma_space=3.0, border_type='reflect', color_distance_type='l1') return y def joint_bilateral_blur( input: Tensor, guidance: Tensor, kernel_size: tuple[int, int] | int, sigma_color: float | Tensor, sigma_space: tuple[float, float] | Tensor, border_type: str = 'reflect', color_distance_type: str = 'l1', ) -> Tensor: return _bilateral_blur(input, guidance, kernel_size, sigma_color, sigma_space, border_type, color_distance_type) class _BilateralBlur(torch.nn.Module): def __init__( self, kernel_size: tuple[int, int] | int, sigma_color: float | Tensor, sigma_space: tuple[float, float] | Tensor, border_type: str = 'reflect', color_distance_type: str = "l1", ) -> None: super().__init__() self.kernel_size = kernel_size self.sigma_color = sigma_color self.sigma_space = sigma_space self.border_type = border_type self.color_distance_type = color_distance_type def __repr__(self) -> str: return ( f"{self.__class__.__name__}" f"(kernel_size={self.kernel_size}, " f"sigma_color={self.sigma_color}, " f"sigma_space={self.sigma_space}, " f"border_type={self.border_type}, " f"color_distance_type={self.color_distance_type})" ) class BilateralBlur(_BilateralBlur): def forward(self, input: Tensor) -> Tensor: return bilateral_blur( input, self.kernel_size, self.sigma_color, self.sigma_space, self.border_type, self.color_distance_type ) class JointBilateralBlur(_BilateralBlur): def forward(self, input: Tensor, guidance: Tensor) -> Tensor: return joint_bilateral_blur( input, guidance, self.kernel_size, self.sigma_color, self.sigma_space, self.border_type, self.color_distance_type, )