import gradio as gr from fastai.vision.all import * learn = load_learner('model.pkl') categories = ('Sonic the Hedgehog', 'Doutor Eggman') examples = ['sonic.jpg', 'eggman.jpg'] labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Sonic the Hedgehog and Doutor Eggman" description = "Classificador entre o Sonic e o Doutor Eggman" examples = ['sonic.jpg', 'eggman.jpg'] interpretation='default' enable_queue=True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=2), title=title, description=description, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch(share=True)