pdf-rag-chatbot / app.py
farmax's picture
Update app.py
87a53c5 verified
raw
history blame
13.1 kB
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from pathlib import Path
import chromadb
from unidecode import unidecode
import re
# List of available LLM models
list_llm = [
"mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
"google/gemma-7b-it", "google/gemma-2b-it",
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct",
"tiiuae/falcon-7b-instruct", "google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name
)
return vectordb
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.5, desc="Initializing HF Hub...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever(search_kwargs={'k': 5}) # Increased from 3 to 5
progress(0.8, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
progress(0.9, desc="Done!")
return qa_chain
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = collection_name.replace(" ", "-")
collection_name = unidecode(collection_name)
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
collection_name = collection_name[:50]
if len(collection_name) < 3:
collection_name = collection_name + 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
return collection_name
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
progress(0.1, desc="Creating collection...")
collection_name = create_collection_name(list_file_path[0])
progress(0.25, desc="Loading documents...")
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
progress(0.5, desc="Generating vector database...")
vector_db = create_db(doc_splits, collection_name)
progress(0.9, desc="Done!")
return vector_db, collection_name, "Completed!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Completed!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
source_info = []
for i in range(min(5, len(response_sources))): # Increased from 3 to 5
source = response_sources[i]
source_info.append({
'content': source.page_content.strip(),
'page': source.metadata["page"] + 1
})
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, *[info['content'] for info in source_info], *[info['page'] for info in source_info]
# The rest of the code (demo function and UI setup) remains largely the same,
# but update the outputs of the conversation function to handle 5 sources instead of 3.
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
print(file_path)
# initialize_database(file_path, progress)
return list_file_path
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
"""<center><h2>Creatore di chatbot basato su PDF</center></h2>
<h3>Potete fare domande su i vostri documenti PDF</h3>""")
gr.Markdown(
"""<b>Nota:</b> Questo assistente IA, utilizzando Langchain e modelli LLM open source, esegue generazione aumentata da recupero (RAG) dai vostri documenti PDF. \
L'interfaccia utente esplicitamente mostra i passaggi multipli per aiutare a comprendere il flusso di lavoro RAG.
Questo chatbot tiene conto delle domande passate nel generare le risposte (tramite memoria conversazionale), e include riferimenti ai documenti per scopi di chiarezza.<br>
<br><b>Avviso:</b> Questo spazio utilizza l'hardware di base CPU gratuito da Hugging Face. Alcuni passaggi e modelli LLM usati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
""")
with gr.Tab("Step 1 - Carica PDFs"):
with gr.Row():
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
with gr.Tab("Step 2 - Processa i documenti"):
with gr.Row():
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
with gr.Accordion("Opzioni Avanzate - Document text splitter", open=False):
with gr.Row():
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=1000, step=20, label="Chunk size", info="Chunk size", interactive=True)
with gr.Row():
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=100, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
with gr.Row():
db_progress = gr.Textbox(label="Vector database initialization", value="None")
with gr.Row():
db_btn = gr.Button("Genera vector database")
with gr.Tab("Step 3 - Inizializza QA chain"):
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, \
label="LLM models", value = list_llm_simple[5], type="index", info="Scegli il tuo modello LLM")
with gr.Accordion("Advanced options - LLM model", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.3, step=0.1, label="Temperature", info="Model temperature", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
with gr.Row():
language_btn = gr.Radio(["Italian", "English"], label="Linua", value="Italian", type="index", info="Seleziona la lingua per il chatbot")
with gr.Row():
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
with gr.Row():
qachain_btn = gr.Button("Inizializza Question Answering chain")
with gr.Tab("Passo 4 - Chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source4 = gr.Textbox(label="Riferimento 4", lines=2, container=True, scale=20)
source4_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
doc_source5 = gr.Textbox(label="Riferimento 5", lines=2, container=True, scale=20)
source5_page = gr.Number(label="Pagina", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True)
with gr.Row():
submit_btn = gr.Button("Invia messaggio")
clear_btn = gr.ClearButton([msg, chatbot], value="Cancella conversazione")
# Preprocessing events
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
db_btn.click(initialize_database, \
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
outputs=[vector_db, collection_name, db_progress])
qachain_btn.click(initialize_LLM, \
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
outputs=[qa_chain, llm_progress]).then(lambda:[None, "", 0, "", 0, "", 0, "", 0, "", 0], \
inputs=None, \
outputs=[chatbot,
doc_source1, source1_page,
doc_source2, source2_page,
doc_source3, source3_page,
doc_source4, source4_page,
doc_source5, source5_page], queue=False)
# Chatbot events
msg.submit(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, \
doc_source1, source1_page,
doc_source2, source2_page,
doc_source3, source3_page,
doc_source4, source4_page,
doc_source5, source5_page], queue=False)
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot,
doc_source1, source1_page,
doc_source2, source2_page,
doc_source3, source3_page,
doc_source4, source4_page,
doc_source5, source5_page], queue=False)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0, "", 0, "", 0],
inputs=None,
outputs=[
chatbot,
doc_source1, source1_page,
doc_source2, source2_page,
doc_source3, source3_page,
doc_source4, source4_page,
doc_source5, source5_page
],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()