Spaces:
Running
Running
import gradio as gr | |
import os | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from pathlib import Path | |
import chromadb | |
from unidecode import unidecode | |
import re | |
# List of available LLM models | |
list_llm = [ | |
"mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"google/gemma-7b-it", "google/gemma-2b-it", | |
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", | |
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", | |
"tiiuae/falcon-7b-instruct", "google/flan-t5-xxl" | |
] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
def load_doc(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
new_client = chromadb.EphemeralClient() | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=new_client, | |
collection_name=collection_name | |
) | |
return vectordb | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
progress(0.5, desc="Initializing HF Hub...") | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k | |
) | |
progress(0.75, desc="Defining buffer memory...") | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever(search_kwargs={'k': 5}) # Increased from 3 to 5 | |
progress(0.8, desc="Defining retrieval chain...") | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
progress(0.9, desc="Done!") | |
return qa_chain | |
def create_collection_name(filepath): | |
collection_name = Path(filepath).stem | |
collection_name = collection_name.replace(" ", "-") | |
collection_name = unidecode(collection_name) | |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) | |
collection_name = collection_name[:50] | |
if len(collection_name) < 3: | |
collection_name = collection_name + 'xyz' | |
if not collection_name[0].isalnum(): | |
collection_name = 'A' + collection_name[1:] | |
if not collection_name[-1].isalnum(): | |
collection_name = collection_name[:-1] + 'Z' | |
return collection_name | |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
progress(0.1, desc="Creating collection...") | |
collection_name = create_collection_name(list_file_path[0]) | |
progress(0.25, desc="Loading documents...") | |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) | |
progress(0.5, desc="Generating vector database...") | |
vector_db = create_db(doc_splits, collection_name) | |
progress(0.9, desc="Done!") | |
return vector_db, collection_name, "Completed!" | |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
llm_name = list_llm[llm_option] | |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) | |
return qa_chain, "Completed!" | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}") | |
formatted_chat_history.append(f"Assistant: {bot_message}") | |
return formatted_chat_history | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if response_answer.find("Helpful Answer:") != -1: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
response_sources = response["source_documents"] | |
source_info = [] | |
for i in range(min(5, len(response_sources))): # Increased from 3 to 5 | |
source = response_sources[i] | |
source_info.append({ | |
'content': source.page_content.strip(), | |
'page': source.metadata["page"] + 1 | |
}) | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, *[info['content'] for info in source_info], *[info['page'] for info in source_info] | |
# The rest of the code (demo function and UI setup) remains largely the same, | |
# but update the outputs of the conversation function to handle 5 sources instead of 3. | |
def upload_file(file_obj): | |
list_file_path = [] | |
for idx, file in enumerate(file_obj): | |
file_path = file_obj.name | |
list_file_path.append(file_path) | |
print(file_path) | |
# initialize_database(file_path, progress) | |
return list_file_path | |
def demo(): | |
with gr.Blocks(theme="base") as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
collection_name = gr.State() | |
gr.Markdown( | |
"""<center><h2>Creatore di chatbot basato su PDF</center></h2> | |
<h3>Potete fare domande su i vostri documenti PDF</h3>""") | |
gr.Markdown( | |
"""<b>Nota:</b> Questo assistente IA, utilizzando Langchain e modelli LLM open source, esegue generazione aumentata da recupero (RAG) dai vostri documenti PDF. \ | |
L'interfaccia utente esplicitamente mostra i passaggi multipli per aiutare a comprendere il flusso di lavoro RAG. | |
Questo chatbot tiene conto delle domande passate nel generare le risposte (tramite memoria conversazionale), e include riferimenti ai documenti per scopi di chiarezza.<br> | |
<br><b>Avviso:</b> Questo spazio utilizza l'hardware di base CPU gratuito da Hugging Face. Alcuni passaggi e modelli LLM usati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta. | |
""") | |
with gr.Tab("Step 1 - Carica PDFs"): | |
with gr.Row(): | |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") | |
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1) | |
with gr.Tab("Step 2 - Processa i documenti"): | |
with gr.Row(): | |
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database") | |
with gr.Accordion("Opzioni Avanzate - Document text splitter", open=False): | |
with gr.Row(): | |
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=1000, step=20, label="Chunk size", info="Chunk size", interactive=True) | |
with gr.Row(): | |
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=100, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) | |
with gr.Row(): | |
db_progress = gr.Textbox(label="Vector database initialization", value="None") | |
with gr.Row(): | |
db_btn = gr.Button("Genera vector database") | |
with gr.Tab("Step 3 - Inizializza QA chain"): | |
with gr.Row(): | |
llm_btn = gr.Radio(list_llm_simple, \ | |
label="LLM models", value = list_llm_simple[5], type="index", info="Scegli il tuo modello LLM") | |
with gr.Accordion("Advanced options - LLM model", open=False): | |
with gr.Row(): | |
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.3, step=0.1, label="Temperature", info="Model temperature", interactive=True) | |
with gr.Row(): | |
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True) | |
with gr.Row(): | |
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True) | |
with gr.Row(): | |
language_btn = gr.Radio(["Italian", "English"], label="Linua", value="Italian", type="index", info="Seleziona la lingua per il chatbot") | |
with gr.Row(): | |
llm_progress = gr.Textbox(value="None",label="QA chain initialization") | |
with gr.Row(): | |
qachain_btn = gr.Button("Inizializza Question Answering chain") | |
with gr.Tab("Passo 4 - Chatbot"): | |
chatbot = gr.Chatbot(height=300) | |
with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False): | |
with gr.Row(): | |
doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20) | |
source1_page = gr.Number(label="Pagina", scale=1) | |
with gr.Row(): | |
doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20) | |
source2_page = gr.Number(label="Pagina", scale=1) | |
with gr.Row(): | |
doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20) | |
source3_page = gr.Number(label="Pagina", scale=1) | |
with gr.Row(): | |
doc_source4 = gr.Textbox(label="Riferimento 4", lines=2, container=True, scale=20) | |
source4_page = gr.Number(label="Pagina", scale=1) | |
with gr.Row(): | |
doc_source5 = gr.Textbox(label="Riferimento 5", lines=2, container=True, scale=20) | |
source5_page = gr.Number(label="Pagina", scale=1) | |
with gr.Row(): | |
msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True) | |
with gr.Row(): | |
submit_btn = gr.Button("Invia messaggio") | |
clear_btn = gr.ClearButton([msg, chatbot], value="Cancella conversazione") | |
# Preprocessing events | |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document]) | |
db_btn.click(initialize_database, \ | |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \ | |
outputs=[vector_db, collection_name, db_progress]) | |
qachain_btn.click(initialize_LLM, \ | |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \ | |
outputs=[qa_chain, llm_progress]).then(lambda:[None, "", 0, "", 0, "", 0, "", 0, "", 0], \ | |
inputs=None, \ | |
outputs=[chatbot, | |
doc_source1, source1_page, | |
doc_source2, source2_page, | |
doc_source3, source3_page, | |
doc_source4, source4_page, | |
doc_source5, source5_page], queue=False) | |
# Chatbot events | |
msg.submit(conversation, \ | |
inputs=[qa_chain, msg, chatbot], \ | |
outputs=[qa_chain, msg, chatbot, \ | |
doc_source1, source1_page, | |
doc_source2, source2_page, | |
doc_source3, source3_page, | |
doc_source4, source4_page, | |
doc_source5, source5_page], queue=False) | |
submit_btn.click(conversation, | |
inputs=[qa_chain, msg, chatbot], | |
outputs=[qa_chain, msg, chatbot, | |
doc_source1, source1_page, | |
doc_source2, source2_page, | |
doc_source3, source3_page, | |
doc_source4, source4_page, | |
doc_source5, source5_page], queue=False) | |
clear_btn.click( | |
lambda: [None, "", 0, "", 0, "", 0, "", 0, "", 0], | |
inputs=None, | |
outputs=[ | |
chatbot, | |
doc_source1, source1_page, | |
doc_source2, source2_page, | |
doc_source3, source3_page, | |
doc_source4, source4_page, | |
doc_source5, source5_page | |
], | |
queue=False | |
) | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() | |