import os import sys import cv2 from pathlib import Path import numpy as np import torch import torch.utils.data as data from tqdm import tqdm from copy import deepcopy from torchvision.transforms import ToTensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from alike import ALike, configs dataset_root = 'hseq/hpatches-sequences-release' use_cuda = torch.cuda.is_available() device = 'cuda' if use_cuda else 'cpu' methods = ['alike-n', 'alike-l', 'alike-n-ms', 'alike-l-ms'] class HPatchesDataset(data.Dataset): def __init__(self, root: str = dataset_root, alteration: str = 'all'): """ Args: root: dataset root path alteration: # 'all', 'i' for illumination or 'v' for viewpoint """ assert (Path(root).exists()), f"Dataset root path {root} dose not exist!" self.root = root # get all image file name self.image0_list = [] self.image1_list = [] self.homographies = [] folders = [x for x in Path(self.root).iterdir() if x.is_dir()] self.seqs = [] for folder in folders: if alteration == 'i' and folder.stem[0] != 'i': continue if alteration == 'v' and folder.stem[0] != 'v': continue self.seqs.append(folder) self.len = len(self.seqs) assert (self.len > 0), f'Can not find PatchDataset in path {self.root}' def __getitem__(self, item): folder = self.seqs[item] imgs = [] homos = [] for i in range(1, 7): img = cv2.imread(str(folder / f'{i}.ppm'), cv2.IMREAD_COLOR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # HxWxC imgs.append(img) if i != 1: homo = np.loadtxt(str(folder / f'H_1_{i}')).astype('float32') homos.append(homo) return imgs, homos, folder.stem def __len__(self): return self.len def name(self): return self.__class__ def extract_multiscale(model, img, scale_f=2 ** 0.5, min_scale=1., max_scale=1., min_size=0., max_size=99999., image_size_max=99999, n_k=0, sort=False): H_, W_, three = img.shape assert three == 3, "input image shape should be [HxWx3]" old_bm = torch.backends.cudnn.benchmark torch.backends.cudnn.benchmark = False # speedup # ==================== image size constraint image = deepcopy(img) max_hw = max(H_, W_) if max_hw > image_size_max: ratio = float(image_size_max / max_hw) image = cv2.resize(image, dsize=None, fx=ratio, fy=ratio) # ==================== convert image to tensor H, W, three = image.shape image = ToTensor()(image).unsqueeze(0) image = image.to(device) s = 1.0 # current scale factor keypoints, descriptors, scores, scores_maps, descriptor_maps = [], [], [], [], [] while s + 0.001 >= max(min_scale, min_size / max(H, W)): if s - 0.001 <= min(max_scale, max_size / max(H, W)): nh, nw = image.shape[2:] # extract descriptors with torch.no_grad(): descriptor_map, scores_map = model.extract_dense_map(image) keypoints_, descriptors_, scores_, _ = model.dkd(scores_map, descriptor_map) keypoints.append(keypoints_[0]) descriptors.append(descriptors_[0]) scores.append(scores_[0]) s /= scale_f # down-scale the image for next iteration nh, nw = round(H * s), round(W * s) image = torch.nn.functional.interpolate(image, (nh, nw), mode='bilinear', align_corners=False) # restore value torch.backends.cudnn.benchmark = old_bm keypoints = torch.cat(keypoints) descriptors = torch.cat(descriptors) scores = torch.cat(scores) keypoints = (keypoints + 1) / 2 * keypoints.new_tensor([[W_ - 1, H_ - 1]]) if sort or 0 < n_k < len(keypoints): indices = torch.argsort(scores, descending=True) keypoints = keypoints[indices] descriptors = descriptors[indices] scores = scores[indices] if 0 < n_k < len(keypoints): keypoints = keypoints[0:n_k] descriptors = descriptors[0:n_k] scores = scores[0:n_k] return {'keypoints': keypoints, 'descriptors': descriptors, 'scores': scores} def extract_method(m): hpatches = HPatchesDataset(root=dataset_root, alteration='all') model = m[:7] min_scale = 0.3 if m[8:] == 'ms' else 1.0 model = ALike(**configs[model], device=device, top_k=0, scores_th=0.2, n_limit=5000) progbar = tqdm(hpatches, desc='Extracting for {}'.format(m)) for imgs, homos, seq_name in progbar: for i in range(1, 7): img = imgs[i - 1] pred = extract_multiscale(model, img, min_scale=min_scale, max_scale=1, sort=False, n_k=5000) kpts, descs, scores = pred['keypoints'], pred['descriptors'], pred['scores'] with open(os.path.join(dataset_root, seq_name, f'{i}.ppm.{m}'), 'wb') as f: np.savez(f, keypoints=kpts.cpu().numpy(), scores=scores.cpu().numpy(), descriptors=descs.cpu().numpy()) if __name__ == '__main__': for method in methods: extract_method(method)