import torch.nn as nn class PixelShuffleDecoder(nn.Module): """Pixel shuffle decoder.""" def __init__(self, input_feat_dim=128, num_upsample=2, output_channel=2): super(PixelShuffleDecoder, self).__init__() # Get channel parameters self.channel_conf = self.get_channel_conf(num_upsample) # Define the pixel shuffle self.pixshuffle = nn.PixelShuffle(2) # Process the feature self.conv_block_lst = [] # The input block self.conv_block_lst.append( nn.Sequential( nn.Conv2d( input_feat_dim, self.channel_conf[0], kernel_size=3, stride=1, padding=1, ), nn.BatchNorm2d(self.channel_conf[0]), nn.ReLU(inplace=True), ) ) # Intermediate block for channel in self.channel_conf[1:-1]: self.conv_block_lst.append( nn.Sequential( nn.Conv2d(channel, channel, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(channel), nn.ReLU(inplace=True), ) ) # Output block self.conv_block_lst.append( nn.Conv2d( self.channel_conf[-1], output_channel, kernel_size=1, stride=1, padding=0, ) ) self.conv_block_lst = nn.ModuleList(self.conv_block_lst) # Get num of channels based on number of upsampling. def get_channel_conf(self, num_upsample): if num_upsample == 2: return [256, 64, 16] elif num_upsample == 3: return [256, 64, 16, 4] def forward(self, input_features): # Iterate til output block out = input_features for block in self.conv_block_lst[:-1]: out = block(out) out = self.pixshuffle(out) # Output layer out = self.conv_block_lst[-1](out) return out