# Copyright 2019-present NAVER Corp. # CC BY-NC-SA 3.0 # Available only for non-commercial use import pdb import torch import torch.nn as nn import torch.nn.functional as F from nets.sampler import * from nets.repeatability_loss import * from nets.reliability_loss import * class MultiLoss (nn.Module): """ Combines several loss functions for convenience. *args: [loss weight (float), loss creator, ... ] Example: loss = MultiLoss( 1, MyFirstLoss(), 0.5, MySecondLoss() ) """ def __init__(self, *args, dbg=()): nn.Module.__init__(self) assert len(args) % 2 == 0, 'args must be a list of (float, loss)' self.weights = [] self.losses = nn.ModuleList() for i in range(len(args)//2): weight = float(args[2*i+0]) loss = args[2*i+1] assert isinstance(loss, nn.Module), "%s is not a loss!" % loss self.weights.append(weight) self.losses.append(loss) def forward(self, select=None, **variables): assert not select or all(1<=n<=len(self.losses) for n in select) d = dict() cum_loss = 0 for num, (weight, loss_func) in enumerate(zip(self.weights, self.losses),1): if select is not None and num not in select: continue l = loss_func(**{k:v for k,v in variables.items()}) if isinstance(l, tuple): assert len(l) == 2 and isinstance(l[1], dict) else: l = l, {loss_func.name:l} cum_loss = cum_loss + weight * l[0] for key,val in l[1].items(): d['loss_'+key] = float(val) d['loss'] = float(cum_loss) return cum_loss, d