# Openpose # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose # 2nd Edited by https://github.com/Hzzone/pytorch-openpose # 3rd Edited by ControlNet # 4th Edited by ControlNet (added face and correct hands) import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import torch import numpy as np from . import util from .wholebody import Wholebody def draw_pose(pose, H, W): bodies = pose['bodies'] faces = pose['faces'] hands = pose['hands'] candidate = bodies['candidate'] subset = bodies['subset'] canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) canvas = util.draw_bodypose(canvas, candidate, subset) canvas = util.draw_handpose(canvas, hands) # canvas = util.draw_facepose(canvas, faces) return canvas class DWposeDetector: def __init__(self): self.pose_estimation = Wholebody() def getres(self, oriImg): out_res = {} oriImg = oriImg.copy() H, W, C = oriImg.shape with torch.no_grad(): candidate, subset = self.pose_estimation(oriImg) out_res['candidate']=candidate out_res['subset']=subset out_res['width']=W out_res['height']=H return out_res def __call__(self, oriImg): oriImg = oriImg.copy() H, W, C = oriImg.shape with torch.no_grad(): _candidate, _subset = self.pose_estimation(oriImg) subset = _subset.copy() candidate = _candidate.copy() nums, keys, locs = candidate.shape candidate[..., 0] /= float(W) candidate[..., 1] /= float(H) body = candidate[:,:18].copy() body = body.reshape(nums*18, locs) score = subset[:,:18] for i in range(len(score)): for j in range(len(score[i])): if score[i][j] > 0.3: score[i][j] = int(18*i+j) else: score[i][j] = -1 un_visible = subset<0.3 candidate[un_visible] = -1 foot = candidate[:,18:24] faces = candidate[:,24:92] hands = candidate[:,92:113] hands = np.vstack([hands, candidate[:,113:]]) bodies = dict(candidate=body, subset=score) pose = dict(bodies=bodies, hands=hands, faces=faces) out_res = {} out_res['candidate']=candidate out_res['subset']=subset out_res['width']=W out_res['height']=H return out_res,draw_pose(pose, H, W)