File size: 5,213 Bytes
a64b7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.nn.utils.spectral_norm import spectral_norm


class BlurFunctionBackward(Function):

    @staticmethod
    def forward(ctx, grad_output, kernel, kernel_flip):
        ctx.save_for_backward(kernel, kernel_flip)
        grad_input = F.conv2d(grad_output, kernel_flip, padding=1, groups=grad_output.shape[1])
        return grad_input

    @staticmethod
    def backward(ctx, gradgrad_output):
        kernel, _ = ctx.saved_tensors
        grad_input = F.conv2d(gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1])
        return grad_input, None, None


class BlurFunction(Function):

    @staticmethod
    def forward(ctx, x, kernel, kernel_flip):
        ctx.save_for_backward(kernel, kernel_flip)
        output = F.conv2d(x, kernel, padding=1, groups=x.shape[1])
        return output

    @staticmethod
    def backward(ctx, grad_output):
        kernel, kernel_flip = ctx.saved_tensors
        grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip)
        return grad_input, None, None


blur = BlurFunction.apply


class Blur(nn.Module):

    def __init__(self, channel):
        super().__init__()
        kernel = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32)
        kernel = kernel.view(1, 1, 3, 3)
        kernel = kernel / kernel.sum()
        kernel_flip = torch.flip(kernel, [2, 3])

        self.kernel = kernel.repeat(channel, 1, 1, 1)
        self.kernel_flip = kernel_flip.repeat(channel, 1, 1, 1)

    def forward(self, x):
        return blur(x, self.kernel.type_as(x), self.kernel_flip.type_as(x))


def calc_mean_std(feat, eps=1e-5):
    """Calculate mean and std for adaptive_instance_normalization.

    Args:
        feat (Tensor): 4D tensor.
        eps (float): A small value added to the variance to avoid
            divide-by-zero. Default: 1e-5.
    """
    size = feat.size()
    assert len(size) == 4, 'The input feature should be 4D tensor.'
    n, c = size[:2]
    feat_var = feat.view(n, c, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(n, c, 1, 1)
    feat_mean = feat.view(n, c, -1).mean(dim=2).view(n, c, 1, 1)
    return feat_mean, feat_std


def adaptive_instance_normalization(content_feat, style_feat):
    """Adaptive instance normalization.

    Adjust the reference features to have the similar color and illuminations
    as those in the degradate features.

    Args:
        content_feat (Tensor): The reference feature.
        style_feat (Tensor): The degradate features.
    """
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)
    normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
    return normalized_feat * style_std.expand(size) + style_mean.expand(size)


def AttentionBlock(in_channel):
    return nn.Sequential(
        spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
        spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)))


def conv_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, bias=True):
    """Conv block used in MSDilationBlock."""

    return nn.Sequential(
        spectral_norm(
            nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=((kernel_size - 1) // 2) * dilation,
                bias=bias)),
        nn.LeakyReLU(0.2),
        spectral_norm(
            nn.Conv2d(
                out_channels,
                out_channels,
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=((kernel_size - 1) // 2) * dilation,
                bias=bias)),
    )


class MSDilationBlock(nn.Module):
    """Multi-scale dilation block."""

    def __init__(self, in_channels, kernel_size=3, dilation=(1, 1, 1, 1), bias=True):
        super(MSDilationBlock, self).__init__()

        self.conv_blocks = nn.ModuleList()
        for i in range(4):
            self.conv_blocks.append(conv_block(in_channels, in_channels, kernel_size, dilation=dilation[i], bias=bias))
        self.conv_fusion = spectral_norm(
            nn.Conv2d(
                in_channels * 4,
                in_channels,
                kernel_size=kernel_size,
                stride=1,
                padding=(kernel_size - 1) // 2,
                bias=bias))

    def forward(self, x):
        out = []
        for i in range(4):
            out.append(self.conv_blocks[i](x))
        out = torch.cat(out, 1)
        out = self.conv_fusion(out) + x
        return out


class UpResBlock(nn.Module):

    def __init__(self, in_channel):
        super(UpResBlock, self).__init__()
        self.body = nn.Sequential(
            nn.Conv2d(in_channel, in_channel, 3, 1, 1),
            nn.LeakyReLU(0.2, True),
            nn.Conv2d(in_channel, in_channel, 3, 1, 1),
        )

    def forward(self, x):
        out = x + self.body(x)
        return out