import gradio as gr from huggingface_hub import InferenceClient import os import requests # Set up the inference API client hf_client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=os.getenv("HF_TOKEN")) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): system_prefix = """ If the input language is Korean, respond in Korean. If it's English, respond in English. 동시에 두가지 언어를 출력하지 말것. 반드시 한국어 질문에는 한국어로 답변하고, 영어 질문에는 영어로만 답변하라 """ messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}] # Add prefix for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in hf_client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content if token is not None: response += token.strip("") # Remove tokens yield response theme = "Nymbo/Nymbo_Theme" css = """ footer { visibility: hidden; } """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value=""" You are an AI assistant. """, label="System Prompt"), gr.Slider(minimum=1, maximum=2000, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], theme=theme, # Apply theme css=css # Apply CSS ) if __name__ == "__main__": demo.launch()