import os import time import gradio as gr from client1 import inference title = "Dreamoving-Phantom" img_urls=['https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/public/dashscope/show3.png'] description = f""" Gradio demo for [Dreamoving-Phantom](https://github.com/dreamoving/Phantom) DreaMoving-Phantom is a general and automatic image enhancement and super resolution framework. **No need to adjust parameters or select models, just run with one click.** The demo can be adapted to a variety of scenarios. 🔥 New feature: We added text super-resolution module so that the demo can better handle text scenes. This module will still be updated iteratively. 🧭 Instructions: Input resolution: 64<=short_side<=2160, long_side<=3840, aspect ratio<=4; best input resolution: no larger than 1080p. """ examples=[['examples/3.png'],['examples/4.png'],['examples/5.png'],['examples/6.png'], ['examples/7.png'],['examples/8.png'],['examples/1.png'],['examples/9.jpg'],['examples/10.png'], ['examples/12.png'],['examples/13.png'],['examples/14.png']] # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2) with gr.Blocks(css="style.css") as demo: gr.Markdown(f"

{title}

") gr.Markdown(description, elem_id='description') with gr.Row(): with gr.Column(scale=0.67): input_image = gr.Image(type="pil", label="Input Image", image_mode="RGBA") upsample_scale = gr.Slider(label="Upsample Scale", minimum=1, maximum=4, value=2, step=1, elem_id='slider') btn = gr.Button("Run", elem_id='button_param') with gr.Column(): output_gallery = gr.Gallery(label="Output", elem_id="output_gallery") # output_gallery = gr.Image(type="pil", label="Output", elem_id="output_gallery", image_mode="RGBA") output_text = gr.Textbox(label="Log", elem_id="output_text") btn.click( inference, inputs=[input_image, upsample_scale], outputs=[output_gallery, output_text] ) with gr.Row(): with gr.Column(scale=2): gr.Markdown('**Examples**', elem_id='example') gr.Examples(label='', examples=examples, inputs=[input_image, upsample_scale], outputs=[output_gallery, output_text], examples_per_page=15, elem_id='examples') with gr.Column(scale=3): additional_text = "**Gallery**" gr.Markdown(additional_text, elem_id='additional_text') gr.HTML( f"""
gallery
""", elem_id='html_image' ) # concurrency_count, concurrency_limit, max_threads demo.queue(api_open=False, max_size=1000).launch( server_name="0.0.0.0", # if os.getenv('GRADIO_LISTEN', '') != '' else "127.0.0.1", share=True, server_port=7860, root_path=f"/{os.getenv('GRADIO_PROXY_PATH')}" if os.getenv('GRADIO_PROXY_PATH') else "" )