diff --git a/.gitattributes b/.gitattributes
index a6344aac8c09253b3b630fb776ae94478aa0275b..1291df2c7b4f543c7db043e62dc1a333c784d3e1 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+img/stream_chat.gif filter=lfs diff=lfs merge=lfs -text
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..4e14be40b932ccf36d10c385704a70efc2e974af
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,27 @@
+.vscode/*
+.vscode
+!.vscode/settings.json
+!.vscode/tasks.json
+!.vscode/launch.json
+!.vscode/extensions.json
+*.code-workspace
+
+# Local History for Visual Studio Code
+.history/
+.idea/
+
+# python cache
+*.pyc
+*.cache
+
+logs/*
+
+data/*
+!/data/my_train_dataset_3k.parquet
+!/data/my_test_dataset_2k.parquet
+!/data/my_valid_dataset_1k.parquet
+
+model_save/*
+!model_save/put_model_files_here
+
+wandb/*
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/README.en.md b/README.en.md
new file mode 100644
index 0000000000000000000000000000000000000000..9a6c875ef140b274a1100d55b07c033794dd8299
--- /dev/null
+++ b/README.en.md
@@ -0,0 +1,457 @@
+
+
+# A Small Chat with Chinese Language Model: ChatLM-Chinese-0.2B
+ [中文](./README.md) | English
+
+
+
+# 1. 👋Introduction
+
+Today's large language models tend to have large parameters, and consumer-grade computers are slow to do simple inference, let alone train a model from scratch. The goal of this project is to train a generative language models from scratch, including data cleaning, tokenizer training, model pre-training, SFT instruction fine-tuning, RLHF optimization, etc.
+
+ChatLM-mini-Chinese is a small Chinese chat model with only 0.2B (added shared weight is about 210M) parameters. It can be pre-trained on machine with a minimum of 4GB of GPU memory (`batch_size=1`, `fp16` or `bf16`), `float16` loading and inference only require a minimum of 512MB of GPU memory.
+
+- Make public all pre-training, SFT instruction fine-tuning, and DPO preference optimization datasets sources.
+- Use the `Huggingface` NLP framework, including `transformers`, `accelerate`, `trl`, `peft`, etc.
+- Self-implemented `trainer`, supporting pre-training and SFT fine-tuning on a single machine with a single card or with multiple cards on a single machine. It supports stopping at any position during training and continuing training at any position.
+- Pre-training: Integrated into end-to-end `Text-to-Text` pre-training, non-`mask` mask prediction pre-training.
+ - Open source all data cleaning (such as standardization, document deduplication based on mini_hash, etc.), data set construction, data set loading optimization and other processes;
+ - tokenizer multi-process word frequency statistics, supports tokenizer training of `sentencepiece` and `huggingface tokenizers`;
+ - Pre-training supports checkpoint at any step, and training can be continued from the breakpoint;
+ - Streaming loading of large datasets (GB level), supporting buffer data shuffling, does not use memory or hard disk as cache, effectively reducing memory and disk usage. configuring `batch_size=1, max_len=320`, supporting pre-training on a machine with at least 16GB RAM + 4GB GPU memory;
+ - Training log record.
+- SFT fine-tuning: open source SFT dataset and data processing process.
+ - The self-implemented `trainer` supports prompt command fine-tuning and supports any breakpoint to continue training;
+ - Support `sequence to sequence` fine-tuning of `Huggingface trainer`;
+ - Supports traditional low learning rate and only trains fine-tuning of the decoder layer.
+- RLHF Preference optimization: Use DPO to optimize all preferences.
+ - Support using `peft lora` for preference optimization;
+ - Supports model merging, `Lora adapter` can be merged into the original model.
+- Support downstream task fine-tuning: [finetune_examples](./finetune_examples/info_extract/) gives a fine-tuning example of the **Triple Information Extraction Task**. The model dialogue capability after fine-tuning is still there.
+
+If you need to do retrieval augmented generation (RAG) based on small models, you can refer to my other project [Phi2-mini-Chinese](https://github.com/charent/Phi2-mini-Chinese). For the code, see [rag_with_langchain.ipynb](https://github.com/charent/Phi2-mini-Chinese/blob/main/rag_with_langchain.ipynb)
+
+🟢**Latest Update**
+
+
+ 2024-01-30
+- The model files are updated to Moda modelscope and can be quickly downloaded through `snapshot_download`.
+
+
+
+ 2024-01-07
+- Add document deduplication based on mini hash during the data cleaning process (in this project, it's to deduplicated the rows of datasets actually). Prevent the model from spitting out training data during inference after encountering multiple repeated data.
+- Add the `DropDatasetDuplicate` class to implement deduplication of documents from large data sets.
+
+
+
+ 2023-12-29
+- Update the model code (weights is NOT changed), you can directly use `AutoModelForSeq2SeqLM.from_pretrained(...)` to load the model for using.
+- Updated readme documentation.
+
+
+
+ 2023-12-18
+- Supplementary use of the `ChatLM-mini-0.2B` model to fine-tune the downstream triplet information extraction task code and display the extraction results.
+- Updated readme documentation.
+
+
+
+ 2023-12-14
+- Updated model weight files after SFT and DPO.
+- Updated pre-training, SFT and DPO scripts.
+- update `tokenizer` to `PreTrainedTokenizerFast`.
+- Refactor the `dataset` code to support dynamic maximum length. The maximum length of each batch is determined by the longest text in the batch, saving GPU memory.
+- Added `tokenizer` training details.
+
+
+
+ 2023-12-04
+- Updated `generate` parameters and model effect display.
+- Updated readme documentation.
+
+
+
+ 2023-11-28
+- Updated dpo training code and model weights.
+
+
+
+ 2023-10-19
+- The project is open source and the model weights are open for download.
+
+
+# 2. 🛠️ChatLM-0.2B-Chinese model training process
+## 2.1 Pre-training dataset
+All datasets come from the **Single Round Conversation** dataset published on the Internet. After data cleaning and formatting, they are saved as parquet files. For the data processing process, see `utils/raw_data_process.py`. Main datasets include:
+
+1. Community Q&A json version webtext2019zh-large-scale high-quality dataset, see: [nlp_chinese_corpus](https://github.com/brightmart/nlp_chinese_corpus). A total of 4.1 million, with 2.6 million remaining after cleaning.
+2. baike_qa2019 encyclopedia Q&A, see: , a total of 1.4 million, and the remaining 1.3 million after waking up.
+3. Chinese medical field question and answer dataset, see: [Chinese-medical-dialogue-data](https://github.com/Toyhom/Chinese-medical-dialogue-data), with a total of 790,000, and the remaining 790,000 after cleaning.
+4. ~~Financial industry question and answer data, see: , a total of 770,000, and the remaining 520,000 after cleaning. ~~**The data quality is too poor and not used. **
+5. Zhihu question and answer data, see: [Zhihu-KOL](https://huggingface.co/datasets/wangrui6/Zhihu-KOL), with a total of 1 million rows, and 970,000 rows remain after cleaning.
+6. belle open source instruction training data, introduction: [BELLE](https://github.com/LianjiaTech/BELLE), download: [BelleGroup](https://huggingface.co/BelleGroup), only select `Belle_open_source_1M` , `train_2M_CN`, and `train_3.5M_CN` contain some data with short answers, no complex table structure, and translation tasks (no English vocabulary list), totaling 3.7 million rows, and 3.38 million rows remain after cleaning.
+7. Wikipedia entry data, piece together the entries into prompts, the first `N` words of the encyclopedia are the answers, use the encyclopedia data of `202309`, and after cleaning, the remaining 1.19 million entry prompts and answers . Wiki download: [zhwiki](https://dumps.wikimedia.org/zhwiki/), convert the downloaded bz2 file to wiki.txt reference: [WikiExtractor](https://github.com/apertium/WikiExtractor).
+
+The total number of datasets is 10.23 million: Text-to-Text pre-training set: 9.3 million, evaluation set: 25,000 (because the decoding is slow, the evaluation set is not set too large). ~~Test set: 900,000~~
+SFT fine-tuning and DPO optimization datasets are shown below.
+
+## 2.2 Model
+T5 model (Text-to-Text Transfer Transformer), for details, see the paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683).
+
+The model source code comes from huggingface, see: [T5ForConditionalGeneration](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L1557).
+
+For model configuration, see [model_config.json](https://huggingface.co/charent/ChatLM-mini-Chinese/blob/main/config.json). The official `T5-base`: `encoder layer` and `decoder layer` are both 12 layers. In this project, these two parameters are modified to 10 layers.
+
+Model parameters: 0.2B. Word list size: 29298, including only Chinese and a small amount of English.
+
+## 2.3 Training process
+hardware:
+```bash
+# Pre-training phase:
+CPU: 28 vCPU Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
+Memory: 60 GB
+GPU: RTX A5000 (24GB) * 2
+
+# sft and dpo stages:
+CPU: Intel(R) i5-13600k @ 5.1GHz
+Memory: 32 GB
+GPU: NVIDIA GeForce RTX 4060 Ti 16GB * 1
+```
+
+1. **tokenizer training**: The existing `tokenizer` training library has OOM problems when encountering large corpus. Therefore, the full corpus is merged and constructed according to word frequency according to a method similar to `BPE`, and the operation takes half a day.
+
+2. **Text-to-Text pre-training**: The learning rate is a dynamic learning rate from `1e-4` to `5e-3`, and the pre-training time is 8 days. Training loss:
+![traing loss](img/train_loss.png)
+
+3. **prompt supervised fine-tuning (SFT)**: Use the `belle` instruction training dataset (both instruction and answer lengths are below 512), with a dynamic learning rate from `1e-7` to `5e-5` , the fine-tuning time is 2 days. Fine-tuning loss:
+![finetune loss](img/sft_loss.png)
+
+4. **dpo direct preference optimization(RLHF)**: dataset [alpaca-gpt4-data-zh](https://huggingface.co/datasets/c-s-ale/alpaca-gpt4-data-zh) as `chosen` text , in step `2`, the SFT model performs batch `generate` on the prompts in the dataset, and obtains the `rejected` text, which takes 1 day, dpo full preference optimization, learning rate `le-5`, half precision `fp16`, total `2` `epoch`, taking 3h. dpo loss:
+![dpo loss](img/dpo_loss.png)
+
+## 2.4 chat show
+### 2.4.1 stream chat
+By default, `TextIteratorStreamer` of `huggingface transformers` is used to implement streaming dialogue, and only `greedy search` is supported. If you need `beam sample` and other generation methods, please change the `stream_chat` parameter of `cli_demo.py` to `False` .
+![](./img/stream_chat.gif)
+
+### 2.4.2 Dialogue show
+![](./img/show1.png)
+
+There are problems: the pre-training dataset only has more than 9 million, and the model parameters are only 0.2B. It cannot cover all aspects, and there will be situations where the answer is wrong and the generator is nonsense.
+
+# 3. 📑Instructions for using
+## 3.1 Quick start:
+```python
+from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
+import torch
+
+model_id = 'charent/ChatLM-mini-Chinese'
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+
+# 如果无法连接huggingface,打开以下两行代码的注释,将从modelscope下载模型文件,模型文件保存到'./model_save'目录
+# from modelscope import snapshot_download
+# model_id = snapshot_download(model_id, cache_dir='./model_save')
+
+tokenizer = AutoTokenizer.from_pretrained(model_id)
+model = AutoModelForSeq2SeqLM.from_pretrained(model_id, trust_remote_code=True).to(device)
+
+txt = '如何评价Apple这家公司?'
+
+encode_ids = tokenizer([txt])
+input_ids, attention_mask = torch.LongTensor(encode_ids['input_ids']), torch.LongTensor(encode_ids['attention_mask'])
+
+outs = model.my_generate(
+ input_ids=input_ids.to(device),
+ attention_mask=attention_mask.to(device),
+ max_seq_len=256,
+ search_type='beam',
+)
+
+outs_txt = tokenizer.batch_decode(outs.cpu().numpy(), skip_special_tokens=True, clean_up_tokenization_spaces=True)
+print(outs_txt[0])
+```
+```txt
+Apple是一家专注于设计和用户体验的公司,其产品在设计上注重简约、流畅和功能性,而在用户体验方面则注重用户的反馈和使用体验。作为一家领先的科技公司,苹果公司一直致力于为用户提供最优质的产品和服务,不断推陈出新,不断创新和改进,以满足不断变化的市场需求。
+在iPhone、iPad和Mac等产品上,苹果公司一直保持着创新的态度,不断推出新的功能和设计,为用户提供更好的使用体验。在iPad上推出的iPad Pro和iPod touch等产品,也一直保持着优秀的用户体验。
+此外,苹果公司还致力于开发和销售软件和服务,例如iTunes、iCloud和App Store等,这些产品在市场上也获得了广泛的认可和好评。
+总的来说,苹果公司在设计、用户体验和产品创新方面都做得非常出色,为用户带来了许多便利和惊喜。
+
+```
+
+## 3.2 from clone code repository start
+> [!CAUTION]
+> The model of this project is the `TextToText` model. In the `prompt`, `response` and other fields of the pre-training stage, SFT stage, and RLFH stage, please be sure to add the `[EOS]` end-of-sequence mark.
+
+### 3.2.1 Clone repository
+```bash
+git clone --depth 1 https://github.com/charent/ChatLM-mini-Chinese.git
+
+cd ChatLM-mini-Chinese
+```
+### 3.2.2 Install dependencies
+It is recommended to use `python 3.10` for this project. Older python versions may not be compatible with the third-party libraries it depends on.
+
+pip installation:
+```bash
+pip install -r ./requirements.txt
+```
+
+If pip installed the CPU version of pytorch, you can install the CUDA version of pytorch with the following command:
+```bash
+# pip install torch + cu118
+pip3 install torch --index-url https://download.pytorch.org/whl/cu118
+```
+
+conda installation:
+```bash
+conda install --yes --file ./requirements.txt
+```
+
+### 3.2.3 Download the pre-trained model and model configuration file
+
+Download model weights and configuration files from `Hugging Face Hub` with `git` command, you need to install [Git LFS](https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large -file-storage), then run:
+
+```bash
+# Use the git command to download the huggingface model. Install [Git LFS] first, otherwise the downloaded model file will not be available.
+git clone --depth 1 https://huggingface.co/charent/ChatLM-mini-Chinese
+
+# If unable to connect huggingface, please download from modelscope
+git clone --depth 1 https://www.modelscope.cn/charent/ChatLM-mini-Chinese.git
+
+mv ChatLM-mini-Chinese model_save
+```
+
+You can also manually download it directly from the `Hugging Face Hub` warehouse [ChatLM-mini-Chinese](https://huggingface.co/charent/ChatLM-mini-Chinese) and move the downloaded file to the `model_save` directory. .
+
+
+## 3.3 Tokenizer training
+
+1. Prepare txt corpus
+
+The corpus requirements should be as complete as possible. It is recommended to add multiple corpora, such as encyclopedias, codes, papers, blogs, conversations, etc.
+
+This project is mainly based on wiki Chinese encyclopedia. How to obtain Chinese wiki corpus: Chinese Wiki download address: [zhwiki](https://dumps.wikimedia.org/zhwiki/), download the `zhwiki-[archive date]-pages-articles-multistream.xml.bz2` file, About 2.7GB, convert the downloaded bz2 file to wiki.txt reference: [WikiExtractor](https://github.com/apertium/WikiExtractor), then use python's `OpenCC` library to convert to Simplified Chinese, and finally get the Just put `wiki.simple.txt` in the `data` directory of the project root directory. Please merge multiple corpora into one `txt` file yourself.
+
+Since training tokenizer consumes a lot of memory, if your corpus is very large (the merged `txt` file exceeds 2G), it is recommended to sample the corpus according to categories and proportions to reduce training time and memory consumption. Training a 1.7GB `txt` file requires about 48GB of memory (estimated, I only have 32GB, triggering swap frequently, computer stuck for a long time T_T), 13600k CPU takes about 1 hour.
+
+2. train tokenizer
+
+The difference between `char level` and `byte level` is as follows (Please search for information on your own for specific differences in use.). The tokenizer of `char level` is trained by default. If `byte level` is required, just set `token_type='byte'` in `train_tokenizer.py`.
+
+```python
+# original text
+txt = '这是一段中英混输的句子, (chinese and English, here are words.)'
+
+tokens = charlevel_tokenizer.tokenize(txt)
+print(tokens)
+# char level tokens output
+# ['▁这是', '一段', '中英', '混', '输', '的', '句子', '▁,', '▁(', '▁ch', 'inese', '▁and', '▁Eng', 'lish', '▁,', '▁h', 'ere', '▁', 'are', '▁w', 'ord', 's', '▁.', '▁)']
+
+tokens = bytelevel_tokenizer.tokenize(txt)
+print(tokens)
+# byte level tokens output
+# ['Ġè¿Ļæĺ¯', 'ä¸Ģ段', 'ä¸Ńèĭ±', 'æ··', 'è¾ĵ', 'çļĦ', 'åı¥åŃIJ', 'Ġ,', 'Ġ(', 'Ġch', 'inese', 'Ġand', 'ĠEng', 'lish', 'Ġ,', 'Ġh', 'ere', 'Ġare', 'Ġw', 'ord', 's', 'Ġ.', 'Ġ)']
+```
+
+Start training:
+
+```python
+# Make sure your training corpus `txt` file is in the data directory
+python train_tokenizer.py
+```
+
+## 3.4 Text-to-Text pre-training
+1. Pre-training dataset example
+```json
+{
+ "prompt": "对于花园街,你有什么了解或看法吗?",
+ "response": "花园街(是香港油尖旺区的一条富有特色的街道,位于九龙旺角东部,北至界限街,南至登打士街,与通菜街及洗衣街等街道平行。现时这条街道是香港著名的购物区之一。位于亚皆老街以南的一段花园街,也就是\"波鞋街\"整条街约150米长,有50多间售卖运动鞋和运动用品的店舖。旺角道至太子道西一段则为排档区,售卖成衣、蔬菜和水果等。花园街一共分成三段。明清时代,花园街是芒角村栽种花卉的地方。此外,根据历史专家郑宝鸿的考证:花园街曾是1910年代东方殷琴拿烟厂的花园。纵火案。自2005年起,花园街一带最少发生5宗纵火案,当中4宗涉及排档起火。2010年。2010年12月6日,花园街222号一个卖鞋的排档于凌晨5时许首先起火,浓烟涌往旁边住宅大厦,消防接报4"
+}
+```
+
+2. jupyter-lab or jupyter notebook:
+
+ See the file `train.ipynb`. It is recommended to use jupyter-lab to avoid considering the situation where the terminal process is killed after disconnecting from the server.
+
+3. Console:
+
+ Console training needs to consider that the process will be killed after the connection is disconnected. It is recommended to use the process daemon tool `Supervisor` or `screen` to establish a connection session.
+
+ First, configure `accelerate`, execute the following command, and select according to the prompts. Refer to `accelerate.yaml`, *Note: DeepSpeed installation in Windows is more troublesome*.
+ ```bash
+ accelerate config
+ ```
+
+ Start training. If you want to use the configuration provided by the project, please add the parameter `--config_file ./accelerate.yaml` after the following command `accelerate launch`. *This configuration is based on the single-machine 2xGPU configuration.*
+
+ *There are two scripts for pre-training. The trainer implemented in this project corresponds to `train.py`, and the trainer implemented by huggingface corresponds to `pre_train.py`. You can use either one and the effect will be the same. The training information display of the trainer implemented in this project is more beautiful, and it is easier to modify the training details (such as loss function, log records, etc.). All support checkpoint to continue training. The trainer implemented in this project supports continuing training after a breakpoint at any position. Press ` ctrl+c` will save the breakpoint information when exiting the script.*
+
+ Single machine and single card:
+ ```bash
+ # The trainer implemented in this project
+ accelerate launch ./train.py train
+
+ # Or use huggingface trainer
+ accelerate launch --multi_gpu --num_processes 2 pre_train.py
+ ```
+
+ Single machine with multiple GPUs:
+ '2' is the number of gpus, please modify it according to your actual situation.
+ ```bash
+ # The trainer implemented in this project
+ accelerate launch --multi_gpu --num_processes 2 ./train.py train
+
+ # Or use huggingface trainer
+ accelerate launch --multi_gpu --num_processes 2 pre_train.py
+ ```
+
+ Continue training from the breakpoint:
+ ```bash
+ # The trainer implemented in this project
+ accelerate launch --multi_gpu --num_processes 2 ./train.py train --is_keep_training=True
+
+ # Or use huggingface trainer
+ # You need to add `resume_from_checkpoint=True` to the `train` function in `pre_train.py`
+ python pre_train.py
+ ```
+
+## 3.5 Supervised Fine-tuning, SFT
+
+The SFT dataset all comes from the contribution of [BELLE](https://github.com/LianjiaTech/BELLE). Thank you. The SFT datasets are: [generated_chat_0.4M](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M), [train_0.5M_CN](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN ) and [train_2M_CN](https://huggingface.co/datasets/BelleGroup/train_2M_CN), about 1.37 million rows remain after cleaning.
+Example of fine-tuning dataset with sft command:
+
+```json
+{
+ "prompt": "解释什么是欧洲启示录",
+ "response": "欧洲启示录(The Book of Revelation)是新约圣经的最后一卷书,也被称为《启示录》、《默示录》或《约翰默示录》。这本书从宗教的角度描述了世界末日的来临,以及上帝对世界的审判和拯救。 书中的主题包括来临的基督的荣耀,上帝对人性的惩罚和拯救,以及魔鬼和邪恶力量的存在。欧洲启示录是一个充满象征和暗示的文本,对于解读和理解有许多不同的方法和观点。"
+}
+```
+Make your own dataset by referring to the sample `parquet` file in the `data` directory. The dataset format is: the `parquet` file is divided into two columns, one column of `prompt` text, representing the prompt, and one column of `response` text, representing the expected model. output.
+For fine-tuning details, see the `train` method under `model/trainer.py`. When `is_finetune` is set to `True`, fine-tuning will be performed. Fine-tuning will freeze the embedding layer and encoder layer by default, and only train the decoder layer. If you need to freeze other parameters, please adjust the code yourself.
+
+Run SFT fine-tuning:
+```bash
+# For the trainer implemented in this project, just add the parameter `--is_finetune=True`. The parameter `--is_keep_training=True` can continue training from any breakpoint.
+accelerate launch --multi_gpu --num_processes 2 ./train.py --is_finetune=True
+
+# Or use huggingface trainer
+python sft_train.py
+```
+
+## 3.6 RLHF (Reinforcement Learning Human Feedback Optimization Method)
+
+Here are two common preferred methods: PPO and DPO. Please search papers and blogs for specific implementations.
+
+1. PPO method (approximate preference optimization, Proximal Policy Optimization)
+ Step 1: Use the fine-tuning dataset to do supervised fine-tuning (SFT, Supervised Finetuning).
+ Step 2: Use the preference dataset (a prompt contains at least 2 responses, one wanted response and one unwanted response. Multiple responses can be sorted by score, with the most wanted one having the highest score) to train the reward model (RM, Reward Model). You can use the `peft` library to quickly build the Lora reward model.
+ Step 3: Use RM to perform supervised PPO training on the SFT model so that the model meets preferences.
+
+2. Use DPO (Direct Preference Optimization) fine-tuning (**This project uses the DPO fine-tuning method, which saves GPU memory**)
+ On the basis of obtaining the SFT model, there is no need to train the reward model, and fine-tuning can be started by obtaining the positive answer (chosen) and the negative answer (rejected). The fine-tuned `chosen` text comes from the original dataset [alpaca-gpt4-data-zh](https://huggingface.co/datasets/c-s-ale/alpaca-gpt4-data-zh), and the rejected text `rejected` comes from SFT Model output after fine-tuning 1 epoch, two other datasets: [huozi_rlhf_data_json](https://huggingface.co/datasets/Skepsun/huozi_rlhf_data_json) and [rlhf-reward-single-round-trans_chinese](https:// huggingface.co/datasets/beyond/rlhf-reward-single-round-trans_chinese), a total of 80,000 dpo data after the merger.
+
+ For the dpo dataset processing process, see `utils/dpo_data_process.py`.
+
+DPO preference optimization dataset example:
+```json
+ {
+ "prompt": "为给定的产品创建一个创意标语。,输入:可重复使用的水瓶。",
+ "chosen": "\"保护地球,从拥有可重复使用的水瓶开始!\"",
+ "rejected": "\"让你的水瓶成为你的生活伴侣,使用可重复使用的水瓶,让你的水瓶成为你的伙伴\""
+ }
+```
+Run preference optimization:
+```bash
+pythondpo_train.py
+```
+
+## 3.7 Infering
+Make sure there are the following files in the `model_save` directory, These files can be found in the `Hugging Face Hub` repository [ChatLM-Chinese-0.2B](https://huggingface.co/charent/ChatLM-mini-Chinese)::
+```bash
+ChatLM-mini-Chinese
+├─model_save
+| ├─config.json
+| ├─configuration_chat_model.py
+| ├─generation_config.json
+| ├─model.safetensors
+| ├─modeling_chat_model.py
+| ├─special_tokens_map.json
+| ├─tokenizer.json
+| └─tokenizer_config.json
+```
+
+1. Console run:
+```bash
+python cli_demo.py
+```
+
+2. API call
+```bash
+python api_demo.py
+```
+
+API call example:
+API调用示例:
+```bash
+curl --location '127.0.0.1:8812/api/chat' \
+--header 'Content-Type: application/json' \
+--header 'Authorization: Bearer Bearer' \
+--data '{
+ "input_txt": "感冒了要怎么办"
+}'
+```
+![api demo](./img/api_example.png)
+
+## 3.8 Fine-tuning of downstream tasks
+
+Here we take the triplet information in the text as an example to do downstream fine-tuning. Traditional deep learning extraction methods for this task can be found in the repository [pytorch_IE_model](https://github.com/charent/pytorch_IE_model). Extract all the triples in a piece of text, such as the sentence `"Sketching Essays" is a book published by Metallurgical Industry in 2006, the author is Zhang Lailiang`, extract the triples `(Sketching Essays, author, Zhang Lailiang)` and `( Sketching essays, publishing house, metallurgical industry)`.
+
+The original dataset is: [Baidu Triplet Extraction dataset](https://aistudio.baidu.com/datasetdetail/11384). Example of the processed fine-tuned dataset format:
+```json
+{
+ "prompt": "请抽取出给定句子中的所有三元组。给定句子:《家乡的月亮》是宋雪莱演唱的一首歌曲,所属专辑是《久违的哥们》",
+ "response": "[(家乡的月亮,歌手,宋雪莱),(家乡的月亮,所属专辑,久违的哥们)]"
+}
+```
+
+You can directly use the `sft_train.py` script for fine-tuning. The script [finetune_IE_task.ipynb](./finetune_examples/info_extract/finetune_IE_task.ipynb) contains the detailed decoding process. The training dataset is about `17000`, the learning rate is `5e-5`, and the training epoch is `5`. The dialogue capabilities of other tasks have not disappeared after fine-tuning.
+
+![Conversation ability after fine-tuning of information extraction task](./img/ie_task_chat.png)
+
+Fine-tuning effects:
+The public `dev` dataset of `Baidu triple extraction dataset` is used as a test set to compare with the traditional method [pytorch_IE_model](https://github.com/charent/pytorch_IE_model).
+
+| Model | F1 score | Precision | Recall |
+| :--- | :----: | :---: | :---: |
+| ChatLM-Chinese-0.2B fine-tuning | 0.74 | 0.75 | 0.73 |
+| ChatLM-Chinese-0.2B without pre-training | 0.51 | 0.53 | 0.49 |
+| Traditional deep learning method | 0.80 | 0.79 | 80.1 |
+
+Note: `ChatLM-Chinese-0.2B without pre-training` means directly initializing random parameters, starting training, learning rate `1e-4`, and other parameters are consistent with fine-tuning.
+
+## 3.9 C-Eval score
+The model itself is not trained with a large dataset and it is no fine-tuning for the instructions for answering multiple-choice questions, and the C-Eval score is basically at the baseline level. If necessary, it can be used as a reference. The C-Eval review code can be found at: 'eval/c_eavl.ipynb'
+
+| category | correct | question_count| accuracy |
+| :--- | :----: | :---: | :---: |
+| Humanities | 63 | 257 | 24.51% |
+| Other | 89 | 384 | 23.18% |
+| STEM | 89 | 430 | 20.70% |
+| Social Science | 72 | 275 | 26.18% |
+
+# 4. 🎓Citation
+If you think this project is helpful to you, please site it.
+```conf
+@misc{Charent2023,
+ author={Charent Chen},
+ title={A small chinese chat language model with 0.2B parameters base on T5},
+ year={2023},
+ publisher = {GitHub},
+ journal = {GitHub repository},
+ howpublished = {\url{https://github.com/charent/ChatLM-mini-Chinese}},
+}
+```
+
+# 5. 🤔Other matters
+This project does not bear any risks and responsibilities arising from data security and public opinion risks caused by open source models and codes, or any model being misled, abused, disseminated, or improperly exploited.
diff --git a/README.md b/README.md
index 4d3947be1ad6e2e42e89850238ad6c1aded22012..1c7da9521f53ab34f4bfd7f11bd420b8e6323ecd 100644
--- a/README.md
+++ b/README.md
@@ -1,12 +1,474 @@
----
-title: ChatmlTest
-emoji: 🐨
-colorFrom: red
-colorTo: blue
-sdk: gradio
-sdk_version: 4.26.0
-app_file: app.py
-pinned: false
----
-
-Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
+
+
+# 中文对话0.2B小模型 ChatLM-Chinese-0.2B
+
+中文 | [English](./README.en.md)
+
+
+
+
+# 一、👋介绍
+现在的大语言模型的参数往往较大,消费级电脑单纯做推理都比较慢,更别说想自己从头开始训练一个模型了。本项目的目标是从0开始训练一个生成式语言模型,包括数据清洗、tokenizer训练、模型预训练、SFT指令微调、RLHF优化等。
+
+ChatLM-mini-Chinese为中文对话小模型,模型参数只有0.2B(算共享权重约210M),可以在最低4GB显存的机器进行预训练(`batch_size=1`,`fp16`或者` bf16`),`float16`加载、推理最少只需要512MB显存。
+
+
+- 公开所有预训练、SFT指令微调、DPO偏好优化数据集来源。
+- 使用`Huggingface`NLP框架,包括`transformers`、`accelerate`、`trl`、`peft`等。
+- 自实现`trainer`,支持单机单卡、单机多卡进行预训练、SFT微调。训练过程中支持在任意位置停止,及在任意位置继续训练。
+- 预训练:整合为端到端的`Text-to-Text`预训练,非`mask`掩码预测预训练。
+ - 开源所有数据清洗(如规范化、基于mini_hash的文档去重等)、数据集构造、数据集加载优化等流程;
+ - tokenizer多进程词频统计,支持`sentencepiece`、`huggingface tokenizers`的tokenizer训练;
+ - 预训练支持任意位置断点,可从断点处继续训练;
+ - 大数据集(GB级别)流式加载、支持缓冲区数据打乱,不利用内存、硬盘作为缓存,有效减少内存、磁盘占用。配置`batch_size=1, max_len=320`下,最低支持在16GB内存+4GB显存的机器上进行预训练;
+ - 训练日志记录。
+- SFT微调:开源SFT数据集及数据处理过程。
+ - 自实现`trainer`支持prompt指令微调, 支持任意断点继续训练;
+ - 支持`Huggingface trainer`的`sequence to sequence`微调;
+ - 支持传统的低学习率,只训练decoder层的微调。
+- RLHF偏好优化:使用DPO进行全量偏好优化。
+ - 支持使用`peft lora`进行偏好优化;
+ - 支持模型合并,可将`Lora adapter`合并到原始模型中。
+- 支持下游任务微调:[finetune_examples](./finetune_examples/info_extract/)给出**三元组信息抽取任务**的微调示例,微调后的模型对话能力仍在。
+
+如果需要做基于小模型的检索增强生成(RAG),可以参考我的另一个项目[Phi2-mini-Chinese](https://github.com/charent/Phi2-mini-Chinese),代码见[rag_with_langchain.ipynb](https://github.com/charent/Phi2-mini-Chinese/blob/main/rag_with_langchain.ipynb)
+
+🟢**最近更新**
+
+
+ 2024-01-30
+- 模型文件更新到魔搭modelscope,可以通过`snapshot_download`快速下载。
+
+
+
+ 2024-01-07
+- 添加数据清洗过程中基于mini hash实现的文档去重(在本项目中其实是数据集的样本去重),防止模型遇到多次重复数据后,在推理时吐出训练数据。
+- 添加`DropDatasetDuplicate`类实现对大数据集的文档去重。
+
+
+
+ 2023-12-29
+- 更新模型代码(权重不变),可以直接使用`AutoModelForSeq2SeqLM.from_pretrained(...)`加载模型使用。
+- 更新readme文档。
+
+
+
+ 2023-12-18
+- 补充利用`ChatLM-mini-0.2B`模型微调下游三元组信息抽取任务代码及抽取效果展示 。
+- 更新readme文档。
+
+
+
+ 2023-12-14
+- 更新SFT、DPO后的模型权重文件。
+- 更新预训练、SFT及DPO脚本。
+- 更新`tokenizer`为`PreTrainedTokenizerFast`。
+- 重构`dataset`代码,支持动态最大长度,每个批次的最大长度由该批次的最长文本决定,节省显存。
+- 补充`tokenizer`训练细节。
+
+
+
+ 2023-12-04
+- 更新`generate`参数及模型效果展示。
+- 更新readme文档。
+
+
+
+ 2023-11-28
+- 更新dpo训练代码及模型权重。
+
+
+
+ 2023-10-19
+- 项目开源, 开放模型权重供下载。
+
+
+
+# 二、🛠️ChatLM-0.2B-Chinese模型训练过程
+
+## 2.1 预训练数据集
+所有数据集均来自互联网公开的**单轮对话**数据集,经过数据清洗、格式化后保存为parquet文件。数据处理过程见`utils/raw_data_process.py`。主要数据集包括:
+
+1. 社区问答json版webtext2019zh-大规模高质量数据集,见:[nlp_chinese_corpus](https://github.com/brightmart/nlp_chinese_corpus)。共410万,清洗后剩余260万。
+2. baike_qa2019百科类问答,见:,共140万,清醒后剩余130万。
+3. 中国医药领域问答数据集,见:[Chinese-medical-dialogue-data](https://github.com/Toyhom/Chinese-medical-dialogue-data),共79万,清洗后剩余79万。
+4. ~~金融行业问答数据,见:,共77万,清洗后剩余52万。~~**数据质量太差,未采用。**
+5. 知乎问答数据,见:[Zhihu-KOL](https://huggingface.co/datasets/wangrui6/Zhihu-KOL),共100万行,清洗后剩余97万行。
+6. belle开源的指令训练数据,介绍:[BELLE](https://github.com/LianjiaTech/BELLE),下载:[BelleGroup](https://huggingface.co/BelleGroup),仅选取`Belle_open_source_1M`、`train_2M_CN`、及`train_3.5M_CN`中部分回答较短、不含复杂表格结构、翻译任务(没做英文词表)的数据,共370万行,清洗后剩余338万行。
+7. 维基百科(Wikipedia)词条数据,将词条拼凑为提示语,百科的前`N`个词为回答,使用`202309`的百科数据,清洗后剩余119万的词条提示语和回答。Wiki下载:[zhwiki](https://dumps.wikimedia.org/zhwiki/),将下载的bz2文件转换为wiki.txt参考:[WikiExtractor](https://github.com/apertium/WikiExtractor)。
+
+数据集总数量1023万:Text-to-Text预训练集:930万,评估集:2.5万(因为解码较慢,所以没有把评估集设置太大)。~~测试集:90万。~~
+SFT微调和DPO优化数据集见下文。
+
+## 2.2 模型
+T5模型(Text-to-Text Transfer Transformer),详情见论文: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683)。
+
+模型源码来自huggingface,见:[T5ForConditionalGeneration](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L1557)。
+
+模型配置见[model_config.json](https://huggingface.co/charent/ChatLM-mini-Chinese/blob/main/config.json),官方的`T5-base`:`encoder layer`和`decoder layer `均为为12层,本项目这两个参数修改为10层。
+
+模型参数:0.2B。词表大小:29298,仅包含中文和少量英文。
+
+## 2.3 训练过程
+硬件:
+```bash
+# 预训练阶段:
+CPU: 28 vCPU Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
+内存:60 GB
+显卡:RTX A5000(24GB) * 2
+
+# sft及dpo阶段:
+CPU: Intel(R) i5-13600k @ 5.1GHz
+内存:32 GB
+显卡:NVIDIA GeForce RTX 4060 Ti 16GB * 1
+```
+1. **tokenizer 训练**: 现有`tokenizer`训练库遇到大语料时存在OOM问题,故全量语料按照类似`BPE`的方法根据词频合并、构造词库,运行耗时半天。
+
+2. **Text-to-Text 预训练**:学习率为`1e-4`到`5e-3`的动态学习率,预训练时间为8天。训练损失:
+
+![traing loss](img/train_loss.png)
+
+3. **prompt监督微调(SFT)**:使用`belle`指令训练数据集(指令和回答长度都在512以下),学习率为`1e-7`到`5e-5`的动态学习率,微调时间2天。微调损失:
+
+![finetune loss](img/sft_loss.png)
+
+4. **dpo直接偏好优化(RLHF)**:数据集[alpaca-gpt4-data-zh](https://huggingface.co/datasets/c-s-ale/alpaca-gpt4-data-zh)作为`chosen`文本,步骤`2`中SFT模型对数据集中的prompt做批量`generate`,得到`rejected`文本,耗时1天,dpo全量偏好优化,学习率`le-5`,半精度`fp16`,共`2`个`epoch`,耗时3h。dpo损失:
+
+![dpo loss](img/dpo_loss.png)
+
+## 2.4 对话效果展示
+### 2.4.1 stream chat
+默认使用`huggingface transformers`的 `TextIteratorStreamer`实现流式对话,只支持`greedy search`,如果需要`beam sample`等其他生成方式,请将`cli_demo.py`的`stream_chat`参数修改为`False`。
+![](./img/stream_chat.gif)
+
+### 2.4.2 对话展示
+![](./img/show1.png)
+
+存在问题:预训练数据集只有900多万,模型参数也仅0.2B,不能涵盖所有方面,会有答非所问、废话生成器的情况。
+
+# 三、📑使用说明
+
+## 3.1 快速开始:
+如果无法连接huggingface,请使用`modelscope.snapshot_download`从modelscope下载模型文件。
+```python
+from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
+import torch
+
+model_id = 'charent/ChatLM-mini-Chinese'
+
+# 如果无法连接huggingface,打开以下两行代码的注释,将从modelscope下载模型文件,模型文件保存到'./model_save'目录
+# from modelscope import snapshot_download
+# model_id = snapshot_download(model_id, cache_dir='./model_save')
+
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+
+tokenizer = AutoTokenizer.from_pretrained(model_id)
+model = AutoModelForSeq2SeqLM.from_pretrained(model_id, trust_remote_code=True).to(device)
+
+txt = '如何评价Apple这家公司?'
+
+encode_ids = tokenizer([txt])
+input_ids, attention_mask = torch.LongTensor(encode_ids['input_ids']), torch.LongTensor(encode_ids['attention_mask'])
+
+outs = model.my_generate(
+ input_ids=input_ids.to(device),
+ attention_mask=attention_mask.to(device),
+ max_seq_len=256,
+ search_type='beam',
+)
+
+outs_txt = tokenizer.batch_decode(outs.cpu().numpy(), skip_special_tokens=True, clean_up_tokenization_spaces=True)
+print(outs_txt[0])
+```
+```txt
+Apple是一家专注于设计和用户体验的公司,其产品在设计上注重简约、流畅和功能性,而在用户体验方面则注重用户的反馈和使用体验。作为一家领先的科技公司,苹果公司一直致力于为用户提供最优质的产品和服务,不断推陈出新,不断创新和改进,以满足不断变化的市场需求。
+在iPhone、iPad和Mac等产品上,苹果公司一直保持着创新的态度,不断推出新的功能和设计,为用户提供更好的使用体验。在iPad上推出的iPad Pro和iPod touch等产品,也一直保持着优秀的用户体验。
+此外,苹果公司还致力于开发和销售软件和服务,例如iTunes、iCloud和App Store等,这些产品在市场上也获得了广泛的认可和好评。
+总的来说,苹果公司在设计、用户体验和产品创新方面都做得非常出色,为用户带来了许多便利和惊喜。
+
+```
+
+## 3.2 从克隆仓库代码开始
+
+> [!CAUTION]
+> 本项目模型为`TextToText`模型,在预训练、SFT、RLFH阶段的`prompt`、`response`等字段,请务必加上`[EOS]`序列结束标记。
+
+
+### 3.2.1 克隆项目:
+```bash
+git clone --depth 1 https://github.com/charent/ChatLM-mini-Chinese.git
+
+cd ChatLM-mini-Chinese
+```
+### 3.2.2 安装依赖
+
+本项目推荐使用`python 3.10`,过老的python版本可能不兼容所依赖的第三方库。
+
+pip安装:
+```bash
+pip install -r ./requirements.txt
+```
+
+如果pip安装了CPU版本的pytorch,可以通过下面的命令安装CUDA版本的pytorch:
+```bash
+# pip 安装torch + cu118
+pip3 install torch --index-url https://download.pytorch.org/whl/cu118
+```
+
+conda安装:
+```bash
+conda install --yes --file ./requirements.txt
+```
+
+### 3.2.3 下载预训练模型及模型配置文件
+
+用`git`命令从`Hugging Face Hub`下载模型权重及配置文件,需要先安装[Git LFS](https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large-file-storage),然后运行:
+
+```bash
+# 使用git命令下载huggingface模型,先安装[Git LFS],否则下载的模型文件不可用
+git clone --depth 1 https://huggingface.co/charent/ChatLM-mini-Chinese
+
+# 如果无法连接huggingface,请从modelscope下载
+git clone --depth 1 https://www.modelscope.cn/charent/ChatLM-mini-Chinese.git
+
+mv ChatLM-mini-Chinese model_save
+```
+
+也可以直接从`Hugging Face Hub`仓库[ChatLM-Chinese-0.2B](https://huggingface.co/charent/ChatLM-mini-Chinese)手工下载,将下载的文件移动到`model_save`目录下即可。
+
+## 3.3 Tokenizer训练
+
+1. 准备txt语料
+
+语料要求尽可能全,建议添加多个语料,如百科、代码、论文、博客、对话等。
+
+本项目以wiki中文百科为主。获取中文wiki语料方法:中文Wiki下载地址:[zhwiki](https://dumps.wikimedia.org/zhwiki/),下载`zhwiki-[存档日期]-pages-articles-multistream.xml.bz2`文件,大概2.7GB, 将下载的bz2文件转换为wiki.txt参考:[WikiExtractor](https://github.com/apertium/WikiExtractor),再利用python的`OpenCC`库转换为简体中文,最后将得到的`wiki.simple.txt`放到项目根目录的`data`目录下即可。多个语料请自行合并为一个`txt`文件。
+
+由于训练tokenizer非常耗内存,如果你的语料非常大(合并后的`txt`文件超过2G),建议对语料按照类别、比例进行采样,以减少训练时间和内存消耗。训练1.7GB的`txt`文件需要消耗48GB左右的内存(预估的,我只有32GB,频繁触发swap,电脑卡了好久T_T),13600k cpu耗时1小时左右。
+
+2. 训练tokenizer
+
+`char level`和`byte level`的区别如下(具体使用上的区别请自行检索资料)。默认训练`char level`的tokenizer,如果需要`byte level`,在`train_tokenizer.py`中设置`token_type='byte'`即可。
+
+```python
+# 原始文本
+txt = '这是一段中英混输的句子, (chinese and English, here are words.)'
+
+tokens = charlevel_tokenizer.tokenize(txt)
+print(tokens)
+# char level tokens输出
+# ['▁这是', '一段', '中英', '混', '输', '的', '句子', '▁,', '▁(', '▁ch', 'inese', '▁and', '▁Eng', 'lish', '▁,', '▁h', 'ere', '▁', 'are', '▁w', 'ord', 's', '▁.', '▁)']
+
+tokens = bytelevel_tokenizer.tokenize(txt)
+print(tokens)
+# byte level tokens输出
+# ['Ġè¿Ļæĺ¯', 'ä¸Ģ段', 'ä¸Ńèĭ±', 'æ··', 'è¾ĵ', 'çļĦ', 'åı¥åŃIJ', 'Ġ,', 'Ġ(', 'Ġch', 'inese', 'Ġand', 'ĠEng', 'lish', 'Ġ,', 'Ġh', 'ere', 'Ġare', 'Ġw', 'ord', 's', 'Ġ.', 'Ġ)']
+```
+开始训练:
+```python
+# 确保你的训练语料`txt`文件已经data目录下
+python train_tokenizer.py
+```
+
+## 3.4 Text-to-Text 预训练
+
+1. 预训练数据集示例
+```json
+{
+ "prompt": "对于花园街,你有什么了解或看法吗?",
+ "response": "花园街(是香港油尖旺区的一条富有特色的街道,位于九龙旺角东部,北至界限街,南至登打士街,与通菜街及洗衣街等街道平行。现时这条街道是香港著名的购物区之一。位于亚皆老街以南的一段花园街,也就是\"波鞋街\"整条街约150米长,有50多间售卖运动鞋和运动用品的店舖。旺角道至太子道西一段则为排档区,售卖成衣、蔬菜和水果等。花园街一共分成三段。明清时代,花园街是芒角村栽种花卉的地方。此外,根据历史专家郑宝鸿的考证:花园街曾是1910年代东方殷琴拿烟厂的花园。纵火案。自2005年起,花园街一带最少发生5宗纵火案,当中4宗涉及排档起火。2010年。2010年12月6日,花园街222号一个卖鞋的排档于凌晨5时许首先起火,浓烟涌往旁边住宅大厦,消防接报4"
+}
+```
+
+2. jupyter-lab 或者 jupyter notebook:
+
+ 见文件`train.ipynb`,推荐使用jupyter-lab,避免考虑与服务器断开后终端进程被杀的情况。
+
+3. 控制台:
+
+ 控制台训练需要考虑连接断开后进程被杀的,推荐使用进程守护工具`Supervisor`或者`screen`建立连接会话。
+
+ 首先要配置`accelerate`,执行以下命令, 根据提示选择即可,参考`accelerate.yaml`,*注意:DeepSpeed在Windows安装比较麻烦*。
+ ```bash
+ accelerate config
+ ```
+
+ 开始训练,如果要使用工程提供的配置请在下面的命令`accelerate launch`后加上参数`--config_file ./accelerate.yaml`,*该配置按照单机2xGPU配置。*
+
+ *预训练有两个脚本,本项目实现的trainer对应`train.py`,huggingface实现的trainer对应`pre_train.py`,用哪个都可以,效果一致。本项目实现的trainer训练信息展示更美观、更容易修改训练细节(如损失函数,日志记录等),均支持断点继续训练,本项目实现的trainer支持在任意位置断点后继续训练,按`ctrl+c`退出脚本时会保存断点信息。*
+
+ 单机单卡:
+ ```bash
+ # 本项目实现的trainer
+ accelerate launch ./train.py train
+
+ # 或者使用 huggingface trainer
+ python pre_train.py
+ ```
+
+ 单机多卡:
+ `2`为显卡数量,请根据自己的实际情况修改。
+ ```bash
+ # 本项目实现的trainer
+ accelerate launch --multi_gpu --num_processes 2 ./train.py train
+
+ # 或者使用 huggingface trainer
+ accelerate launch --multi_gpu --num_processes 2 pre_train.py
+ ```
+
+ 从断点处继续训练:
+ ```bash
+ # 本项目实现的trainer
+ accelerate launch --multi_gpu --num_processes 2 ./train.py train --is_keep_training=True
+
+ # 或者使用 huggingface trainer
+ # 需要在`pre_train.py`中的`train`函数添加`resume_from_checkpoint=True`
+ accelerate launch --multi_gpu --num_processes 2 pre_train.py
+ ```
+
+## 3.5 SFT微调
+SFT数据集全部来自[BELLE](https://github.com/LianjiaTech/BELLE)大佬的贡献,感谢。SFT数据集分别为:[generated_chat_0.4M](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)、[train_0.5M_CN](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)和[train_2M_CN](https://huggingface.co/datasets/BelleGroup/train_2M_CN),清洗后剩余约137万行。
+sft指令微调数据集示例:
+```json
+{
+ "prompt": "解释什么是欧洲启示录",
+ "response": "欧洲启示录(The Book of Revelation)是新约圣经的最后一卷书,也被称为《启示录》、《默示录》或《约翰默示录》。这本书从宗教的角度描述了世界末日的来临,以及上帝对世界的审判和拯救。 书中的主题包括来临的基督的荣耀,上帝对人性的惩罚和拯救,以及魔鬼和邪恶力量的存在。欧洲启示录是一个充满象征和暗示的文本,对于解读和理解有许多不同的方法和观点。"
+}
+```
+
+参考`data`目录下的示例`parquet`文件制作自己的数据集,数据集格式:`parquet`文件分两列,一列`prompt`文本,表示提示语,一列`response`文本,表示期待的模型输出。
+微调细节见`model/trainer.py`下的`train`方法, `is_finetune`设置为`True`时,将进行微调,微调默认会冻结embedding层和encoder层,只训练decoder层。如需要冻结其他参数,请自行调整代码。
+
+运行SFT微调:
+``` bash
+# 本项目实现的trainer, 添加参数`--is_finetune=True`即可, 参数`--is_keep_training=True`可从任意断点处继续训练
+accelerate launch --multi_gpu --num_processes 2 ./train.py --is_finetune=True
+
+# 或者使用 huggingface trainer, 多GPU请用accelerate launch --multi_gpu --num_processes gpu个数 sft_train.py
+python sft_train.py
+```
+
+## 3.6 RLHF(强化学习人类反馈优化方法)
+
+偏好方法这里介绍常见的两种:PPO和DPO,具体实现请自行搜索论文及博客。
+
+1. PPO方法(近似偏好优化,Proximal Policy Optimization)
+ 步骤1:使用微调数据集做有监督微调(SFT, Supervised Finetuning)。
+ 步骤2:使用偏好数据集(一个prompt至少包含2个回复,一个想要的回复,一个不想要的回复。多个回复可以按照分数排序,最想要的分数最高)训练奖励模型(RM, Reward Model)。可使用`peft`库快速搭建Lora奖励模型。
+ 步骤3:利用RM对SFT模型进行有监督PPO训练,使得模型满足偏好。
+
+2. 使用DPO(直接偏好优化,Direct Preference Optimization)微调(**本项目采用DPO微调方法,比较节省显存**)
+ 在获得SFT模型的基础上,无需训练奖励模型,取得正向回答(chosen)和负向回答(rejected)即可开始微调。微调的`chosen`文本来自原数据集[alpaca-gpt4-data-zh](https://huggingface.co/datasets/c-s-ale/alpaca-gpt4-data-zh),拒绝文本`rejected`来自SFT微调1个epoch后的模型输出,另外两个数据集:[huozi_rlhf_data_json](https://huggingface.co/datasets/Skepsun/huozi_rlhf_data_json)和[rlhf-reward-single-round-trans_chinese](https://huggingface.co/datasets/beyond/rlhf-reward-single-round-trans_chinese),合并后共8万条dpo数据。
+
+ dpo数据集处理过程见`utils/dpo_data_process.py`。
+
+DPO偏好优化数据集示例:
+```json
+ {
+ "prompt": "为给定的产品创建一个创意标语。,输入:可重复使用的水瓶。",
+ "chosen": "\"保护地球,从拥有可重复使用的水瓶开始!\"",
+ "rejected": "\"让你的水瓶成为你的生活伴侣,使用可重复使用的水瓶,让你的水瓶成为你的伙伴\""
+ }
+```
+
+运行偏好优化:
+``` bash
+# 多GPU请用accelerate launch --multi_gpu --num_processes gpu个数 dpo_train.py
+python dpo_train.py
+```
+
+## 3.7 推理
+确保`model_save`目录下有以下文件,这些文件都可以在`Hugging Face Hub`仓库[ChatLM-Chinese-0.2B](https://huggingface.co/charent/ChatLM-mini-Chinese)中找到:
+```bash
+ChatLM-mini-Chinese
+├─model_save
+| ├─config.json
+| ├─configuration_chat_model.py
+| ├─generation_config.json
+| ├─model.safetensors
+| ├─modeling_chat_model.py
+| ├─special_tokens_map.json
+| ├─tokenizer.json
+| └─tokenizer_config.json
+```
+
+1. 控制台运行:
+```bash
+python cli_demo.py
+```
+
+2. API调用
+```bash
+python api_demo.py
+```
+
+API调用示例:
+```bash
+curl --location '127.0.0.1:8812/api/chat' \
+--header 'Content-Type: application/json' \
+--header 'Authorization: Bearer Bearer' \
+--data '{
+ "input_txt": "感冒了要怎么办"
+}'
+```
+![api demo](./img/api_example.png)
+
+## 3.8 下游任务微调
+
+这里以文本中三元组信息为例,做下游微调。该任务的传统深度学习抽取方法见仓库[pytorch_IE_model](https://github.com/charent/pytorch_IE_model)。抽取出一段文本中所有的三元组,如句子`《写生随笔》是冶金工业2006年出版的图书,作者是张来亮`,抽取出三元组`(写生随笔,作者,张来亮)`和`(写生随笔,出版社,冶金工业)`。
+
+原始数据集为:[百度三元组抽取数据集](https://aistudio.baidu.com/datasetdetail/11384)。加工得到的微调数据集格式示例:
+```json
+{
+ "prompt": "请抽取出给定句子中的所有三元组。给定句子:《家乡的月亮》是宋雪莱演唱的一首歌曲,所属专辑是《久违的哥们》",
+ "response": "[(家乡的月亮,歌手,宋雪莱),(家乡的月亮,所属专辑,久违的哥们)]"
+}
+```
+
+可以直接使用`sft_train.py`脚本进行微调,脚本[finetune_IE_task.ipynb](./finetune_examples/info_extract/finetune_IE_task.ipynb)里面包含详细的解码过程。训练数据集约`17000`条,学习率`5e-5`,训练epoch`5`。微调后其他任务的对话能力也没有消失。
+
+![信息抽取任务微调后的对话能力](./img/ie_task_chat.png)
+
+微调效果:
+将`百度三元组抽取数据集`公开的`dev`数据集作为测试集,对比传统方法[pytorch_IE_model](https://github.com/charent/pytorch_IE_model)。
+
+| 模型 | F1分数 | 精确率P | 召回率R |
+| :--- | :----: | :---: | :---: |
+| ChatLM-Chinese-0.2B微调 | 0.74 | 0.75 | 0.73 |
+| ChatLM-Chinese-0.2B无预训练| 0.51 | 0.53 | 0.49 |
+| 传统深度学习方法 | 0.80 | 0.79 | 80.1 |
+
+备注:`ChatLM-Chinese-0.2B无预训练`指直接初始化随机参数,开始训练,学习率`1e-4`,其他参数和微调一致。
+
+## 3.9 C-Eval分数
+模型本身没有使用较大的数据集训练,也没有针对回答选择题的指令做微调,C-Eval分数基本上是baseline水平,有需要的可以当个参考。C-Eval评测代码见:`eval/c_eavl.ipynb`
+
+| category | correct | question_count| accuracy |
+| :--- | :----: | :---: | :---: |
+| Humanities | 63 | 257 | 24.51% |
+| Other | 89 | 384 | 23.18% |
+| STEM | 89 | 430 | 20.70% |
+| Social Science | 72 | 275 | 26.18% |
+
+# 四、🎓引用
+如果你觉得本项目对你有所帮助,欢迎引用。
+```conf
+@misc{Charent2023,
+ author={Charent Chen},
+ title={A small chinese chat language model with 0.2B parameters base on T5},
+ year={2023},
+ publisher = {GitHub},
+ journal = {GitHub repository},
+ howpublished = {\url{https://github.com/charent/ChatLM-mini-Chinese}},
+}
+```
+
+# 五、🤔其他事项
+本项目不承担开源模型和代码导致的数据安全、舆情风险或发生任何模型被误导、滥用、传播、不当利用而产生的风险和责任。
+
+
+
diff --git a/accelerate.yaml b/accelerate.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..585360c7c0174602d0ca61bf29777b12cf46a4a9
--- /dev/null
+++ b/accelerate.yaml
@@ -0,0 +1,25 @@
+compute_environment: LOCAL_MACHINE
+debug: false
+deepspeed_config:
+ gradient_accumulation_steps: 8
+ gradient_clipping: 1.0
+ offload_optimizer_device: cpu
+ offload_param_device: cpu
+ zero3_init_flag: false
+ zero3_save_16bit_model: false
+ zero_stage: 2
+distributed_type: DEEPSPEED
+downcast_bf16: 'no'
+dynamo_config:
+ dynamo_backend: EAGER
+machine_rank: 0
+main_training_function: main
+mixed_precision: bf16
+num_machines: 1
+num_processes: 2
+rdzv_backend: static
+same_network: true
+tpu_env: []
+tpu_use_cluster: false
+tpu_use_sudo: false
+use_cpu: false
diff --git a/api_demo.py b/api_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..cbd60bbd115828280cc1039cd67fb0cd620513be
--- /dev/null
+++ b/api_demo.py
@@ -0,0 +1,104 @@
+from dataclasses import dataclass
+from typing import Union
+
+import uvicorn
+from fastapi import FastAPI, Depends, status
+from fastapi.security import OAuth2PasswordBearer
+from fastapi.exceptions import HTTPException
+from pydantic import BaseModel
+
+from model.infer import ChatBot
+from config import InferConfig
+
+CONFIG = InferConfig()
+chat_bot = ChatBot(infer_config=CONFIG)
+
+#==============================================================
+# api 配置
+
+# api根目录
+ROOT = '/api'
+
+# api key
+USE_AUTH = False if len(CONFIG.api_key) == 0 else True
+SECRET_KEY = CONFIG.api_key
+
+app = FastAPI()
+oauth2_scheme = OAuth2PasswordBearer(tokenUrl="/token")
+
+#==============================================================
+
+"""
+post请求地址:http://127.0.0.1:8812/api/chat
+需要添加Authorization头,bodyjson格式,示例:
+{
+ "input_txt": "感冒了要怎么办"
+}
+"""
+
+async def api_key_auth(token: str = Depends(oauth2_scheme)) -> Union[None, bool]:
+ """
+ 验证post请求的key是否和服务器的key一致
+ 需要在请求头加上 Authorization: Bearer SECRET_KEY
+ """
+ if not USE_AUTH:
+ return None # return None if not auth
+
+ if token == SECRET_KEY:
+ return None # return None if auth success
+
+ # 验证出错
+ raise HTTPException(
+ status_code=status.HTTP_401_UNAUTHORIZED,
+ detail="api认证未通过,请检查认证方式和token!",
+ headers={"WWW-Authenticate": "Bearer"},
+ )
+
+# pos请求json
+class ChatInput(BaseModel):
+ input_txt: str
+
+
+@app.post(ROOT + "/chat")
+async def chat(post_data: ChatInput, authority: str = Depends(api_key_auth)) -> dict:
+ """
+ post 输入: {'input_txt': '输入的文本'}
+ response: {'response': 'chatbot文本'}
+ """
+ input_txt = post_data.input_txt
+ if len(input_txt) == 0:
+ raise HTTPException(
+ status_code=status.HTTP_406_NOT_ACCEPTABLE,
+ detail="input_txt length = 0 is not allow!",
+ headers={"WWW-Authenticate": "Bearer"},
+ )
+
+ outs = chat_bot.chat(input_txt)
+
+ if len(outs) == 0:
+ outs = "我是一个参数很少的AI模型🥺,知识库较少,无法直接回答您的问题,换个问题试试吧👋"
+
+ return {'response': outs}
+
+if __name__ == '__main__':
+
+ # 加上reload参数(reload=True)时,多进程设置无效
+ # workers = max(multiprocessing.cpu_count() * CONFIG.getint('uvicorn','process_worker'), 1)
+ workers = max(CONFIG.workers, 1)
+ print('启动的进程个数:{}'.format(workers))
+
+ uvicorn.run(
+ 'api_demo:app',
+ host=CONFIG.host,
+ port=CONFIG.port,
+ reload=CONFIG.reload,
+ workers=workers,
+ log_level='info'
+ )
+
+
+# 服务方式启动:
+# 命令行输入:uvicorn api_demo:app --host 0.0.0.0 --port 8094 --workers 8
+# api_demo:api_demo.py文件
+# app:app = FastAPI() 在main.py内创建的对象。
+# --reload:在代码更改后重新启动服务器。 只有在开发时才使用这个参数,此时多进程设置会无效
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..55ae629670952b45d0c9f5c7b1a7beb3b11a340c
--- /dev/null
+++ b/app.py
@@ -0,0 +1,37 @@
+
+import gradio as gr
+import platform
+import os
+import time
+from threading import Thread
+
+from rich.text import Text
+from rich.live import Live
+
+from model.infer import ChatBot
+from config import InferConfig
+
+infer_config = InferConfig()
+chat_bot = ChatBot(infer_config=infer_config)
+# streamer = chat_bot.chat("你好")
+# print(streamer)
+# streamer = chat_bot.stream_chat("你好")
+# welcome_txt = '欢迎使用ChatBot,输入`exit`退出,输入`cls`清屏。\n'
+# def build_prompt(history: list[list[str]]) -> str:
+# prompt = welcome_txt
+# for query, response in history:
+# prompt += '\n\033[0;33;40m用户:\033[0m{}'.format(query)
+# prompt += '\n\033[0;32;40mChatBot:\033[0m\n{}\n'.format(response)
+# return prompt
+# print(build_prompt(streamer))
+
+def greet(name):
+ streamer = chat_bot.chat("你好")
+ return streamer
+ # return "Hello " + name + "!!"
+
+
+
+iface = gr.Interface(fn=greet, inputs="text", outputs="text")
+
+iface.launch()
diff --git a/cli_demo.py b/cli_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..f913bb1dbefe9c12b0c298f54e6721f8b64f9a04
--- /dev/null
+++ b/cli_demo.py
@@ -0,0 +1,105 @@
+import platform
+import os
+import time
+from threading import Thread
+
+from rich.text import Text
+from rich.live import Live
+
+from model.infer import ChatBot
+from config import InferConfig
+
+infer_config = InferConfig()
+chat_bot = ChatBot(infer_config=infer_config)
+
+clear_cmd = 'cls' if platform.system().lower() == 'windows' else 'clear'
+
+welcome_txt = '欢迎使用ChatBot,输入`exit`退出,输入`cls`清屏。\n'
+print(welcome_txt)
+
+def build_prompt(history: list[list[str]]) -> str:
+ prompt = welcome_txt
+ for query, response in history:
+ prompt += '\n\033[0;33;40m用户:\033[0m{}'.format(query)
+ prompt += '\n\033[0;32;40mChatBot:\033[0m\n{}\n'.format(response)
+ return prompt
+
+STOP_CIRCLE: bool=False
+def circle_print(total_time: int=60) -> None:
+ global STOP_CIRCLE
+ '''非stream chat打印忙碌状态
+ '''
+ list_circle = ["\\", "|", "/", "—"]
+ for i in range(total_time * 4):
+ time.sleep(0.25)
+ print("\r{}".format(list_circle[i % 4]), end="", flush=True)
+
+ if STOP_CIRCLE: break
+
+ print("\r", end='', flush=True)
+
+
+def chat(stream: bool=True) -> None:
+ global STOP_CIRCLE
+ history = []
+ turn_count = 0
+
+ while True:
+ print('\r\033[0;33;40m用户:\033[0m', end='', flush=True)
+ input_txt = input()
+
+ if len(input_txt) == 0:
+ print('请输入问题')
+ continue
+
+ # 退出
+ if input_txt.lower() == 'exit':
+ break
+
+ # 清屏
+ if input_txt.lower() == 'cls':
+ history = []
+ turn_count = 0
+ os.system(clear_cmd)
+ print(welcome_txt)
+ continue
+
+ if not stream:
+ STOP_CIRCLE = False
+ thread = Thread(target=circle_print)
+ thread.start()
+
+ outs = chat_bot.chat(input_txt)
+
+ STOP_CIRCLE = True
+ thread.join()
+
+ print("\r\033[0;32;40mChatBot:\033[0m\n{}\n\n".format(outs), end='')
+
+ continue
+
+ history.append([input_txt, ''])
+ stream_txt = []
+ streamer = chat_bot.stream_chat(input_txt)
+ rich_text = Text()
+
+ print("\r\033[0;32;40mChatBot:\033[0m\n", end='')
+
+ with Live(rich_text, refresh_per_second=15) as live:
+ for i, word in enumerate(streamer):
+ rich_text.append(word)
+ stream_txt.append(word)
+
+ stream_txt = ''.join(stream_txt)
+
+ if len(stream_txt) == 0:
+ stream_txt = "我是一个参数很少的AI模型🥺,知识库较少,无法直接回答您的问题,换个问题试试吧👋"
+
+ history[turn_count][1] = stream_txt
+
+ os.system(clear_cmd)
+ print(build_prompt(history), flush=True)
+ turn_count += 1
+
+if __name__ == '__main__':
+ chat(stream=True)
\ No newline at end of file
diff --git a/config.py b/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..9dc75f9029add40ce507cbca08237b9e76cf40b8
--- /dev/null
+++ b/config.py
@@ -0,0 +1,139 @@
+from dataclasses import dataclass
+from os.path import dirname, abspath
+
+# replace '\' on windows to '/'
+PROJECT_ROOT: str = '/'.join(abspath(dirname(__file__)).split('\\')) if '\\' in abspath(dirname(__file__)) else abspath(dirname(__file__))
+
+# ===================================================================================
+# 以下为推断的配置
+@dataclass
+class InferConfig:
+ max_seq_len: int = 320 # 回答的最大长度
+ mixed_precision: str = "bf16" # 混合精度 ''no','fp16','bf16' or 'fp8'
+
+ # 全量DPO模型文件, tokenizer文件和model权重放在同一个文件夹
+ model_dir: str = PROJECT_ROOT + '/model_save/'
+
+ # lora PDO 合并后的模型文件
+ # model_file: str = PROJECT_ROOT + '/model_save/chat_small_t5.best.dpo.lora_merged.bin'
+
+ # this confing for api demo:
+ api_key: str = ""
+ host: str = '127.0.0.1'
+ port: int = 8812
+ reload: bool = True
+ workers: int = 1
+ log_level: str = 'info'
+
+
+#===================================================================================
+# 以下为dpo训练配置
+@dataclass
+class DpoConfig:
+ max_seq_len: int = 512 + 8 # 8 for eos token
+ sft_model_file: str = PROJECT_ROOT + '/model_save/'
+
+ tokenizer_dir: str = PROJECT_ROOT + '/model_save/' # tokenizer一般和model权重放在同一个文件夹
+
+ dpo_train_file: str = PROJECT_ROOT + '/data/my_dpo_data.json'
+ dpo_eval_file: str = PROJECT_ROOT + '/data/my_dpo_eval.json'
+
+ adapter_file: str = PROJECT_ROOT + '/data/dpo/adapter_model.safetensors'
+ log_dir: str = PROJECT_ROOT + '/logs/'
+
+ per_device_train_batch_size: int = 4
+ num_train_epochs: int = 4
+ gradient_accumulation_steps: int = 8
+ learning_rate: float = 1e-5
+ logging_first_step: bool = True
+ logging_steps: int = 20
+ save_steps: int = 2000
+ output_dir: str = PROJECT_ROOT + '/model_save/dpo'
+ warmup_steps: int = 1000
+ fp16: bool = True
+ seed: int = 23333
+ beta: float = 0.1
+
+
+
+# 以下为sft配置
+@dataclass
+class SFTconfig:
+ max_seq_len: int = 384 + 8 # 8 for eos token
+
+ finetune_from_ckp_file = PROJECT_ROOT + '/model_save/'
+
+ tokenizer_dir: str = PROJECT_ROOT + '/model_save/' # tokenizer一般和model权重放在同一个文件夹
+ sft_train_file: str = PROJECT_ROOT + '/data/sft_train.json'
+
+ batch_size: int = 12
+ num_train_epochs: int = 4
+ save_steps: int = 5000
+ gradient_accumulation_steps: int = 4
+ learning_rate: float = 1e-5
+ logging_first_step: bool = True
+ logging_steps: int = 100
+ output_dir: str = PROJECT_ROOT + '/model_save/sft'
+ warmup_steps: int = 100
+ fp16: bool = True
+ seed: int = 23333
+
+
+# ===================================================================================
+# 以下为训练的配置
+@dataclass
+class TrainConfig:
+ epochs: int = 8
+ batch_size_per_gpu: int = 16
+
+ learn_rate: float = 0.0001 # 最大 div_factor * learn_rate
+ div_factor: int = 50
+
+ mixed_precision: str = "bf16" # 混合精度 ''no','fp16','bf16' or 'fp8'
+
+ # 注意:计算梯度时相当于batch_size * gradient_accumulation_steps,说人话就是梯度累积步数>1时,等于增大n倍的batch_size
+ gradient_accumulation_steps: int = 8 # 累积梯度更新步数
+
+ warmup_steps: int = 1024 # 模型参数预热步数,预热样本数=warmup_steps * batch_size * gradient_accumulation_steps
+
+ tokenizer_dir: str = PROJECT_ROOT + '/model_save/' # tokenizer一般和model权重放在同一个文件夹
+ model_file: str = PROJECT_ROOT + '/model_save/chat_small_t5.{}.bin'
+ model_config_file: str = PROJECT_ROOT + '/model_save/model_config.json'
+ train_file: str = PROJECT_ROOT + '/data/my_train_dataset.parquet'
+ validation_file: str = PROJECT_ROOT + '/data/my_valid_dataset.parquet'
+ test_file: str = PROJECT_ROOT + '/data/my_test_dataset.parquet'
+
+ # 从哪个模型开始微调,仅当traing 函数 is_finetune = True时生效
+ # 微调记得冻结某些层或者调低学习率
+ finetune_from_ckp_file = PROJECT_ROOT + '/model_save/chat_small_t5.best.bin'
+
+ # 训练状态保存,中断后可以从此处继续训练
+ train_state_dir: str = PROJECT_ROOT + '/model_save/train_latest_state'
+ output_dir: str = PROJECT_ROOT + '/model_save/pretrain'
+
+ logging_steps: int = 50
+ save_steps: int = 10000
+
+ # dataset_cache_dir: str = PROJECT_ROOT + '/data/.cache'
+ # trainer_log_file: str = PROJECT_ROOT + '/logs/trainer.log'
+
+ keep_latest_n_ckp: int = 8 # 训练过程中,最多保留多少个分数最好的模型文件
+
+ seed: int = 23333
+ dataloader_buffer_size: int = 50000
+ max_seq_len: int = 256 # 最大句子长度,默认:256
+
+
+#======================================================================================
+# 以下为模型的配置
+@dataclass
+class T5ModelConfig:
+
+ d_ff: int = 3072 # 全连接层维度
+
+ d_model: int = 768 # 词向量维度
+ num_heads: int = 12 # 注意力头数 d_model // num_heads == d_kv
+ d_kv: int = 64 # d_model // num_heads
+
+ num_decoder_layers: int = 10 # Transformer decoder 隐藏层层数
+ num_layers: int = 10 # Transformer encoder 隐藏层层数
\ No newline at end of file
diff --git a/data/my_test_dataset_2k.parquet b/data/my_test_dataset_2k.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..f650b16727b7d7440cacfabd76dcd9ab7a791305
--- /dev/null
+++ b/data/my_test_dataset_2k.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f8a99f671c9bf8dfbddf8a1aaf13decbf7eea440c07a2631e2c634ee6cd5dded
+size 575315
diff --git a/data/my_train_dataset_3k.parquet b/data/my_train_dataset_3k.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..7f2bce6a80d22224812b191463aa1f27ba093b99
--- /dev/null
+++ b/data/my_train_dataset_3k.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cbe91a996f659e77d1047453686a6872ff5a5ce5a9f5026028d3edb6def6f4f9
+size 855994
diff --git a/data/my_valid_dataset_1k.parquet b/data/my_valid_dataset_1k.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..ad3d6ed768ff301ca21f65aec59d1144c24fbf1b
--- /dev/null
+++ b/data/my_valid_dataset_1k.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:dfdd45edb8aeaf49089795cf208f04d9baea0922883e87c4fdd33af350029092
+size 286692
diff --git a/dpo_train.py b/dpo_train.py
new file mode 100644
index 0000000000000000000000000000000000000000..0be217355460550d74a5a28a5e4ad34d62481326
--- /dev/null
+++ b/dpo_train.py
@@ -0,0 +1,203 @@
+# coding=utf-8
+from typing import Dict, Optional
+import time
+import os
+
+import pandas as pd
+import torch
+from datasets import Dataset, load_dataset
+from transformers import PreTrainedTokenizerFast, TrainingArguments
+from trl import DPOTrainer
+from tokenizers import Tokenizer
+from peft import LoraConfig, TaskType, PeftModel
+
+from config import DpoConfig, T5ModelConfig
+from model.chat_model import TextToTextModel
+from utils.functions import get_T5_config
+
+os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
+
+def get_dataset(split: str, file: str, cache_dir: str = '.cache') -> Dataset:
+ """Load the Anthropic Helpful-Harmless dataset from Hugging Face and convert it to the necessary format.
+
+ The dataset is converted to a dictionary with the following structure:
+ {
+ 'prompt': List[str],
+ 'chosen': List[str],
+ 'rejected': List[str],
+ }
+ """
+ dataset = load_dataset('json', data_files=file, split=split, cache_dir=cache_dir)
+
+ def split_prompt_and_responses(sample: dict) -> Dict[str, str]:
+ return {
+ # add an eos token for signal that end of sentence, using in generate.
+ "prompt": f"{sample['prompt']}[EOS]",
+ "chosen": f"{sample['chosen']}[EOS]",
+ "rejected": f"{sample['rejected']}[EOS]",
+ }
+
+ return dataset.map(split_prompt_and_responses).shuffle(2333)
+
+
+def train_dpo(config: DpoConfig, peft_config: LoraConfig=None) -> None:
+
+ # step 1. 加载tokenizer
+ tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)
+
+ # step 2. 加载预训练模型
+ model_train, model_ref = None, None
+ if os.path.isdir(config.sft_model_file):
+ # 传入文件夹则 from_pretrained
+ model_train = TextToTextModel.from_pretrained(config.sft_model_file)
+ model_ref = TextToTextModel.from_pretrained(config.sft_model_file)
+ else:
+ # load_state_dict
+ t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
+
+ model_train = TextToTextModel(t5_config)
+ model_train.load_state_dict(torch.load(config.sft_model_file, map_location='cpu')) # set cpu for no exception
+
+ model_ref = TextToTextModel(t5_config)
+ model_ref.load_state_dict(torch.load(config.sft_model_file, map_location='cpu'))
+
+ # 4. 加载训练数据集
+ train_dataset = get_dataset("train", file=config.dpo_train_file)
+
+ # 5. 加载评估数据集
+ # eval_dataset = get_dataset("train", file=config.dpo_eval_file)
+ eval_dataset = None
+
+ # 6. 初始化训练参数
+ training_args = TrainingArguments(
+ per_device_train_batch_size=config.per_device_train_batch_size,
+ num_train_epochs=config.num_train_epochs,
+ auto_find_batch_size=True,
+ remove_unused_columns=False,
+ gradient_accumulation_steps=config.gradient_accumulation_steps,
+ learning_rate=config.learning_rate,
+ logging_first_step=True,
+ logging_steps=config.logging_steps,
+ save_steps=config.save_steps,
+ output_dir=config.output_dir,
+ optim="adafactor",
+ report_to="tensorboard",
+ log_level='info',
+ warmup_steps=config.warmup_steps,
+ bf16=False,
+ fp16=config.fp16,
+ seed=config.seed,
+ logging_dir=config.log_dir,
+ )
+
+ # 7. 初始化 DPO trainer
+ dpo_trainer = DPOTrainer(
+ model_train,
+ model_ref,
+ peft_config=peft_config,
+ args=training_args,
+ beta=config.beta,
+ train_dataset=train_dataset,
+ eval_dataset=eval_dataset,
+ tokenizer=tokenizer,
+ max_length=config.max_seq_len,
+ max_target_length=config.max_seq_len,
+ max_prompt_length=config.max_seq_len,
+ generate_during_eval=True,
+ is_encoder_decoder=True,
+ )
+
+ # 8. 训练
+ dpo_trainer.train(
+ # resume_from_checkpoint=True
+ )
+
+ # 9. save log
+ loss_log = pd.DataFrame(dpo_trainer.state.log_history)
+ log_dir = './logs'
+ if not os.path.exists(log_dir):
+ os.mkdir(log_dir)
+ loss_log.to_csv(f"{log_dir}/dpo_train_log_{time.strftime('%Y%m%d-%H%M')}.csv")
+
+ # 10. 保存模型/lora
+ suffixe = '/lora/' if peft_config is not None else '/dpo'
+ model_save_dir = '/'.join(config.sft_model_file.split('/')[0: -1]) + suffixe
+
+ dpo_trainer.save_model(model_save_dir)
+ print('save model or lora adapter to: {}'.format(model_save_dir))
+
+def merge_lora_weight_into_model(config: DpoConfig, peft_config: LoraConfig) -> None:
+
+ # step 1. 加载tokenizer
+ tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)
+
+ # step 2. 加载预训练模型
+ sft_model = None
+ if os.path.isdir(config.sft_model_file):
+ # 传入文件夹则 from_pretrained
+ sft_model = TextToTextModel.from_pretrained(config.sft_model_file)
+ else:
+ # load_state_dict
+ t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
+ sft_model = TextToTextModel(t5_config)
+ sft_model.load_state_dict(torch.load(config.sft_model_file, map_location='cpu')) # set cpu for no exception
+
+ # 注意这个路径要和上面的model_save_dir一致
+ # train_dpo函数代码
+ # 9. 保存模型/lora
+ # suffixe = '/lora/' if peft_config is not None else '/dpo'
+ # model_save_dir = '/'.join(config.sft_model_file.split('/')[0: -1]) + suffixe
+
+ adapter_save_dir = '/'.join(config.sft_model_file.split('/')[0: -1]) + '/lora'
+
+ peft_model = PeftModel.from_pretrained(
+ model=sft_model,
+ model_id=adapter_save_dir,
+ config=peft_config,
+ adapter_name='adapter',
+ )
+
+ # peft_model = PeftModel(
+ # model=sft_model,
+ # peft_config=peft_config,
+ # adapter_name='adapter',
+ # )
+
+ # 3. load adapter
+
+ print('load adapter from dir: {}'.format(adapter_save_dir))
+
+ peft_model.load_adapter(model_id=adapter_save_dir, adapter_name='adapter',)
+
+ # 4. merge
+ peft_model = peft_model.merge_and_unload()
+
+ # 5. save
+ save_merge_file = config.sft_model_file + '.dpo_lora_merged'
+ sft_model.save_pretrained(save_merge_file)
+ print('save merge model file to: {}'.format(save_merge_file))
+
+
+if __name__ == "__main__":
+
+ peft_config = LoraConfig(
+ task_type=TaskType.SEQ_2_SEQ_LM, # text 2 text lora model
+ inference_mode=False,
+ r=16,
+ lora_alpha=16,
+ lora_dropout=0.1,
+ bias="all",
+ )
+
+ dpo_config = DpoConfig()
+
+ # 1. train
+ train_dpo(dpo_config, peft_config=None)
+
+ # 2. merge lora adapter into model
+ # merge_lora_weight_into_model(dpo_config, peft_config)
+
+
+
+
+
\ No newline at end of file
diff --git a/eval/.gitignore b/eval/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..fce91ec593512396037c61dfc28e0099bf6a90b1
--- /dev/null
+++ b/eval/.gitignore
@@ -0,0 +1,5 @@
+ceval-exam
+data
+result
+CMMLU
+result_0_shot
diff --git a/eval/c_eavl.ipynb b/eval/c_eavl.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..73e6f1a4fbd9981e044da7e7c3d1f6b9ee6feb69
--- /dev/null
+++ b/eval/c_eavl.ipynb
@@ -0,0 +1,657 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 下载c-eavl数据集\n",
+ "\n",
+ "```bash\n",
+ "mkdir ceval-data\n",
+ "cd ceval-data\n",
+ "wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip \n",
+ "unzip ceval-exam.zip -d ceval-exam\n",
+ "wget https://github.com/hkust-nlp/ceval/blob/main/subject_mapping.json\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "dev\n",
+ "subject_mapping.json\n",
+ "test\n",
+ "val\n"
+ ]
+ }
+ ],
+ "source": [
+ "! ls ceval-exam"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os, re\n",
+ "import ujson\n",
+ "import torch\n",
+ "import pandas as pd\n",
+ "from tqdm import tqdm\n",
+ "from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
+ "from transformers.generation.configuration_utils import GenerationConfig\n",
+ "from transformers.generation.utils import LogitsProcessorList, InfNanRemoveLogitsProcessor"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ceval_dir = './ceval-exam'\n",
+ "result_save_dir = './result'\n",
+ "model_dir = '../model_save/dpo' # 模型文件在上一层目录,使用dpo后的模型\n",
+ "\n",
+ "if not os.path.exists(result_save_dir):\n",
+ " os.mkdir(result_save_dir)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "subject_files = os.listdir(f\"{ceval_dir}/val\")\n",
+ "subjects = [subjetc.replace('_val.csv', '') for subjetc in subject_files]\n",
+ "\n",
+ "subject_mapping = {}\n",
+ "with open('./ceval-exam/subject_mapping.json', 'r', encoding='utf-8') as f:\n",
+ " subject_mapping = ujson.load(f)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "由于本项目的模型在sft阶段删除了很多带input的数据,且没有针对问题回答做微调,直接输入问题会解释问题中提到的关键词。所以c-eval测试使用预测 'A'、'B'、'C'、'D' token的方式。\n",
+ "> 然而有时候,特别是零样本测试和面对没有做过指令微调的模型时,模型可能无法很好的理解指令,甚至有时不会回答问题。这种情况下我们推荐直接计算下一个预测token等于\"A\", \"B\", \"C\", \"D\"的概率,然后以概率最大的选项作为答案 \n",
+ "> -- 这是一种受限解码生成的方法,MMLU的官方测试代码中是使用了这种方法进行测试。注意这种概率方法对思维链的测试不适用。\n",
+ "\n",
+ "见: [如何在C-Eval上测试](https://github.com/hkust-nlp/ceval/blob/main/README_zh.md#如何在C-Eval上测试)\n",
+ "\n",
+ "评测模式:zero-shot模式(chatbot/对话机器人模式) \n",
+ "dev数据集用来做few-shot,暂时不用"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def format_prompt(df: pd.Series) -> str:\n",
+ " '''\n",
+ " 将df中的 'question', 'A', 'B', 'C', 'D',格式化为问题\n",
+ " '''\n",
+ " prompt = f\"请回答单选题,回答字母A、B、C、D即可。问题:\\n{df['question']}\\n答案选项:\\n\"\n",
+ " for col in ['A', 'B', 'C', 'D']:\n",
+ " prompt += f\"{col}:{df[col]}\\n\"\n",
+ " \n",
+ " return prompt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['Accountant', '注册会计师', 'Other']"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "subject_mapping['accountant']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 52/52 [00:00<00:00, 617.74it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "do_test = False\n",
+ "all_eval_items = []\n",
+ "for i, subject_name in tqdm(enumerate(subjects), total=len(subjects)):\n",
+ " val_file = f\"{ceval_dir}/val/{subject_name}_val.csv\"\n",
+ " test_file = f\"{ceval_dir}/test/{subject_name}_test.csv\"\n",
+ "\n",
+ " val_df = pd.read_csv(test_file) if do_test else pd.read_csv(val_file)\n",
+ " \n",
+ " for idx, row in val_df.iterrows():\n",
+ " quesuton = format_prompt(row)\n",
+ " answer = row['answer'] if 'answer' in val_df.columns else '' \n",
+ "\n",
+ " item = {\n",
+ " 'subject_en': subject_mapping[subject_name][0],\n",
+ " 'subject_zh': subject_mapping[subject_name][1],\n",
+ " 'category': subject_mapping[subject_name][2], # 类别(STEM,Social Science,Humanities,Other四选一)\n",
+ " 'question': quesuton,\n",
+ " 'answer':answer,\n",
+ " }\n",
+ " \n",
+ " all_eval_items.append(item)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " subject_en | \n",
+ " subject_zh | \n",
+ " category | \n",
+ " question | \n",
+ " answer | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Accountant | \n",
+ " 注册会计师 | \n",
+ " Other | \n",
+ " 请回答单选题,回答字母A、B、C、D即可。问题:\\n下列关于税法基本原则的表述中,不正确的是... | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Accountant | \n",
+ " 注册会计师 | \n",
+ " Other | \n",
+ " 请回答单选题,回答字母A、B、C、D即可。问题:\\n甲公司是国内一家领先的新媒体、通信及移动... | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Accountant | \n",
+ " 注册会计师 | \n",
+ " Other | \n",
+ " 请回答单选题,回答字母A、B、C、D即可。问题:\\n根据我国《印花税暂行条例》的规定,下列各... | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Accountant | \n",
+ " 注册会计师 | \n",
+ " Other | \n",
+ " 请回答单选题,回答字母A、B、C、D即可。问题:\\n税务行政复议的申请人可以在得知税务机关作... | \n",
+ " A | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Accountant | \n",
+ " 注册会计师 | \n",
+ " Other | \n",
+ " 请回答单选题,回答字母A、B、C、D即可。问题:\\n关于战略管理表述错误的是____。\\n答... | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " subject_en subject_zh category \\\n",
+ "0 Accountant 注册会计师 Other \n",
+ "1 Accountant 注册会计师 Other \n",
+ "2 Accountant 注册会计师 Other \n",
+ "3 Accountant 注册会计师 Other \n",
+ "4 Accountant 注册会计师 Other \n",
+ "\n",
+ " question answer \n",
+ "0 请回答单选题,回答字母A、B、C、D即可。问题:\\n下列关于税法基本原则的表述中,不正确的是... D \n",
+ "1 请回答单选题,回答字母A、B、C、D即可。问题:\\n甲公司是国内一家领先的新媒体、通信及移动... C \n",
+ "2 请回答单选题,回答字母A、B、C、D即可。问题:\\n根据我国《印花税暂行条例》的规定,下列各... D \n",
+ "3 请回答单选题,回答字母A、B、C、D即可。问题:\\n税务行政复议的申请人可以在得知税务机关作... A \n",
+ "4 请回答单选题,回答字母A、B、C、D即可。问题:\\n关于战略管理表述错误的是____。\\n答... C "
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "eval_df = pd.DataFrame(all_eval_items)\n",
+ "eval_df.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[872, 873, 884, 886]"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# 加载模型\n",
+ "tokenizer = AutoTokenizer.from_pretrained(model_dir)\n",
+ "model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)\n",
+ "\n",
+ "generation_config = GenerationConfig()\n",
+ "generation_config.remove_invalid_values = True # 自动添加InfNanRemoveLogitsProcessor\n",
+ "generation_config.eos_token_id = tokenizer.eos_token_id\n",
+ "generation_config.pad_token_id = tokenizer.pad_token_id\n",
+ "# for t5, set decoder_start_token_id = pad_token_id\n",
+ "generation_config.decoder_start_token_id = tokenizer.pad_token_id \n",
+ "generation_config.max_new_tokens = 16\n",
+ "generation_config.num_beams = 1\n",
+ "generation_config.do_sample = False # greedy search\n",
+ "\n",
+ "choices = ['A', 'B', 'C', 'D']\n",
+ "choices_ids = [tokenizer.convert_tokens_to_ids(c) for c in choices]\n",
+ "choices_ids"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 1346/1346 [00:20<00:00, 64.11it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "batch_size = 32\n",
+ "batch_data, batch_answers = [], []\n",
+ "n = len(eval_df)\n",
+ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
+ "model.to(device)\n",
+ "model.eval()\n",
+ "\n",
+ "for idx, row in tqdm(eval_df.iterrows(), total=n):\n",
+ " batch_data.append(row['question'])\n",
+ " \n",
+ " if len(batch_data) == batch_size or idx == n - 1:\n",
+ " torch.cuda.empty_cache()\n",
+ " \n",
+ " encode_ids = tokenizer(batch_data, padding=True)\n",
+ " input_ids, attention_mask = torch.LongTensor(encode_ids['input_ids']), torch.LongTensor(encode_ids['attention_mask'])\n",
+ " \n",
+ " outputs = model.generate(\n",
+ " input_ids=input_ids.to(device),\n",
+ " attention_mask=attention_mask.to(device),\n",
+ " generation_config=generation_config,\n",
+ " return_dict_in_generate=True,\n",
+ " output_scores=True,\n",
+ " )\n",
+ "\n",
+ " scores = torch.stack(outputs['scores'], dim=1)\n",
+ " scores = torch.softmax(scores, dim=2)\n",
+ " scores = scores[..., 0, choices_ids] #取第一个字符的ABCD概率\n",
+ " choices_index = torch.argmax(scores, dim=1)\n",
+ " \n",
+ " for i in choices_index:\n",
+ " batch_answers.append(choices[i])\n",
+ "\n",
+ " batch_data = []"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "eval_df.insert(loc=5, column='model_predict', value=batch_answers)\n",
+ "val_df = eval_df.copy(deep=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "val_df['is_correct'] = val_df['model_predict'] == val_df['answer']\n",
+ "val_df['is_correct'] = val_df['is_correct'].astype(pd.Int16Dtype())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " subject_en | \n",
+ " subject_zh | \n",
+ " category | \n",
+ " question | \n",
+ " answer | \n",
+ " model_predict | \n",
+ " is_correct | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Accountant | \n",
+ " 注册会计师 | \n",
+ " Other | \n",
+ " 请回答单选题,回答字母A、B、C、D即可。问题:\\n下列关于税法基本原则的表述中,不正确的是... | \n",
+ " D | \n",
+ " A | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Accountant | \n",
+ " 注册会计师 | \n",
+ " Other | \n",
+ " 请回答单选题,回答字母A、B、C、D即可。问题:\\n甲公司是国内一家领先的新媒体、通信及移动... | \n",
+ " C | \n",
+ " A | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Accountant | \n",
+ " 注册会计师 | \n",
+ " Other | \n",
+ " 请回答单选题,回答字母A、B、C、D即可。问题:\\n根据我国《印花税暂行条例》的规定,下列各... | \n",
+ " D | \n",
+ " A | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " subject_en subject_zh category \\\n",
+ "0 Accountant 注册会计师 Other \n",
+ "1 Accountant 注册会计师 Other \n",
+ "2 Accountant 注册会计师 Other \n",
+ "\n",
+ " question answer model_predict \\\n",
+ "0 请回答单选题,回答字母A、B、C、D即可。问题:\\n下列关于税法基本原则的表述中,不正确的是... D A \n",
+ "1 请回答单选题,回答字母A、B、C、D即可。问题:\\n甲公司是国内一家领先的新媒体、通信及移动... C A \n",
+ "2 请回答单选题,回答字母A、B、C、D即可。问题:\\n根据我国《印花税暂行条例》的规定,下列各... D A \n",
+ "\n",
+ " is_correct \n",
+ "0 0 \n",
+ "1 0 \n",
+ "2 0 "
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "val_df.head(3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " is_correct | \n",
+ "
\n",
+ " \n",
+ " category | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Humanities | \n",
+ " 63 | \n",
+ "
\n",
+ " \n",
+ " Other | \n",
+ " 89 | \n",
+ "
\n",
+ " \n",
+ " STEM | \n",
+ " 89 | \n",
+ "
\n",
+ " \n",
+ " Social Science | \n",
+ " 72 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " is_correct\n",
+ "category \n",
+ "Humanities 63\n",
+ "Other 89\n",
+ "STEM 89\n",
+ "Social Science 72"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "final_df = val_df.groupby('category').sum('is_correct')\n",
+ "final_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " is_correct | \n",
+ " question_count | \n",
+ " accuracy | \n",
+ "
\n",
+ " \n",
+ " category | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Humanities | \n",
+ " 63 | \n",
+ " 257 | \n",
+ " 24.51% | \n",
+ "
\n",
+ " \n",
+ " Other | \n",
+ " 89 | \n",
+ " 384 | \n",
+ " 23.18% | \n",
+ "
\n",
+ " \n",
+ " STEM | \n",
+ " 89 | \n",
+ " 430 | \n",
+ " 20.70% | \n",
+ "
\n",
+ " \n",
+ " Social Science | \n",
+ " 72 | \n",
+ " 275 | \n",
+ " 26.18% | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " is_correct question_count accuracy\n",
+ "category \n",
+ "Humanities 63 257 24.51%\n",
+ "Other 89 384 23.18%\n",
+ "STEM 89 430 20.70%\n",
+ "Social Science 72 275 26.18%"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "final_df['question_count'] = val_df.groupby('category').count()['question']\n",
+ "final_df['accuracy'] = final_df['is_correct'] / final_df['question_count']\n",
+ "final_df['accuracy'] = final_df['accuracy'] .apply(lambda x: format(x, '.2%'))\n",
+ "final_df"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "py310",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/eval/cmmlu.ipynb b/eval/cmmlu.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f606541c12c636abe4de7fa8663a472c9ed2d74b
--- /dev/null
+++ b/eval/cmmlu.ipynb
@@ -0,0 +1,241 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import torch\n",
+ "import numpy as np\n",
+ "import sys\n",
+ "root = '/'.join(os.path.realpath('.').replace('\\\\','/').split('/'))\n",
+ "p = root + '/CMMLU/src'\n",
+ "if p not in sys.path:\n",
+ " sys.path.append(p)\n",
+ "import argparse\n",
+ "from CMMLU.src.mp_utils import choices, format_example, gen_prompt, softmax, run_eval\n",
+ "from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
+ "from transformers.generation.configuration_utils import GenerationConfig"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```bash\n",
+ "git clone -- depth 1 https://github.com/haonan-li/CMMLU.git\n",
+ "```\n",
+ "\n",
+ "cpoied from https://github.com/haonan-li/CMMLU/blob/master/src/hf_causal_model.py"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model_dir = '../model_save/dpo' # 模型文件在上一层目录,使用dpo后的模型\n",
+ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
+ "# 加载模型\n",
+ "tokenizer = AutoTokenizer.from_pretrained(model_dir)\n",
+ "model = AutoModelForSeq2SeqLM.from_pretrained(model_dir).to(device)\n",
+ "generation_config = GenerationConfig()\n",
+ "generation_config.remove_invalid_values = True # 自动添加InfNanRemoveLogitsProcessor\n",
+ "generation_config.eos_token_id = tokenizer.eos_token_id\n",
+ "generation_config.pad_token_id = tokenizer.pad_token_id\n",
+ "# for t5, set decoder_start_token_id = pad_token_id\n",
+ "generation_config.decoder_start_token_id = tokenizer.pad_token_id \n",
+ "generation_config.max_new_tokens = 1\n",
+ "generation_config.num_beams = 1\n",
+ "generation_config.do_sample = False # greedy search\n",
+ "\n",
+ "choices = ['A', 'B', 'C', 'D']\n",
+ "choices_ids = [tokenizer.convert_tokens_to_ids(c) for c in choices]\n",
+ "choices_ids"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def eval(model, tokenizer, subject, dev_df, test_df, num_few_shot, max_length, cot):\n",
+ " choice_ids = [tokenizer.convert_tokens_to_ids(choice) for choice in choices]\n",
+ " cors = []\n",
+ " all_conf = []\n",
+ " all_preds = []\n",
+ " answers = choices[: test_df.shape[1] - 2]\n",
+ "\n",
+ " for i in range(test_df.shape[0]):\n",
+ " prompt_end = format_example(test_df, i, subject, include_answer=False)\n",
+ " prompt = gen_prompt(dev_df=dev_df,\n",
+ " subject=subject,\n",
+ " prompt_end=prompt_end,\n",
+ " num_few_shot=num_few_shot,\n",
+ " tokenizer=tokenizer,\n",
+ " max_length=max_length)\n",
+ " inputs = tokenizer([prompt])\n",
+ " if \"token_type_ids\" in inputs: # For Falcon\n",
+ " inputs.pop(\"token_type_ids\")\n",
+ " label = test_df.iloc[i, test_df.shape[1] - 1]\n",
+ " torch.cuda.empty_cache()\n",
+ " \n",
+ " input_ids, attention_mask = torch.LongTensor(inputs['input_ids']), torch.LongTensor(inputs['attention_mask'])\n",
+ " \n",
+ " with torch.no_grad():\n",
+ " outputs = model.generate(\n",
+ " input_ids=input_ids.to(device),\n",
+ " attention_mask=attention_mask.to(device),\n",
+ " generation_config=generation_config,\n",
+ " return_dict_in_generate=True,\n",
+ " output_scores=True,\n",
+ " )\n",
+ " \n",
+ " scores = torch.stack(outputs['scores'], dim=1).to('cpu')\n",
+ " scores = torch.softmax(scores, dim=2)\n",
+ " scores = scores[..., 0, choices_ids] #取第一个字符的ABCD概率\n",
+ " conf = scores[0][choices.index(label)]\n",
+ " choices_index = torch.argmax(scores)\n",
+ " \n",
+ " pred = choices[choices_index]\n",
+ "\n",
+ " all_preds += pred\n",
+ " all_conf.append(conf)\n",
+ " cors.append(pred == label)\n",
+ "\n",
+ " acc = np.mean(cors)\n",
+ " print(\"Average accuracy {:.3f} - {}\".format(acc, subject))\n",
+ " return acc, all_preds, conf"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Average accuracy 0.243 - agronomy\n",
+ "Average accuracy 0.243 - anatomy\n",
+ "Average accuracy 0.256 - ancient_chinese\n",
+ "Average accuracy 0.256 - arts\n",
+ "Average accuracy 0.248 - astronomy\n",
+ "Average accuracy 0.234 - business_ethics\n",
+ "Average accuracy 0.256 - chinese_civil_service_exam\n",
+ "Average accuracy 0.260 - chinese_driving_rule\n",
+ "Average accuracy 0.235 - chinese_food_culture\n",
+ "Average accuracy 0.252 - chinese_foreign_policy\n",
+ "Average accuracy 0.251 - chinese_history\n",
+ "Average accuracy 0.250 - chinese_literature\n",
+ "Average accuracy 0.246 - chinese_teacher_qualification\n",
+ "Average accuracy 0.253 - clinical_knowledge\n",
+ "Average accuracy 0.245 - college_actuarial_science\n",
+ "Average accuracy 0.318 - college_education\n",
+ "Average accuracy 0.302 - college_engineering_hydrology\n",
+ "Average accuracy 0.213 - college_law\n",
+ "Average accuracy 0.219 - college_mathematics\n",
+ "Average accuracy 0.264 - college_medical_statistics\n",
+ "Average accuracy 0.234 - college_medicine\n",
+ "Average accuracy 0.240 - computer_science\n",
+ "Average accuracy 0.263 - computer_security\n",
+ "Average accuracy 0.252 - conceptual_physics\n",
+ "Average accuracy 0.252 - construction_project_management\n",
+ "Average accuracy 0.239 - economics\n",
+ "Average accuracy 0.258 - education\n",
+ "Average accuracy 0.250 - electrical_engineering\n",
+ "Average accuracy 0.282 - elementary_chinese\n",
+ "Average accuracy 0.242 - elementary_commonsense\n",
+ "Average accuracy 0.282 - elementary_information_and_technology\n",
+ "Average accuracy 0.283 - elementary_mathematics\n",
+ "Average accuracy 0.252 - ethnology\n",
+ "Average accuracy 0.252 - food_science\n",
+ "Average accuracy 0.239 - genetics\n",
+ "Average accuracy 0.242 - global_facts\n",
+ "Average accuracy 0.272 - high_school_biology\n",
+ "Average accuracy 0.235 - high_school_chemistry\n",
+ "Average accuracy 0.271 - high_school_geography\n",
+ "Average accuracy 0.250 - high_school_mathematics\n",
+ "Average accuracy 0.255 - high_school_physics\n",
+ "Average accuracy 0.252 - high_school_politics\n",
+ "Average accuracy 0.254 - human_sexuality\n",
+ "Average accuracy 0.249 - international_law\n",
+ "Average accuracy 0.250 - journalism\n",
+ "Average accuracy 0.253 - jurisprudence\n",
+ "Average accuracy 0.252 - legal_and_moral_basis\n",
+ "Average accuracy 0.252 - logical\n",
+ "Average accuracy 0.238 - machine_learning\n",
+ "Average accuracy 0.243 - management\n",
+ "Average accuracy 0.250 - marketing\n",
+ "Average accuracy 0.249 - marxist_theory\n",
+ "Average accuracy 0.250 - modern_chinese\n",
+ "Average accuracy 0.241 - nutrition\n",
+ "Average accuracy 0.257 - philosophy\n",
+ "Average accuracy 0.251 - professional_accounting\n",
+ "Average accuracy 0.251 - professional_law\n",
+ "Average accuracy 0.242 - professional_medicine\n",
+ "Average accuracy 0.246 - professional_psychology\n",
+ "Average accuracy 0.247 - public_relations\n",
+ "Average accuracy 0.252 - security_study\n",
+ "Average accuracy 0.252 - sociology\n",
+ "Average accuracy 0.248 - sports_science\n",
+ "Average accuracy 0.254 - traditional_chinese_medicine\n",
+ "Average accuracy 0.243 - virology\n",
+ "Average accuracy 0.242 - world_history\n",
+ "Average accuracy 0.256 - world_religions\n",
+ "STEM 25.16\n",
+ "Humanities 24.78\n",
+ "Social Science 25.42\n",
+ "Other 25.15\n",
+ "China specific 25.26\n",
+ "Overall 25.17\n"
+ ]
+ }
+ ],
+ "source": [
+ "from dataclasses import dataclass\n",
+ "@dataclass\n",
+ "class Args:\n",
+ " data_dir: str = './CMMLU/data'\n",
+ " save_dir: str = './result'\n",
+ " num_few_shot: int = 0\n",
+ " max_length: int = 512\n",
+ "\n",
+ "run_eval(model, tokenizer, eval, Args())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "py310",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/finetune_examples/.gitignore b/finetune_examples/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..cc03aa44f3760c89f97ef02b762a77f721afa00c
--- /dev/null
+++ b/finetune_examples/.gitignore
@@ -0,0 +1,3 @@
+data
+model_save
+logs
\ No newline at end of file
diff --git a/finetune_examples/info_extract/data_process.py b/finetune_examples/info_extract/data_process.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2c3e8bb10a64e3d62b26e8a052d0f9590f3e58b
--- /dev/null
+++ b/finetune_examples/info_extract/data_process.py
@@ -0,0 +1,146 @@
+import ujson
+import codecs
+import re
+from rich import progress
+import numpy as np
+
+
+def process_all_50_schemas(raw_schemas_file: str='./data/all_50_schemas', save_schemas_file: str=None) -> list[str]:
+ '''
+ 获取prompt的关系列表
+ '''
+ lines = []
+ with codecs.open(raw_schemas_file, 'r', encoding='utf-8') as f:
+ lines = f.readlines()
+
+ scheme_list = []
+ for line in lines:
+ item = ujson.loads(line)
+ scheme_list.append(
+ item['predicate']
+ )
+
+ scheme_list = list(set(scheme_list))
+
+ if save_schemas_file:
+ with codecs.open(save_schemas_file, 'w', encoding='utf-8') as f:
+ ujson.dump(f"{scheme_list}", f, indent=4, ensure_ascii=False)
+
+ return scheme_list
+
+def process_spo_list(text: str, spo_list: list, repair_song: bool=False):
+ '''
+ 处理spo_list,处理成{subject: 'subject', subject_start: 0, subject_end:3, predicate: 'predicate', object: 'object', object_start: 5, object_end = 7}
+ '''
+ new_spo_list = []
+
+ # 找出所有用书名号隔开的名字
+ some_name = re.findall('《([^《》]*?)》', text)
+ some_name = [n.strip() for n in some_name]
+
+ # 歌曲和专辑
+ song = []
+ album = []
+ for spo in spo_list:
+
+ # 修正so的错误,删除前后的书名号
+ s = spo['subject'].strip('《》').strip().lower()
+ o = spo['object'].strip('《》').strip().lower()
+ p = spo['predicate']
+
+ # 如果s在找到的名字中,以正则找到的s为准,用in判等,
+ # 如text: '《造梦者---dreamer》',但是标注的s是'造梦者'
+ for name in some_name:
+ if s in name and text.count(s) == 1:
+ s = name
+
+ if repair_song:
+ if p == '所属专辑':
+ song.append(s)
+ album.append(o)
+
+ temp = dict()
+ temp['s'] = s
+ temp['p'] = spo['predicate']
+ temp['o'] = o
+
+
+ # 在text中找不到subject 或者 object,不要这条数据了
+ if text.find(s) == -1 or text.find(o) == -1:
+ continue
+
+ new_spo_list.append(temp)
+
+ if repair_song:
+ ret_spo_list = []
+ ps = ['歌手', '作词', '作曲']
+
+ for spo in new_spo_list:
+ s, p, o = spo['s'], spo['p'], spo['o']
+ if p in ps and s in album and s not in song:
+ continue
+ ret_spo_list.append(spo)
+
+ return ret_spo_list
+
+ return new_spo_list
+
+
+def process_data(raw_data_file: str, train_file_name: str, dev_file_name: str, keep_max_length: int=512, repair_song: bool=True, dev_size: int=1000) -> None:
+ '''
+ 将原始的格式处理为prompt:resopnse的格式
+ '''
+ lines = []
+ with codecs.open(raw_data_file, 'r', encoding='utf-8') as f:
+ lines = f.readlines()
+ my_raw_data = []
+
+ schemas = process_all_50_schemas('./data/all_50_schemas')
+ schemas = f"[{','.join(schemas)}]"
+ for i, line in progress.track(enumerate(lines), total=len(lines)):
+
+ tmp = ujson.decode(line)
+ text = f"请抽取出给定句子中的所有三元组。给定句子:{tmp['text'].lower()}"
+
+ spo_list = process_spo_list(tmp['text'].lower(), tmp['spo_list'], repair_song=repair_song)
+ spo = f"{[(item['s'], item['p'], item['o']) for item in spo_list]}"
+ # 删除长度过长、没有找到实体信息的句子
+ if len(text) > keep_max_length or len(spo) > keep_max_length or len(spo_list) == 0:
+ continue
+
+ my_raw_data.append({
+ 'prompt': text,
+ 'response':spo.replace('\'','').replace(' ', ''),
+ })
+
+
+ dev_date = []
+ if dev_file_name is not None:
+ dev_index = np.random.choice(range(0, len(my_raw_data)), size=dev_size, replace=False)
+ dev_index = set(dev_index)
+ assert len(dev_index) == dev_size
+
+ train_data = [x for i, x in enumerate(my_raw_data) if i not in dev_index]
+ dev_date = [x for i, x in enumerate(my_raw_data) if i in dev_index]
+
+ with codecs.open(dev_file_name, 'w', encoding='utf-8') as f:
+ ujson.dump(dev_date, f, indent=4, ensure_ascii=False)
+
+ my_raw_data = train_data
+
+ print(f'length of train data {len(my_raw_data)}, length of eval data {len(dev_date)}')
+
+ with codecs.open(train_file_name, 'w', encoding='utf-8') as f:
+ ujson.dump(my_raw_data, f, indent=4, ensure_ascii=False)
+
+if __name__ == '__main__':
+ raw_data_file = './data/train_data.json'
+ train_file = './data/my_train.json'
+ dev_file = './data/my_eval.json'
+
+ process_all_50_schemas('./data/all_50_schemas', './data/my_schemas.txt')
+
+ process_data(raw_data_file, train_file, dev_file, keep_max_length=512, dev_size=1000)
+
+ # 使用该数据集公开的dev_data作为测试集
+ process_data('./data/dev_data.json', train_file_name='./data/test.json', dev_file_name=None, keep_max_length=512, dev_size=1000)
diff --git a/finetune_examples/info_extract/finetune_IE_task.ipynb b/finetune_examples/info_extract/finetune_IE_task.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..951eace0890e2c035f4ddbf785c392d7889362c1
--- /dev/null
+++ b/finetune_examples/info_extract/finetune_IE_task.ipynb
@@ -0,0 +1,463 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# coding=utf-8\n",
+ "from typing import Dict\n",
+ "import time \n",
+ "import pandas as pd \n",
+ "\n",
+ "import torch\n",
+ "from datasets import Dataset, load_dataset\n",
+ "from transformers import PreTrainedTokenizerFast, Seq2SeqTrainer, DataCollatorForSeq2Seq,Seq2SeqTrainingArguments\n",
+ "from transformers.generation.configuration_utils import GenerationConfig"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys, os\n",
+ "root = os.path.realpath('.').replace('\\\\','/').split('/')[0: -2]\n",
+ "root = '/'.join(root)\n",
+ "if root not in sys.path:\n",
+ " sys.path.append(root)\n",
+ "\n",
+ "from model.chat_model import TextToTextModel\n",
+ "from config import SFTconfig, InferConfig, T5ModelConfig\n",
+ "from utils.functions import get_T5_config\n",
+ "\n",
+ "os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_dataset(file: str, split: str, encode_fn: callable, encode_args: dict, cache_dir: str='.cache') -> Dataset:\n",
+ " \"\"\"\n",
+ " Load a dataset\n",
+ " \"\"\"\n",
+ " dataset = load_dataset('json', data_files=file, split=split, cache_dir=cache_dir)\n",
+ "\n",
+ " def merge_prompt_and_responses(sample: dict) -> Dict[str, str]:\n",
+ " # add an eos token note that end of sentence, using in generate.\n",
+ " prompt = encode_fn(f\"{sample['prompt']}[EOS]\", **encode_args)\n",
+ " response = encode_fn(f\"{sample['response']}[EOS]\", **encode_args)\n",
+ " return {\n",
+ " 'input_ids': prompt.input_ids,\n",
+ " 'labels': response.input_ids,\n",
+ " }\n",
+ "\n",
+ " dataset = dataset.map(merge_prompt_and_responses)\n",
+ " return dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def sft_train(config: SFTconfig) -> None:\n",
+ "\n",
+ " # step 1. 加载tokenizer\n",
+ " tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)\n",
+ " \n",
+ " # step 2. 加载预训练模型\n",
+ " model = None\n",
+ " if os.path.isdir(config.finetune_from_ckp_file):\n",
+ " # 传入文件夹则 from_pretrained\n",
+ " model = TextToTextModel.from_pretrained(config.finetune_from_ckp_file)\n",
+ " else:\n",
+ " # load_state_dict\n",
+ " t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)\n",
+ " model = TextToTextModel(t5_config)\n",
+ " model.load_state_dict(torch.load(config.finetune_from_ckp_file, map_location='cpu')) # set cpu for no exception\n",
+ " \n",
+ " # Step 4: Load the dataset\n",
+ " encode_args = {\n",
+ " 'truncation': False,\n",
+ " 'padding': 'max_length',\n",
+ " }\n",
+ "\n",
+ " dataset = get_dataset(file=config.sft_train_file, encode_fn=tokenizer.encode_plus, encode_args=encode_args, split=\"train\")\n",
+ "\n",
+ " # Step 5: Define the training arguments\n",
+ " # T5属于sequence to sequence模型,故要使用Seq2SeqTrainingArguments、DataCollatorForSeq2Seq、Seq2SeqTrainer\n",
+ " # huggingface官网的sft工具适用于language model/LM模型\n",
+ " generation_config = GenerationConfig()\n",
+ " generation_config.remove_invalid_values = True\n",
+ " generation_config.eos_token_id = tokenizer.eos_token_id\n",
+ " generation_config.pad_token_id = tokenizer.pad_token_id\n",
+ " generation_config.decoder_start_token_id = tokenizer.pad_token_id\n",
+ " generation_config.max_new_tokens = 320\n",
+ " generation_config.repetition_penalty = 1.5\n",
+ " generation_config.num_beams = 1 # greedy search\n",
+ " generation_config.do_sample = False # greedy search\n",
+ "\n",
+ " training_args = Seq2SeqTrainingArguments(\n",
+ " output_dir=config.output_dir,\n",
+ " per_device_train_batch_size=config.batch_size,\n",
+ " auto_find_batch_size=True, # 防止OOM\n",
+ " gradient_accumulation_steps=config.gradient_accumulation_steps,\n",
+ " learning_rate=config.learning_rate,\n",
+ " logging_steps=config.logging_steps,\n",
+ " num_train_epochs=config.num_train_epochs,\n",
+ " optim=\"adafactor\",\n",
+ " report_to='tensorboard',\n",
+ " log_level='info',\n",
+ " save_steps=config.save_steps,\n",
+ " save_total_limit=3,\n",
+ " fp16=config.fp16,\n",
+ " logging_first_step=config.logging_first_step,\n",
+ " warmup_steps=config.warmup_steps,\n",
+ " seed=config.seed,\n",
+ " generation_config=generation_config,\n",
+ " )\n",
+ "\n",
+ " # step 6: init a collator\n",
+ " collator = DataCollatorForSeq2Seq(tokenizer, max_length=config.max_seq_len)\n",
+ " \n",
+ " # Step 7: Define the Trainer\n",
+ " trainer = Seq2SeqTrainer(\n",
+ " model=model,\n",
+ " args=training_args,\n",
+ " train_dataset=dataset,\n",
+ " eval_dataset=dataset,\n",
+ " tokenizer=tokenizer,\n",
+ " data_collator=collator,\n",
+ " )\n",
+ "\n",
+ " # step 8: train\n",
+ " trainer.train(\n",
+ " # resume_from_checkpoint=True\n",
+ " )\n",
+ "\n",
+ " loss_log = pd.DataFrame(trainer.state.log_history)\n",
+ " log_dir = './logs'\n",
+ " if not os.path.exists(log_dir):\n",
+ " os.mkdir(log_dir)\n",
+ " loss_log.to_csv(f\"{log_dir}/ie_task_finetune_log_{time.strftime('%Y%m%d-%H%M')}.csv\")\n",
+ "\n",
+ " # Step 9: Save the model\n",
+ " trainer.save_model(config.output_dir)\n",
+ "\n",
+ " return trainer\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "config = SFTconfig()\n",
+ "config.finetune_from_ckp_file = InferConfig().model_dir\n",
+ "config.sft_train_file = './data/my_train.json'\n",
+ "config.output_dir = './model_save/ie_task'\n",
+ "config.max_seq_len = 512\n",
+ "config.batch_size = 16\n",
+ "config.gradient_accumulation_steps = 4\n",
+ "config.logging_steps = 20\n",
+ "config.learning_rate = 5e-5\n",
+ "config.num_train_epochs = 6\n",
+ "config.save_steps = 3000\n",
+ "config.warmup_steps = 1000\n",
+ "print(config)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer = sft_train(config)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import sys, os\n",
+ "root = os.path.realpath('.').replace('\\\\','/').split('/')[0: -2]\n",
+ "root = '/'.join(root)\n",
+ "if root not in sys.path:\n",
+ " sys.path.append(root)\n",
+ "import ujson, torch\n",
+ "from rich import progress\n",
+ "\n",
+ "from model.infer import ChatBot\n",
+ "from config import InferConfig\n",
+ "from utils.functions import f1_p_r_compute\n",
+ "inf_conf = InferConfig()\n",
+ "inf_conf.model_dir = './model_save/ie_task/'\n",
+ "bot = ChatBot(infer_config=inf_conf)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[(傅淑云,民族,汉族),(傅淑云,出生地,上海),(傅淑云,出生日期,1915年)]\n"
+ ]
+ }
+ ],
+ "source": [
+ "ret = bot.chat('请抽取出给定句子中的所有三元组。给定句子:傅淑云,女,汉族,1915年出生,上海人')\n",
+ "print(ret)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[('傅淑云', '民族', '汉族'), ('傅淑云', '出生地', '上海'), ('傅淑云', '出生日期', '1915年')]\n"
+ ]
+ }
+ ],
+ "source": [
+ "def text_to_spo_list(sentence: str) -> str:\n",
+ " '''\n",
+ " 将输出转换为SPO列表,时间复杂度: O(n)\n",
+ " '''\n",
+ " spo_list = []\n",
+ " sentence = sentence.replace(',',',').replace('(','(').replace(')', ')') # 符号标准化\n",
+ "\n",
+ " cur_txt, cur_spo, started = '', [], False\n",
+ " for i, char in enumerate(sentence):\n",
+ " if char not in '[](),':\n",
+ " cur_txt += char\n",
+ " elif char == '(':\n",
+ " started = True\n",
+ " cur_txt, cur_spo = '' , []\n",
+ " elif char == ',' and started and len(cur_txt) > 0 and len(cur_spo) < 3:\n",
+ " cur_spo.append(cur_txt)\n",
+ " cur_txt = ''\n",
+ " elif char == ')' and started and len(cur_txt) > 0 and len(cur_spo) == 2:\n",
+ " cur_spo.append(cur_txt)\n",
+ " spo_list.append(tuple(cur_spo))\n",
+ " cur_spo = []\n",
+ " cur_txt = ''\n",
+ " started = False\n",
+ " return spo_list\n",
+ "print(text_to_spo_list(ret))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "test_data = []\n",
+ "with open('./data/test.json', 'r', encoding='utf-8') as f:\n",
+ " test_data = ujson.load(f)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[{'prompt': '请抽取出给定句子中的所有三元组。给定句子:查尔斯·阿兰基斯(charles aránguiz),1989年4月17日出生于智利圣地亚哥,智利职业足球运动员,司职中场,效力于德国足球甲级联赛勒沃库森足球俱乐部',\n",
+ " 'response': '[(查尔斯·阿兰基斯,出生地,圣地亚哥),(查尔斯·阿兰基斯,出生日期,1989年4月17日)]'},\n",
+ " {'prompt': '请抽取出给定句子中的所有三元组。给定句子:《离开》是由张宇谱曲,演唱',\n",
+ " 'response': '[(离开,歌手,张宇),(离开,作曲,张宇)]'}]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "test_data[0:2]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "bca40f71fcc34dda95eb97a6f48fea0c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Output()"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "prompt_buffer, batch_size, n = [], 32, len(test_data)\n",
+ "traget_spo_list, predict_spo_list = [], []\n",
+ "for i, item in progress.track(enumerate(test_data), total=n):\n",
+ " prompt_buffer.append(item['prompt'])\n",
+ " traget_spo_list.append(\n",
+ " text_to_spo_list(item['response'])\n",
+ " )\n",
+ "\n",
+ " if len(prompt_buffer) == batch_size or i == n - 1:\n",
+ " torch.cuda.empty_cache()\n",
+ " model_pred = bot.chat(prompt_buffer)\n",
+ " model_pred = [text_to_spo_list(item) for item in model_pred]\n",
+ " predict_spo_list.extend(model_pred)\n",
+ " prompt_buffer = []"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[('查尔斯·阿兰基斯', '出生地', '圣地亚哥'), ('查尔斯·阿兰基斯', '出生日期', '1989年4月17日')], [('离开', '歌手', '张宇'), ('离开', '作曲', '张宇')]] \n",
+ "\n",
+ "\n",
+ " [[('查尔斯·阿兰基斯', '国籍', '智利'), ('查尔斯·阿兰基斯', '出生地', '智利圣地亚哥'), ('查尔斯·阿兰基斯', '出生日期', '1989年4月17日')], [('离开', '歌手', '张宇'), ('离开', '作曲', '张宇')]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(traget_spo_list[0:2], '\\n\\n\\n',predict_spo_list[0:2])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "21636 21636\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(len(predict_spo_list), len(traget_spo_list))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "f1: 0.74, precision: 0.75, recall: 0.73\n"
+ ]
+ }
+ ],
+ "source": [
+ "f1, p, r = f1_p_r_compute(predict_spo_list, traget_spo_list)\n",
+ "print(f\"f1: {f1:.2f}, precision: {p:.2f}, recall: {r:.2f}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['你好,有什么我可以帮你的吗?',\n",
+ " '[(江苏省赣榆海洋经济开发区,成立日期,2003年1月28日)]',\n",
+ " '南方地区气候干燥,气候寒冷,冬季寒冷,夏季炎热,冬季寒冷的原因很多,可能是由于全球气候变暖导致的。\\n南方气候的变化可以引起天气的变化,例如气温下降、降雨增多、冷空气南下等。南方气候的变化可以促进气候的稳定,有利于经济发展和经济繁荣。\\n此外,南方地区的气候也可能受到自然灾害的影响,例如台风、台风、暴雨等,这些自然灾害会对南方气候产生影响。\\n总之,南方气候的变化是一个复杂的过程,需要综合考虑多方面因素,才能应对。']"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# 测试一下对话能力\n",
+ "bot.chat(['你好', '请抽取出给定句子中的所有三元组。给定句子:江苏省赣榆海洋经济开发区位于赣榆区青口镇临海而建,2003年1月28日,经江苏省人民政府《关于同意设立赣榆海洋经济开发区的批复》(苏政复〔2003〕14号)文件批准为全省首家省级海洋经济开发区,','如何看待最近南方天气突然变冷?'])"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "py310",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/img/api_example.png b/img/api_example.png
new file mode 100644
index 0000000000000000000000000000000000000000..43c06e4153c2c2f94eca6682980287fa5b4ce2cc
Binary files /dev/null and b/img/api_example.png differ
diff --git a/img/dpo_loss.png b/img/dpo_loss.png
new file mode 100644
index 0000000000000000000000000000000000000000..afc8d40f0f2d178274022a01fc5217801c188b73
Binary files /dev/null and b/img/dpo_loss.png differ
diff --git a/img/ie_task_chat.png b/img/ie_task_chat.png
new file mode 100644
index 0000000000000000000000000000000000000000..566b3cb9dc805c6d699f9023384d655121cc07a8
Binary files /dev/null and b/img/ie_task_chat.png differ
diff --git a/img/sentence_length.png b/img/sentence_length.png
new file mode 100644
index 0000000000000000000000000000000000000000..9d7f1a04c9bb566842e2ca144aea3bebcb129281
Binary files /dev/null and b/img/sentence_length.png differ
diff --git a/img/sft_loss.png b/img/sft_loss.png
new file mode 100644
index 0000000000000000000000000000000000000000..1dfdb597df936f07b3e9f137fcb1b1055d6e6988
Binary files /dev/null and b/img/sft_loss.png differ
diff --git a/img/show1.png b/img/show1.png
new file mode 100644
index 0000000000000000000000000000000000000000..573b0d420f1691e58f95de510510d71fa82f63fd
Binary files /dev/null and b/img/show1.png differ
diff --git a/img/stream_chat.gif b/img/stream_chat.gif
new file mode 100644
index 0000000000000000000000000000000000000000..7d83b85a13df4bac6c07568ade7266439b93234d
--- /dev/null
+++ b/img/stream_chat.gif
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c9a4eb95e7afbae5f4940a9b83c942725a0d4cf1eb8390938ff8a7282300b910
+size 1475086
diff --git a/img/train_loss.png b/img/train_loss.png
new file mode 100644
index 0000000000000000000000000000000000000000..425fba894528385aef9cbfa3ff521dfbb4189ff3
Binary files /dev/null and b/img/train_loss.png differ
diff --git a/model/__pycache__/chat_model.cpython-310.pyc b/model/__pycache__/chat_model.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d04fc412d9946c45e486838ecc6c3cf50bfdc4d9
Binary files /dev/null and b/model/__pycache__/chat_model.cpython-310.pyc differ
diff --git a/model/__pycache__/infer.cpython-310.pyc b/model/__pycache__/infer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..422df9c955da74b2b4620fdaa4c8a39bb6bb90f9
Binary files /dev/null and b/model/__pycache__/infer.cpython-310.pyc differ
diff --git a/model/chat_model.py b/model/chat_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..62bdc8beaa709b82a0aaab66a103ac72ecea7600
--- /dev/null
+++ b/model/chat_model.py
@@ -0,0 +1,74 @@
+import torch
+from torch import Tensor, LongTensor
+from transformers import T5ForConditionalGeneration, T5Config
+from transformers import TextIteratorStreamer
+from transformers.generation.configuration_utils import GenerationConfig
+
+class TextToTextModel(T5ForConditionalGeneration):
+ def __init__(self, config: T5Config) -> None:
+ '''
+ TextToTextModel继承T5ForConditionalGeneration
+ '''
+ super().__init__(config)
+
+ @torch.no_grad()
+ def my_generate(self,
+ input_ids: LongTensor,
+ attention_mask: LongTensor,
+ max_seq_len: int=256,
+ search_type: str='beam',
+ streamer: TextIteratorStreamer=None,
+ ) -> Tensor:
+ '''
+ 自定义gennerate方法方便调用、测试
+ search_type: ['greedy', 'beam', 'sampling', 'contrastive', ]
+
+ - *greedy decoding* by calling [`~generation.GenerationMixin.greedy_search`] if `num_beams=1` and
+ `do_sample=False`
+ - *contrastive search* by calling [`~generation.GenerationMixin.contrastive_search`] if `penalty_alpha>0.`
+ and `top_k>1`
+ - *multinomial sampling* by calling [`~generation.GenerationMixin.sample`] if `num_beams=1` and
+ `do_sample=True`
+ - *beam-search decoding* by calling [`~generation.GenerationMixin.beam_search`] if `num_beams>1` and
+ `do_sample=False`
+ - *beam-search multinomial sampling* by calling [`~generation.GenerationMixin.beam_sample`] if
+ `num_beams>1` and `do_sample=True`
+ '''
+ generation_config = GenerationConfig()
+ generation_config.remove_invalid_values = True
+ generation_config.eos_token_id = 1
+ generation_config.pad_token_id = 0
+ generation_config.decoder_start_token_id = self.config.decoder_start_token_id
+ generation_config.max_new_tokens = max_seq_len
+ # generation_config.repetition_penalty = 1.1 # 重复词惩罚
+
+ if search_type == 'greedy':
+ generation_config.num_beams = 1
+ generation_config.do_sample = False
+ elif search_type == 'beam':
+ generation_config.top_k = 50
+ generation_config.num_beams = 5
+ generation_config.do_sample = True
+ generation_config.top_p = 0.95
+ generation_config.no_repeat_ngram_size = 4
+ generation_config.length_penalty = -2.0
+ generation_config.early_stopping = True
+ elif search_type == 'sampling':
+ generation_config.num_beams = 1
+ generation_config.do_sample = True
+ generation_config.top_k = 50
+ generation_config.temperature = 0.98 # 越低,贫富差距越大,越高(>1),越趋向于均匀分布
+ generation_config.top_p = 0.80
+ generation_config.no_repeat_ngram_size = 4
+ elif search_type == 'contrastive':
+ generation_config.penalty_alpha = 0.5
+ generation_config.top_k = 50
+
+ result = self.generate(
+ inputs=input_ids,
+ attention_mask=attention_mask,
+ generation_config=generation_config,
+ streamer=streamer,
+ )
+
+ return result
diff --git a/model/chat_model_config.py b/model/chat_model_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..3472e5b838b119bb9c8c2b906cd782392133c3ae
--- /dev/null
+++ b/model/chat_model_config.py
@@ -0,0 +1,4 @@
+from transformers import T5Config
+
+class TextToTextModelConfig(T5Config):
+ model_type = 't5'
\ No newline at end of file
diff --git a/model/dataset.py b/model/dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..7e010a3cf90e2ac44d88a8a0fcd9a9fc4c9ef899
--- /dev/null
+++ b/model/dataset.py
@@ -0,0 +1,290 @@
+from typing import Union
+
+from torch.utils.data import Dataset
+from torch import LongTensor, cuda
+from transformers import PreTrainedTokenizerFast
+from fastparquet import ParquetFile
+from torch.utils.data import DataLoader
+from datasets import load_dataset
+import datasets
+import pyarrow.parquet as pq
+from numpy import array, int64
+from numpy.random import shuffle
+
+# import sys
+# sys.path.extend(['.', '..'])
+
+from config import PROJECT_ROOT
+
+class MyDataset(Dataset):
+
+ def __init__(self,
+ parquet_file: str,
+ tokenizer_dir: str,
+ keep_in_memory: bool=False,
+ max_seq_len: int=512,
+ buffer_size: int=40960,
+ ) -> None:
+ '''
+ keep_in_memory: 是否将parquet文件转换为pandas.DataFrame格式存放到内存,
+ False将使用迭代生成器(迭代生成器不支持打乱数据),减少大数据集内存占用
+ '''
+ super().__init__()
+
+ if cuda.device_count() >= 2 and not keep_in_memory:
+ raise ValueError(f'多GPU时使用MyDataset,参数keep_in_memory必须=True,否则无法进行分布式训练. 当前keep_in_memory={keep_in_memory}')
+
+ self.keep_in_memory = keep_in_memory
+ self.max_seq_len = max_seq_len
+
+ # 使用pyarrow.parquet读取,to_pandas、for遍历速度更快
+ parquet_table = pq.read_table(parquet_file)
+
+ # 获取数据集长度
+ self.length = parquet_table.num_rows
+
+ # 缓冲区大小不能超过数据长度
+ self.buffer_size = self.length if buffer_size > self.length else buffer_size
+
+ if keep_in_memory:
+ # 转化为pandas放到内存中
+ self.data = parquet_table.to_pandas()
+ else:
+ self.data = parquet_table
+
+ # 初始化tokenizer
+ self.tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_dir)
+
+ # 在这里初始化generator
+ self.sample_generator = self.item_generator()
+
+ def item_generator(self,) -> tuple:
+ '''
+ 一条数据的生成器,防止大数据集OOM
+ '''
+
+ parquet_table = self.data
+
+ # 生成器是死循环,不用退出,训练结束(epoch结束)会停止调用next()
+ buffer_list = []
+ while True:
+
+ for prompt, response in zip(parquet_table['prompt'], parquet_table['response']):
+
+ # 缓存数据不够,添加数据
+ if len(buffer_list) < self.buffer_size:
+ buffer_list.append( (prompt.as_py(), response.as_py()) )
+ continue
+
+ # 执行到这里,缓存区够了,打乱数据
+ shuffle(buffer_list)
+ for p, r in buffer_list:
+ # 在这里迭代
+ yield p, r
+
+ # 迭代完成,清空缓存区
+ buffer_list = []
+
+ def __getitem__(self, index):
+ '''
+ 返回一条样本
+ '''
+ if self.keep_in_memory:
+ data = self.data
+ prompt, response = data.iloc[index].prompt, data.iloc[index].response
+ else:
+ prompt, response = next(self.sample_generator)
+
+ max_seq_len = self.max_seq_len - 5 # len('[EOS]') = 5
+ # add an eos token note that end of resopnse, using in generate.
+ return f"{prompt[0: max_seq_len]}[EOS]", f"{response[0: max_seq_len]}[EOS]"
+
+ def collate_fn(self, data: list[list]) -> dict:
+ '''
+ 合并一个批次数据返回
+ '''
+ tokenizer = self.tokenizer
+
+ prompt = tokenizer([item[0] for item in data], padding=True, return_token_type_ids=False)
+ response = tokenizer([item[1] for item in data], padding=True, return_token_type_ids=False)
+
+ input_ids = array(prompt.input_ids, dtype=int64)
+ input_mask = array(prompt.attention_mask, dtype=int64)
+ target_ids = array(response.input_ids, dtype=int64)
+
+ ret = {
+ 'input_ids': LongTensor(input_ids),
+ 'input_mask': LongTensor(input_mask),
+ 'target_ids': LongTensor(target_ids),
+ }
+ return ret
+
+ def __len__(self) -> int:
+ return self.length
+
+class ParquetDataset:
+
+ def __init__(self,
+ parquet_file: Union[str, dict],
+ tokenizer_dir: str,
+ keep_in_memory: bool=False,
+ cache_dir: str='./.cache',
+ buffer_size: int=10240,
+ max_len: int=512,
+ seed: int=23333
+ ) -> None:
+ '''
+ 使用huggingface的loaddataset方法加载,
+ parquet_file: 单个文件,此时只能使用dataset['train'],
+ 多个文件请用:parquet_file={'train': 'train.parquet', 'test': 'test.parquet', 'validation': 'validation.parquet'})
+ 其他用法见:https://huggingface.co/docs/datasets/loading
+ keep_in_memory: 是否将parquet文件转换为pandas.DataFrame格式存放到内存
+ '''
+ self.keep_in_memory = keep_in_memory
+ self.len_dict = self.__get_all_parquet_file_size(parquet_file=parquet_file)
+
+ self.max_len = max_len
+ self.tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_dir)
+
+ self.tokenizer = self.tokenizer
+
+ streaming = False if keep_in_memory else True
+ # streaming=True,否则大数据集OOM
+ dataset = load_dataset('parquet', data_files=parquet_file, cache_dir=cache_dir, streaming=streaming)
+
+ # 这里的batch_size不是训练的batch_size,是传递给precess_batch_func批处理的batch_size
+ dataset = dataset.map(self.precess_batch_func, batched=True, batch_size=buffer_size, \
+ remove_columns=['prompt', 'response'], fn_kwargs={'max_len': max_len})
+
+ dataset = dataset.with_format(type="torch")
+
+ if keep_in_memory:
+ dataset = dataset.shuffle(seed=seed, keep_in_memory=keep_in_memory)
+ else:
+ # 只能打乱缓冲区内的数据,不能打乱整个数据集,因此可以将缓存区设置稍微大一些
+ dataset = dataset.shuffle(seed=seed, buffer_size=buffer_size)
+
+ self.dataset = dataset
+
+ @staticmethod
+ def precess_batch_func(item: dict, max_len: int=512) -> dict:
+ '''
+ 添加EOS
+ '''
+ max_len -= 5 # len('[EOS]') = 5
+ for i in range(len(item['prompt'])):
+ item['prompt'][i] = f"{item['prompt'][i][0: max_len]}[EOS]"
+ for i in range(len(item['response'])):
+ item['response'][i] = f"{item['response'][i][0: max_len]}[EOS]"
+
+ return {
+ 'prompt': item['prompt'],
+ 'response': item['response'],
+ }
+
+ def collate_fn(self, data: list[list]) -> dict:
+ '''
+ 合并一个批次数据返回
+ '''
+
+ tokenizer = self.tokenizer
+ prompt = [item['prompt'] for item in data ]
+ response = [item['response'] for item in data ]
+
+ # 按批次pad
+ prompt_encoded = tokenizer(prompt, padding=True, return_token_type_ids=False)
+ response_encoded = tokenizer(response, padding=True, return_token_type_ids=False)
+
+ input_ids = array(prompt_encoded.input_ids, dtype=int64)
+ input_mask = array(prompt_encoded.attention_mask, dtype=int64)
+ target_ids = array(response_encoded.input_ids, dtype=int64)
+
+ ret = {
+ 'input_ids': LongTensor(input_ids),
+ 'input_mask': LongTensor(input_mask),
+ 'target_ids': LongTensor(target_ids),
+ }
+ return ret
+ def __getitem__(self, index: str) -> datasets.Dataset:
+ '''
+ 魔术方法,实现下标访问,如:dataset['train']、dataset['validation']、dataset['test']
+ '''
+ return self.dataset[index]
+
+ def __get_all_parquet_file_size(self, parquet_file: Union[str, dict]) -> dict:
+ '''
+ 获取所有parquet file的长度
+ '''
+ len_dict = dict()
+ if type(parquet_file) is str:
+ train_len = self.__get_size_of_praquet(parquet_file)
+ len_dict['train'] = train_len
+
+ if type(parquet_file) is dict:
+ for split_type, file in parquet_file.items():
+ len_dict[split_type] = self.__get_size_of_praquet(file)
+
+ return len_dict
+
+ def __get_size_of_praquet(self, file_name: str) -> int:
+ '''
+ 获取一个parquet文件的行数
+ '''
+ parquet_data = pq.read_table(file_name)
+
+ return parquet_data.num_rows
+
+ def __len__(self) -> int:
+ '''
+ 魔术方法,如果只有一个数据集,返回默认数据集大小
+ '''
+ if len(self.len_dict) == 1:
+ return self.len_dict['train']
+ else:
+ raise Exception("this dataset contains many splited datasets, use `get_dataset_size(split_name)` function to get length, e.g: get_dataset_size('train')")
+
+ def get_dataset_size(self, split_name: str) -> int:
+ '''
+ 获取每个切分数据集的长度
+ split_name可取:train、validation、test
+ '''
+ return self.len_dict[split_name]
+
+ def get_tokenizer(self, ) -> PreTrainedTokenizerFast:
+ return self.tokenizer
+
+
+
+if __name__ == '__main__':
+ parquet_file = PROJECT_ROOT + '/data/my_valid_dataset.parquet'
+ tokenizer_dir = PROJECT_ROOT + '/model_save/tokenizer'
+
+ # example 1:
+ dataset = MyDataset(parquet_file, tokenizer_dir, keep_in_memory=False, max_seq_len=128)
+ print('\nexample 1, dataset size: ', len(dataset))
+ dataloader = DataLoader(dataset, batch_size=32, collate_fn=dataset.collate_fn)
+
+ for epoch in range(2):
+ print('epoch: {}'.format(epoch))
+ for step, batch in enumerate(dataloader):
+ x, x_mask, y = batch['input_ids'], batch['input_mask'], batch['target_ids']
+ print('step:{}'.format(step), x.shape, x_mask.shape, y.shape)
+ if step == 5:
+ break
+
+
+ # exit(0)
+ # example 2:
+ dataset = ParquetDataset(parquet_file, tokenizer_dir, keep_in_memory=True, max_len=32)
+ dataloader = DataLoader(dataset['train'], batch_size=32, collate_fn=dataset.collate_fn)
+ print('\nexample 2, dataset size: ', dataset.get_dataset_size('train'))
+
+ for epoch in range(2):
+ print('epoch: {}'.format(epoch))
+ for step, batch in enumerate(dataloader):
+ x, x_mask, y = batch['input_ids'], batch['input_mask'], batch['target_ids']
+ print('step:{}'.format(step), x.shape, x_mask.shape, y.shape)
+ if step == 5:
+ break
+
+
\ No newline at end of file
diff --git a/model/infer.py b/model/infer.py
new file mode 100644
index 0000000000000000000000000000000000000000..34418266e3a17676278ed2a84e5248c35f3e60b9
--- /dev/null
+++ b/model/infer.py
@@ -0,0 +1,121 @@
+import os
+from threading import Thread
+import platform
+from typing import Union
+import torch
+
+from transformers import TextIteratorStreamer,PreTrainedTokenizerFast
+from safetensors.torch import load_model
+
+from accelerate import init_empty_weights, load_checkpoint_and_dispatch
+
+# import 自定义类和函数
+from model.chat_model import TextToTextModel
+from utils.functions import get_T5_config
+
+from config import InferConfig, T5ModelConfig
+
+class ChatBot:
+ def __init__(self, infer_config: InferConfig) -> None:
+ '''
+ '''
+ self.infer_config = infer_config
+ # 初始化tokenizer
+ tokenizer = PreTrainedTokenizerFast.from_pretrained(infer_config.model_dir)
+ self.tokenizer = tokenizer
+ self.encode = tokenizer.encode_plus
+ self.batch_decode = tokenizer.batch_decode
+ self.batch_encode_plus = tokenizer.batch_encode_plus
+
+ t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
+
+ try:
+ model = TextToTextModel(t5_config)
+
+ if os.path.isdir(infer_config.model_dir):
+
+ # from_pretrained
+ model = model.from_pretrained(infer_config.model_dir)
+
+ elif infer_config.model_dir.endswith('.safetensors'):
+
+ # load safetensors
+ load_model(model, infer_config.model_dir)
+
+ else:
+
+ # load torch checkpoint
+ model.load_state_dict(torch.load(infer_config.model_dir))
+
+ self.model = model
+
+ except Exception as e:
+ print(str(e), 'transformers and pytorch load fail, try accelerate load function.')
+
+ empty_model = None
+ with init_empty_weights():
+ empty_model = TextToTextModel(t5_config)
+
+ self.model = load_checkpoint_and_dispatch(
+ model=empty_model,
+ checkpoint=infer_config.model_dir,
+ device_map='auto',
+ dtype=torch.float16,
+ )
+
+
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ self.model.to(self.device)
+
+ self.streamer = TextIteratorStreamer(tokenizer=tokenizer, clean_up_tokenization_spaces=True, skip_special_tokens=True)
+
+ def stream_chat(self, input_txt: str) -> TextIteratorStreamer:
+ '''
+ 流式对话,线程启动后可返回,通过迭代streamer获取生成的文字,仅支持greedy search
+ '''
+ encoded = self.encode(input_txt + '[EOS]')
+
+ input_ids = torch.LongTensor([encoded.input_ids]).to(self.device)
+ attention_mask = torch.LongTensor([encoded.attention_mask]).to(self.device)
+
+ generation_kwargs = {
+ 'input_ids': input_ids,
+ 'attention_mask': attention_mask,
+ 'max_seq_len': self.infer_config.max_seq_len,
+ 'streamer': self.streamer,
+ 'search_type': 'greedy',
+ }
+
+ thread = Thread(target=self.model.my_generate, kwargs=generation_kwargs)
+ thread.start()
+
+ return self.streamer
+
+ def chat(self, input_txt: Union[str, list[str]] ) -> Union[str, list[str]]:
+ '''
+ 非流式生成,可以使用beam search、beam sample等方法生成文本。
+ '''
+ if isinstance(input_txt, str):
+ input_txt = [input_txt]
+ elif not isinstance(input_txt, list):
+ raise Exception('input_txt mast be a str or list[str]')
+
+ # add EOS token
+ input_txts = [f"{txt}[EOS]" for txt in input_txt]
+ encoded = self.batch_encode_plus(input_txts, padding=True)
+ input_ids = torch.LongTensor(encoded.input_ids).to(self.device)
+ attention_mask = torch.LongTensor(encoded.attention_mask).to(self.device)
+
+ outputs = self.model.my_generate(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ max_seq_len=self.infer_config.max_seq_len,
+ search_type='greedy',
+ )
+
+ outputs = self.batch_decode(outputs.cpu().numpy(), clean_up_tokenization_spaces=True, skip_special_tokens=True)
+
+ note = "我是一个参数很少的AI模型🥺,知识库较少,无法直接回答您的问题,换个问题试试吧👋"
+ outputs = [item if len(item) != 0 else note for item in outputs]
+
+ return outputs[0] if len(outputs) == 1 else outputs
diff --git a/model/trainer.py b/model/trainer.py
new file mode 100644
index 0000000000000000000000000000000000000000..ce5c0a65ad283b1a0e994b7942ce6f4fc7f5ff1d
--- /dev/null
+++ b/model/trainer.py
@@ -0,0 +1,606 @@
+import signal
+import sys
+import os
+import time
+from typing import Union
+import platform
+
+from psutil import virtual_memory, cpu_count
+import numpy as np
+from torch.utils.data import DataLoader
+import torch
+from rich.progress import Progress, TextColumn, BarColumn, TimeElapsedColumn, TimeRemainingColumn
+from transformers import PreTrainedTokenizerFast
+from torch_optimizer import Adafactor
+
+# import accelerate
+from accelerate import Accelerator
+from accelerate.utils import set_seed
+
+# import 自定义类和函数
+from model.chat_model import TextToTextModel
+from utils.logger import Logger
+from model.dataset import MyDataset
+from config import TrainConfig, T5ModelConfig
+from utils.functions import (
+ get_bleu4_score,
+ save_model_config,
+ get_free_space_of_disk,
+ my_average,
+ get_path_of_suffix_files,
+ get_T5_config,
+)
+
+class ChatTrainer:
+ def __init__(self, train_config: TrainConfig, model_config: T5ModelConfig, ) -> None:
+
+ self.train_config = train_config
+ self.model_config = model_config
+
+ # file_name=None会自动生成以当前日期命名的log文件名
+ self.logger = Logger('chat_trainer', std_out=True, save2file=True, file_name=None)
+
+ self.model = None
+ self.accelerator = None
+
+ signal.signal(signal.SIGINT, self.process_exit_handler)
+
+ self.is_win_platform = True if platform.system().lower() == 'windows' else False
+
+ torch.manual_seed(train_config.seed)
+ torch.cuda.manual_seed_all(train_config.seed)
+
+ def process_exit_handler(self, signal_received, frame) -> None:
+ '''
+ 进程退出时的操作,保存模型
+ '''
+ if self.accelerator and self.model:
+ ask = "you are pressed `ctrl+c`, do you want to save checkpoint? Yes (y) or No (n)"
+ self.accelerator.print(ask)
+ ins = input()
+
+ if ins.lower() in ('yes', 'y'):
+
+ suffix = 'exit_save_{}'.format(str(time.strftime('%Y%m%d%H%M%S', time.localtime())))
+
+ self.accelerator.wait_for_everyone()
+ self.accelerator.save_state(output_dir=self.train_config.train_state_dir)
+
+ self.accelerator.print('model ckeck point has been saved in {}'.format(self.train_config.train_state_dir))
+
+ sys.exit(0)
+ else:
+ print('process not in trainingg, exit.')
+ sys.exit(0)
+
+ def save_model(self, suffix: Union[str, int]) -> None:
+ '''保存模型到文件
+ 注意:save_model不能放到is_main_process里面
+ e.g:
+ >>> self.save_model(epoch) # 在这里使用
+ >>> if accelerator.is_main_process:
+ >>> do_somthing()
+ '''
+ if self.model and self.accelerator:
+
+ # 先wait_for_everyone,再保存
+ self.accelerator.wait_for_everyone()
+
+ if self.accelerator.is_main_process:
+ unwrap_model = self.accelerator.unwrap_model(self.model)
+ model_dict = self.accelerator.get_state_dict(unwrap_model)
+ torch.save(model_dict, self.train_config.model_file.format(suffix))
+
+
+ def delete_early_checkpoint(self, epoch: int, keep_latest_n: int=3,) -> None:
+ '''
+ 删除最早的模型,最保留最近keep_latest_n个模型文件
+ '''
+ model_save_path = self.train_config.model_file
+ model_save_path = model_save_path.replace('\\', '/') # 针对win的路径,将\替换为/
+ model_save_path = '/'.join(model_save_path.split('/')[0: -1]) # 删除末尾文件名后缀
+
+ model_files = get_path_of_suffix_files(model_save_path, suffix='.bin', with_create_time=True)
+
+ # 进程异常退出保存模型文件不在删除范围
+ train_save_model_fils = []
+ for item in model_files:
+ if 'exit_save' not in item[0]:
+
+ # 大于当前epoch的文件不不删除
+ f_epoch = int(item[0].split('.')[-2])
+ if epoch >= f_epoch:
+ print(epoch, f_epoch, item)
+ train_save_model_fils.append(item)
+
+ train_save_model_fils.sort(key=lambda x: x[1]) # 按照时间从小到大排序
+
+ if len(train_save_model_fils) <= keep_latest_n:
+ return
+
+ to_delete_files = train_save_model_fils[0: -keep_latest_n]
+ for item in to_delete_files:
+ os.remove(item[0])
+
+
+ def train(self, is_keep_training: bool=False, is_finetune: bool=False) -> None:
+ '''
+ is_keep_training: 是否从断点处加载状态继续训练
+ is_finetune: 是否微调,微调的话可能需要冻结部分参数
+ '''
+ log = self.logger
+ train_config = self.train_config
+ save_steps = self.train_config.save_steps
+ logging_steps = self.train_config.logging_steps
+
+ # 梯度累计的步数
+ accumulation_steps = train_config.gradient_accumulation_steps
+
+ set_seed(train_config.seed)
+
+ accelerator = Accelerator(
+ mixed_precision=train_config.mixed_precision, # 混合精度
+ gradient_accumulation_steps=accumulation_steps, # 梯度累积
+ project_dir=train_config.train_state_dir,
+ )
+
+ # 根据剩余内存大小决定是否完全加载数据集到内存中
+ unuse_mem = virtual_memory().available / (1024 ** 3) # 单位:GB
+ unuse_disk = get_free_space_of_disk('./')
+
+ # 剩余内存≥48GB将把数据集留在内存中,因为2个显卡+全全部装载900多万的训练数据到内存需要大概43GB的CPU内存
+ # 如果不放在内存中,将会使用迭代器生成数据,CPU 内存小于16GB也可以运行,但是不支持顺序打乱。
+ # 多GPU keep_in_memory必须=True,否则无法进行分布式训练
+ keep_in_memory = True if unuse_mem >= 48.0 or torch.cuda.device_count() >= 2 else False
+
+ if accelerator.is_main_process:
+ log.info('cpu memory available: {:.2f} GB, disk space available: {:.2f} GB, keep dataset in memory: {}.'\
+ .format(unuse_mem, unuse_disk, keep_in_memory), save_to_file=True)
+ log.info('operation: {}, keep training: {}, loading datasets ...'.format('finetune' if is_finetune else 'train', is_keep_training))
+
+ # args for dataloader
+ num_workers = 0
+ # if not self.is_win_platform:
+ # cpu_cnt = cpu_count(logical=False)
+ # gpu_cnt = torch.cuda.device_count()
+ # if cpu_cnt >= 8 * gpu_cnt:
+ # # num_workers = 4 x number of available GPUs
+ # num_workers = int(4 * gpu_cnt)
+ # else:
+ # num_workers = int(cpu_cnt // 2)
+
+ train_dataset = MyDataset(
+ parquet_file=train_config.train_file,
+ tokenizer_dir=train_config.tokenizer_dir,
+ keep_in_memory=keep_in_memory,
+ max_seq_len=train_config.max_seq_len,
+ )
+ valid_dataset = MyDataset(
+ parquet_file=train_config.validation_file,
+ tokenizer_dir=train_config.tokenizer_dir,
+ keep_in_memory=keep_in_memory,
+ max_seq_len=train_config.max_seq_len,
+ )
+
+ batch_size = train_config.batch_size_per_gpu
+
+ train_dataloader = DataLoader(
+ train_dataset,
+ batch_size=batch_size,
+ shuffle=True,
+ collate_fn=train_dataset.collate_fn,
+ pin_memory=False,
+ num_workers=num_workers, #设置>1会导致cpu内存缓慢增涨,最后OOM,后面再研究为什么,num_workers=4,一个epoch只减少30分钟
+ )
+ valid_dataloader = DataLoader(
+ valid_dataset,
+ batch_size=batch_size,
+ shuffle=False,
+ collate_fn=valid_dataset.collate_fn,
+ pin_memory=False,
+ num_workers=num_workers,
+ )
+
+ device = accelerator.device
+ log.info('using device: {} '.format(str(device)), save_to_file=True)
+
+
+ # T5: All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
+ tokenizer = train_dataset.tokenizer
+ decoder_start_token_id = tokenizer.pad_token_id
+
+ # for t5, set decoder_start_token_id = pad_token_id
+ t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=decoder_start_token_id, eos_token_id=tokenizer.eos_token_id)
+
+ model = TextToTextModel(t5_config)
+
+ # 微调加载的模型并冻结embedding和encoder
+ if is_finetune:
+ model.load_state_dict(torch.load(train_config.finetune_from_ckp_file))
+ # print(model)
+
+ layers_to_freeze = [model.shared, model.encoder]
+
+ for layer in layers_to_freeze:
+ for param in layer.parameters():
+ param.requires_grad = False
+
+ # 保存模型配置,方便修改配置后恢复
+ save_model_config(t5_config.to_diff_dict(), train_config.model_config_file)
+
+ # T5训练,论文推荐使用Adafactor
+ optimizer = Adafactor(params=model.parameters(), lr=train_config.learn_rate)
+
+
+ # 获取当前机器有多少个GPU,默认全部使用
+ num_gpus_used = accelerator.state.num_processes
+
+ # 单机多卡,每个step总共的batch_size = batch_size_per_gpu * num_gpus_used
+ # total_batch_size 初始化为batch_size_per_gpu真的只有CPU的情况
+ total_batch_size = train_config.batch_size_per_gpu
+ if num_gpus_used >= 1:
+ total_batch_size = num_gpus_used * train_config.batch_size_per_gpu
+
+ steps_per_epoch = int(np.ceil(len(train_dataset) // total_batch_size))
+ eval_steps = int(np.ceil(len(valid_dataset) // total_batch_size))
+
+ if accelerator.is_main_process:
+ log.info('train dataset size: {}, steps per epoch:{}; validation dataset size: {}, steps per validation: {}; datalodater num_workers: {}.'\
+ .format(len(train_dataset), steps_per_epoch, len(valid_dataset), eval_steps, num_workers), save_to_file=True)
+
+
+ lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
+ optimizer=optimizer,
+ max_lr=train_config.div_factor * train_config.learn_rate,
+ epochs=train_config.epochs,
+ steps_per_epoch=int(np.ceil( len(train_dataset) / (batch_size * accumulation_steps) )), # 梯度累积相当于增大了batch_size
+ div_factor=train_config.div_factor,
+ cycle_momentum=False,
+ )
+
+ model, optimizer, lr_scheduler, train_dataloader, valid_dataloader = accelerator.prepare(
+ model,
+ optimizer,
+ lr_scheduler,
+ train_dataloader,
+ valid_dataloader,
+ )
+
+ if is_keep_training:
+ accelerator.load_state(input_dir=train_config.train_state_dir)
+ accelerator.register_for_checkpointing(lr_scheduler)
+
+ self.model = model
+ self.accelerator = accelerator
+
+ best_bleu4 = 0.0
+ best_epoch = 0
+ epoch_loss_list = []
+
+ # 添加进度条,只在主进程更新
+ if accelerator.is_main_process:
+ progress = Progress(TextColumn("[progress.description]{task.description}"),
+ BarColumn(),
+ TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
+ TimeRemainingColumn(),
+ TimeElapsedColumn(),
+ TextColumn("[bold blue]{task.fields[show_info]}"),
+ refresh_per_second=1, # 每1秒钟更新一次,不要频繁更新
+ )
+
+ epoch_progress = progress.add_task(description='epoch: ', show_info='', total=train_config.epochs)
+ steps_progress = progress.add_task(description='steps: ', show_info='', \
+ total=np.ceil(steps_per_epoch / logging_steps))
+ eval_progress = progress.add_task(description='evaluate: ', show_info='', total=eval_steps, visible=False)
+
+ self.progress = progress
+ self.eval_progress = eval_progress
+
+ progress.start()
+
+ # end if
+
+ for epoch in range(train_config.epochs):
+
+ if accelerator.is_main_process:
+ epoch_show_txt = 'epoch: {}/{}, avg_loss: {:.6f}, best_epoch: {}, best_bleu: {}'.format(
+ epoch, train_config.epochs, my_average(epoch_loss_list), best_epoch, best_bleu4
+ )
+ progress.update(epoch_progress, show_info=epoch_show_txt)
+ progress.reset(steps_progress)
+
+ epoch_loss_list = []
+ model.train()
+
+ # torch.cuda.empty_cache()
+
+ for step, batch_data in enumerate(train_dataloader):
+
+ input_ids, input_mask = batch_data['input_ids'], batch_data['input_mask']
+ target_ids = batch_data['target_ids']
+ # for t5 model, all labels set to `-100` are ignored (masked)
+ target_ids[target_ids == decoder_start_token_id] = -100
+
+ outputs = model(
+ input_ids=input_ids,
+ attention_mask=input_mask,
+ labels=target_ids,
+ )
+
+ loss = outputs.loss.mean() / accumulation_steps
+
+ # attention here! loss.backward()
+ accelerator.backward(loss)
+
+ # 梯度累计
+ if (step + 1) % accumulation_steps == 0:
+ accelerator.clip_grad_norm_(model.parameters(), 1.0)
+
+ optimizer.step()
+ lr_scheduler.step()
+ optimizer.zero_grad()
+
+ # 每隔save_steps步保存一次模型
+ if (step + 1) % save_steps == 0 or step == steps_per_epoch:
+ self.save_model('epoch_{}_latest'.format(epoch))
+ accelerator.save_state(output_dir=train_config.train_state_dir)
+
+ # ==================================以下记录loss到日志============================================
+ # 每n步更新一次,避免频繁的cpu-gpu数据复制
+ # 参考:https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-cpu-gpu-synchronization
+
+ if step % logging_steps == 0 or step == steps_per_epoch:
+
+ loss_cpu = loss.detach().item() * accumulation_steps
+ epoch_loss_list.append(loss_cpu)
+
+ info_txt = 'training loss: epoch:{}, step:{}, loss:{}, device:{}'.\
+ format(epoch, step, loss_cpu, str(accelerator.device))
+
+ log.info(info_txt, std_out=False, save_to_file=True) # 保存 loss 到文件
+
+ # 更新进度条
+ if accelerator.is_main_process:
+ step_show_txt = 'step: {}/{}, loss: {:.6f}'.format(step, steps_per_epoch, loss_cpu)
+ progress.advance(steps_progress, advance=1)
+ progress.update(steps_progress, show_info=step_show_txt)
+
+ # ==================================以上记录loss到日志============================================
+
+ # if step >= 20:break
+
+ # end for batch setps
+
+ model.eval()
+
+ cur_bleu4_score = self.evaluate(
+ model=model,
+ tokenizer=tokenizer,
+ valid_dataloader=valid_dataloader,
+ accelerator=accelerator,
+ eval_steps=eval_steps,
+ )
+
+ # save model
+ if cur_bleu4_score >= best_bleu4:
+
+ best_bleu4 = cur_bleu4_score
+ best_epoch = epoch
+ # 最多保存最近keep_latest_n_ckp个模型文件
+ # self.delete_early_checkpoint(epoch=epoch, keep_latest_n=train_config.keep_latest_n_ckp)
+ self.save_model('best')
+ accelerator.save_state(output_dir=train_config.train_state_dir)
+
+ # 每个epoch打印一下日志
+ if accelerator.is_main_process:
+
+ progress.advance(epoch_progress, advance=1)
+ info_txt = 'epoch log: epoch:{}, avg_loss:{}, cur_bleu4:{}, best_bleu4:{}, best_epoch:{}'.\
+ format(epoch, my_average(epoch_loss_list), cur_bleu4_score, best_bleu4, best_epoch)
+ # log.info(info_txt, std_out=True, save_to_file=True)
+ self.print_and_log(info_txt, accelerator)
+
+
+ def evaluate(self,
+ model: TextToTextModel,
+ tokenizer: PreTrainedTokenizerFast,
+ valid_dataloader: DataLoader,
+ accelerator: Accelerator,
+ eval_steps: int,
+ ) -> float:
+
+ '''
+ 评估,返回平均的bleu分数
+ '''
+ max_seq_len = self.train_config.max_seq_len
+ batch_decode = tokenizer.batch_decode
+ bleu4_scores = []
+
+ if accelerator.is_main_process:
+ self.progress.reset(self.eval_progress)
+ self.progress.update(self.eval_progress, visible=True)
+
+ with torch.no_grad():
+ for step, batch_data in enumerate(valid_dataloader):
+
+ if accelerator.is_main_process:
+ self.progress.advance(self.eval_progress, advance=1)
+ self.progress.update(self.eval_progress, show_info='step: {}/{}'.format(step, eval_steps))
+
+ input_ids, input_mask = batch_data['input_ids'], batch_data['input_mask']
+ target_ids = batch_data['target_ids']
+
+ outputs = accelerator.unwrap_model(model).my_generate(
+ input_ids=input_ids,
+ attention_mask=input_mask,
+ max_seq_len=max_seq_len,
+ )
+
+ # gather data from multi-gpus (used when in ddp mode)
+ outputs = accelerator.gather_for_metrics(outputs).detach().cpu().numpy()
+ target_ids = accelerator.gather_for_metrics(target_ids).detach().cpu().numpy()
+
+ outputs = batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False)
+ target_ids = batch_decode(target_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
+
+ # print(outputs, target_ids)
+
+ bleu4_scores = [get_bleu4_score(reference=target_ids[i], outputs=outputs[i]) for i in range(len(target_ids))]
+ bleu4_scores.extend(bleu4_scores)
+
+ # if step >= 5: break
+
+ avg_bleu4_score = my_average(bleu4_scores)
+ if accelerator.is_main_process:
+ self.progress.update(self.eval_progress, show_info='bleu4 score: {}'.format(avg_bleu4_score))
+ self.progress.update(self.eval_progress, visible=False)
+
+ return avg_bleu4_score
+
+ def test(self, best_epoch: int=0) -> None:
+ '''
+ '''
+ import os
+
+ train_config = self.train_config
+ log = self.logger
+
+ # args for dataloader
+ num_workers = 0 if self.is_win_platform else 4
+
+ test_dataset = MyDataset(
+ parquet_file=train_config.train_file,
+ tokenizer_dir=train_config.tokenizer_dir,
+ keep_in_memory=False if self.is_win_platform else True,
+ max_seq_len=train_config.max_seq_len,
+ )
+
+ test_dataloader = DataLoader(
+ test_dataset,
+ batch_size=train_config.batch_size_per_gpu,
+ shuffle=False,
+ collate_fn=test_dataset.collate_fn,
+ pin_memory=False,
+ num_workers=num_workers,
+ )
+
+ log.info('test dataset size: {}.'.format(len(test_dataset)), save_to_file=True)
+
+ set_seed(train_config.seed)
+ accelerator = Accelerator(mixed_precision=train_config.mixed_precision)
+ device = accelerator.device
+ log.info('using device: {} '.format(str(device)), save_to_file=True)
+
+ # 获取当前运行使用了多少个GPU
+ num_gpus_used = accelerator.state.num_processes
+
+ # 单机多卡,每个step总共的batch_size = batch_size_per_gpu * num_gpus_used
+ # total_batch_size 初始化为batch_size_per_gpu真的只有CPU的情况
+ total_batch_size = train_config.batch_size_per_gpu
+ if num_gpus_used >= 1:
+ total_batch_size = num_gpus_used * train_config.batch_size_per_gpu
+
+ # T5: All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
+ tokenizer = test_dataset.tokenizer
+
+ model_file = train_config.model_file.format(best_epoch)
+ if os.path.isdir(model_file):
+ # 传入文件夹则 from_pretrained
+ model = TextToTextModel.from_pretrained(model_file)
+ else:
+ # load_state_dict
+ t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
+ model = TextToTextModel(t5_config)
+ model.load_state_dict(torch.load(model_file, map_location='cpu')) # set cpu for no exception
+
+ model, test_dataloader = accelerator.prepare(
+ model,
+ test_dataloader,
+ )
+
+ steps = int(np.ceil(len(test_dataset) // total_batch_size))
+
+ bleu4 = 0.0
+ bleu4_scores = []
+ batch_decode = tokenizer.batch_decode
+ max_seq_len = self.train_config.max_seq_len
+ model.eval()
+
+ if accelerator.is_main_process:
+ progress = Progress(TextColumn("[progress.description]{task.description}"),
+ BarColumn(),
+ TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
+ TimeRemainingColumn(),
+ TimeElapsedColumn(),
+ TextColumn("[bold blue]{task.fields[show_info]}"),
+ refresh_per_second=1.0,
+ )
+
+ steps_progress = progress.add_task(description='steps: ', show_info='', total=steps)
+ progress.start()
+
+ with torch.no_grad():
+ for step, batch_data in enumerate(test_dataloader):
+
+ if accelerator.is_main_process:
+ progress.advance(steps_progress, advance=1)
+ progress.update(steps_progress, show_info='step: {}/{}'.format(step, steps))
+
+ input_ids, input_mask = batch_data['input_ids'], batch_data['input_mask']
+ target_ids = batch_data['target_ids']
+
+ # s = time.time()
+ outputs = accelerator.unwrap_model(model).my_generate(
+ input_ids=input_ids,
+ attention_mask=input_mask,
+ max_seq_len=max_seq_len,
+ )
+ # accelerator.print('generate used: {}'.format(time.time() - s))
+
+ # gather data from multi-gpus (used when in ddp mode)
+ outputs = accelerator.gather_for_metrics(outputs).cpu().numpy()
+ target_ids = accelerator.gather_for_metrics(target_ids).cpu().numpy()
+
+ outputs = batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False)
+ target_ids = batch_decode(target_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
+
+ # print('outputs: {}'.format(outputs[0:5]))
+ # print('target_ids: {}'.format(target_ids[0:5]))
+ # print()
+
+
+ bleu4_scores = [get_bleu4_score(reference=target_ids[i], outputs=outputs[i]) for i in range(len(target_ids))]
+ bleu4_scores.extend(bleu4_scores)
+
+ # if step >= 10: break
+
+ avg_bleu4_score = my_average(bleu4_scores)
+ if accelerator.is_main_process:
+ progress.update(steps_progress, show_info='bleu4 score: {}'.format(avg_bleu4_score))
+
+ info_txt = 'test_dataset_size: {}, avg_bleu4_score:{}.'.format(len(test_dataset), avg_bleu4_score)
+ log.info(info_txt, save_to_file=True)
+
+ return avg_bleu4_score
+
+
+ def print_and_log(self, info: str, accelerator: Accelerator=None) -> None:
+ '''
+ 使用accelerator.print, 否则多进程打印会异常
+ '''
+ if not accelerator:
+ print(info)
+ else:
+ accelerator.print(info)
+ self.logger.info(info, std_out=False, save_to_file=True)
+
+if __name__ == '__main__':
+
+ # trainer = ChatTrainer()
+ train_config = TrainConfig()
+ model_config = T5ModelConfig()
+
+ chat_trainer = ChatTrainer(train_config=train_config, model_config=model_config)
+
+ chat_trainer.train()
+ # chat_trainer.test(best_epoch=0)
\ No newline at end of file
diff --git a/model_save/.gitattributes b/model_save/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..a6344aac8c09253b3b630fb776ae94478aa0275b
--- /dev/null
+++ b/model_save/.gitattributes
@@ -0,0 +1,35 @@
+*.7z filter=lfs diff=lfs merge=lfs -text
+*.arrow filter=lfs diff=lfs merge=lfs -text
+*.bin filter=lfs diff=lfs merge=lfs -text
+*.bz2 filter=lfs diff=lfs merge=lfs -text
+*.ckpt filter=lfs diff=lfs merge=lfs -text
+*.ftz filter=lfs diff=lfs merge=lfs -text
+*.gz filter=lfs diff=lfs merge=lfs -text
+*.h5 filter=lfs diff=lfs merge=lfs -text
+*.joblib filter=lfs diff=lfs merge=lfs -text
+*.lfs.* filter=lfs diff=lfs merge=lfs -text
+*.mlmodel filter=lfs diff=lfs merge=lfs -text
+*.model filter=lfs diff=lfs merge=lfs -text
+*.msgpack filter=lfs diff=lfs merge=lfs -text
+*.npy filter=lfs diff=lfs merge=lfs -text
+*.npz filter=lfs diff=lfs merge=lfs -text
+*.onnx filter=lfs diff=lfs merge=lfs -text
+*.ot filter=lfs diff=lfs merge=lfs -text
+*.parquet filter=lfs diff=lfs merge=lfs -text
+*.pb filter=lfs diff=lfs merge=lfs -text
+*.pickle filter=lfs diff=lfs merge=lfs -text
+*.pkl filter=lfs diff=lfs merge=lfs -text
+*.pt filter=lfs diff=lfs merge=lfs -text
+*.pth filter=lfs diff=lfs merge=lfs -text
+*.rar filter=lfs diff=lfs merge=lfs -text
+*.safetensors filter=lfs diff=lfs merge=lfs -text
+saved_model/**/* filter=lfs diff=lfs merge=lfs -text
+*.tar.* filter=lfs diff=lfs merge=lfs -text
+*.tar filter=lfs diff=lfs merge=lfs -text
+*.tflite filter=lfs diff=lfs merge=lfs -text
+*.tgz filter=lfs diff=lfs merge=lfs -text
+*.wasm filter=lfs diff=lfs merge=lfs -text
+*.xz filter=lfs diff=lfs merge=lfs -text
+*.zip filter=lfs diff=lfs merge=lfs -text
+*.zst filter=lfs diff=lfs merge=lfs -text
+*tfevents* filter=lfs diff=lfs merge=lfs -text
diff --git a/model_save/README.md b/model_save/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..c2408b804c8e73e51af6d9d1d9e9506f107963e3
--- /dev/null
+++ b/model_save/README.md
@@ -0,0 +1,436 @@
+---
+license: apache-2.0
+datasets:
+- BelleGroup/train_3.5M_CN
+- wangrui6/Zhihu-KOL
+language:
+- zh
+library_name: transformers
+pipeline_tag: text-generation
+metrics:
+- perplexity
+- bleu
+tags:
+- text-generation-inference
+---
+
+
+
+# 中文对话0.2B小模型 ChatLM-Chinese-0.2B
+
+中文 | [English](https://github.com/charent/ChatLM-mini-Chinese/blob/main/README.en.md)
+
+
+
+最新的readme文档请移步Github仓库[ChatLM-mini-Chinese](https://github.com/charent/ChatLM-mini-Chinese)
+
+# 一、👋介绍
+
+现在的大语言模型的参数往往较大,消费级电脑单纯做推理都比较慢,更别说想自己从头开始训练一个模型了。本项目的目标是整理生成式语言模型的训练流程,包括数据清洗、tokenizer训练、模型预训练、SFT指令微调、RLHF优化等。
+
+ChatLM-mini-Chinese为中文对话小模型,模型参数只有0.2B(算共享权重约210M),可以在最低4GB显存的机器进行预训练(`batch_size=1`,`fp16`或者` bf16`),`float16`加载、推理最少只需要512MB显存。
+
+
+- 公开所有预训练、SFT指令微调、DPO偏好优化数据集来源。
+- 使用`Huggingface`NLP框架,包括`transformers`、`accelerate`、`trl`、`peft`等。
+- 自实现`trainer`,支持单机单卡、单机多卡进行预训练、SFT微调。训练过程中支持在任意位置停止,及在任意位置继续训练。
+- 预训练:整合为端到端的`Text-to-Text`预训练,非`mask`掩码预测预训练。
+ - 开源所有数据清洗(如规范化、基于mini_hash的文档去重等)、数据集构造、数据集加载优化等流程;
+ - tokenizer多进程词频统计,支持`sentencepiece`、`huggingface tokenizers`的tokenizer训练;
+ - 预训练支持任意位置断点,可从断点处继续训练;
+ - 大数据集(GB级别)流式加载、支持缓冲区数据打乱,不利用内存、硬盘作为缓存,有效减少内存、磁盘占用。配置`batch_size=1, max_len=320`下,最低支持在16GB内存+4GB显存的机器上进行预训练;
+ - 训练日志记录。
+- SFT微调:开源SFT数据集及数据处理过程。
+ - 自实现`trainer`支持prompt指令微调, 支持任意断点继续训练;
+ - 支持`Huggingface trainer`的`sequence to sequence`微调;
+ - 支持传统的低学习率,只训练decoder层的微调。
+- 偏好优化:使用DPO进行全量偏好优化。
+ - 支持使用`peft lora`进行偏好优化;
+ - 支持模型合并,可将`Lora adapter`合并到原始模型中。
+- 支持下游任务微调:[finetune_examples](https://github.com/charent/ChatLM-mini-Chinese/blob/main/finetune_examples/info_extract/finetune_IE_task.ipynb)给出**三元组信息抽取任务**的微调示例,微调后的模型对话能力仍在。
+
+🟢**最近更新**
+
+
+ 2024-01-07
+- 添加数据清洗过程中基于mini hash实现的文档去重(在本项目中其实数据集的样本去重),防止模型遇到多次重复数据后,在推理时吐出训练数据。
+- 添加`DropDatasetDuplicate`类实现对大数据集的文档去重。
+
+
+
+ 2023-12-29
+- 更新模型代码(权重不变),可以直接使用`AutoModelForSeq2SeqLM.from_pretrained(...)`加载模型使用。
+- 更新readme文档。
+
+
+
+ 2023-12-18
+- 补充利用`ChatLM-mini-0.2B`模型微调下游三元组信息抽取任务代码及抽取效果展示 。
+- 更新readme文档。
+
+
+
+ 2023-12-14
+- 更新SFT、DPO后的模型权重文件。
+- 更新预训练、SFT及DPO脚本。
+- 更新`tokenizer`为`PreTrainedTokenizerFast`。
+- 重构`dataset`代码,支持动态最大长度,每个批次的最大长度由该批次的最长文本决定,节省显存。
+- 补充`tokenizer`训练细节。
+
+
+
+ 2023-12-04
+- 更新`generate`参数及模型效果展示。
+- 更新readme文档。
+
+
+
+ 2023-11-28
+- 更新dpo训练代码及模型权重。
+
+
+
+ 2023-10-19
+- 项目开源, 开放模型权重供下载。
+
+
+
+# 二、🛠️ChatLM-0.2B-Chinese模型训练过程
+
+## 2.1 预训练数据集
+所有数据集均来自互联网公开的**单轮对话**数据集,经过数据清洗、格式化后保存为parquet文件。数据处理过程见`utils/raw_data_process.py`。主要数据集包括:
+
+1. 社区问答json版webtext2019zh-大规模高质量数据集,见:[nlp_chinese_corpus](https://github.com/brightmart/nlp_chinese_corpus)。共410万,清洗后剩余260万。
+2. baike_qa2019百科类问答,见:,共140万,清醒后剩余130万。
+3. 中国医药领域问答数据集,见:[Chinese-medical-dialogue-data](https://github.com/Toyhom/Chinese-medical-dialogue-data),共79万,清洗后剩余79万。
+4. ~~金融行业问答数据,见:,共77万,清洗后剩余52万。~~**数据质量太差,未采用。**
+5. 知乎问答数据,见:[Zhihu-KOL](https://huggingface.co/datasets/wangrui6/Zhihu-KOL),共100万行,清洗后剩余97万行。
+6. belle开源的指令训练数据,介绍:[BELLE](https://github.com/LianjiaTech/BELLE),下载:[BelleGroup](https://huggingface.co/BelleGroup),仅选取`Belle_open_source_1M`、`train_2M_CN`、及`train_3.5M_CN`中部分回答较短、不含复杂表格结构、翻译任务(没做英文词表)的数据,共370万行,清洗后剩余338万行。
+7. 维基百科(Wikipedia)词条数据,将词条拼凑为提示语,百科的前`N`个词为回答,使用`202309`的百科数据,清洗后剩余119万的词条提示语和回答。Wiki下载:[zhwiki](https://dumps.wikimedia.org/zhwiki/),将下载的bz2文件转换为wiki.txt参考:[WikiExtractor](https://github.com/apertium/WikiExtractor)。
+
+数据集总数量1023万:Text-to-Text预训练集:930万,评估集:2.5万(因为解码较慢,所以没有把评估集设置太大)。~~测试集:90万。~~
+SFT微调和DPO优化数据集见下文。
+
+## 2.2 模型
+T5模型(Text-to-Text Transfer Transformer),详情见论文: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683)。
+
+模型源码来自huggingface,见:[T5ForConditionalGeneration](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L1557)。
+
+模型配置见[model_config.json](https://huggingface.co/charent/ChatLM-mini-Chinese/blob/main/config.json),官方的`T5-base`:`encoder layer`和`decoder layer `均为为12层,本项目这两个参数修改为10层。
+
+模型参数:0.2B。词表大小:29298,仅包含中文和少量英文。
+
+## 2.3 训练过程
+硬件:
+```bash
+# 预训练阶段:
+CPU: 28 vCPU Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
+内存:60 GB
+显卡:RTX A5000(24GB) * 2
+
+# sft及dpo阶段:
+CPU: Intel(R) i5-13600k @ 5.1GHz
+内存:32 GB
+显卡:NVIDIA GeForce RTX 4060 Ti 16GB * 1
+```
+1. **tokenizer 训练**: 现有`tokenizer`训练库遇到大语料时存在OOM问题,故全量语料按照类似`BPE`的方法根据词频合并、构造词库,运行耗时半天。
+
+2. **Text-to-Text 预训练**:学习率为`1e-4`到`5e-3`的动态学习率,预训练时间为8天。
+
+3. **prompt监督微调(SFT)**:使用`belle`指令训练数据集(指令和回答长度都在512以下),学习率为`1e-7`到`5e-5`的动态学习率,微调时间2天。
+
+4. **dpo直接偏好优化**:数据集[alpaca-gpt4-data-zh](https://huggingface.co/datasets/c-s-ale/alpaca-gpt4-data-zh)作为`chosen`文本,步骤`2`中SFT模型对数据集中的prompt做批量`generate`,得到`rejected`文本,耗时1天,dpo全量偏好优化,学习率`le-5`,半精度`fp16`,共`2`个`epoch`,耗时3h。
+
+## 2.4 对话效果展示
+### 2.4.1 stream chat
+默认使用`huggingface transformers`的 `TextIteratorStreamer`实现流式对话,只支持`greedy search`,如果需要`beam sample`等其他生成方式,请将`cli_demo.py`的`stream_chat`参数修改为`False`。
+
+请移步Github仓库[ChatLM-mini-Chinese](https://github.com/charent/ChatLM-mini-Chinese)
+
+### 2.4.2 对话展示
+![showpng][showpng1]
+
+存在问题:预训练数据集只有900多万,模型参数也仅0.2B,不能涵盖所有方面,会有答非所问、废话生成器的情况。
+
+# 三、📑使用说明
+
+## 3.1 快速开始:
+```python
+from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
+import torch
+
+model_id = 'charent/ChatLM-mini-Chinese'
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+
+tokenizer = AutoTokenizer.from_pretrained(model_id)
+model = AutoModelForSeq2SeqLM.from_pretrained(model_id, trust_remote_code=True).to(device)
+
+txt = '如何评价Apple这家公司?'
+
+encode_ids = tokenizer([txt])
+input_ids, attention_mask = torch.LongTensor(encode_ids['input_ids']), torch.LongTensor(encode_ids['attention_mask'])
+
+outs = model.my_generate(
+ input_ids=input_ids.to(device),
+ attention_mask=attention_mask.to(device),
+ max_seq_len=256,
+ search_type='beam',
+)
+
+outs_txt = tokenizer.batch_decode(outs.cpu().numpy(), skip_special_tokens=True, clean_up_tokenization_spaces=True)
+print(outs_txt[0])
+```
+```txt
+Apple是一家专注于设计和用户体验的公司,其产品在设计上注重简约、流畅和功能性,而在用户体验方面则注重用户的反馈和使用体验。作为一家领先的科技公司,苹果公司一直致力于为用户提供最优质的产品和服务,不断推陈出新,不断创新和改进,以满足不断变化的市场需求。
+在iPhone、iPad和Mac等产品上,苹果公司一直保持着创新的态度,不断推出新的功能和设计,为用户提供更好的使用体验。在iPad上推出的iPad Pro和iPod touch等产品,也一直保持着优秀的用户体验。
+此外,苹果公司还致力于开发和销售软件和服务,例如iTunes、iCloud和App Store等,这些产品在市场上也获得了广泛的认可和好评。
+总的来说,苹果公司在设计、用户体验和产品创新方面都做得非常出色,为用户带来了许多便利和惊喜。
+
+```
+
+## 3.2 从克隆仓库代码开始
+
+### 3.2.1 克隆项目:
+```bash
+git clone --depth 1 https://github.com/charent/ChatLM-mini-Chinese.git
+
+cd ChatLM-mini-Chinese
+```
+### 3.2.2 安装依赖
+
+本项目推荐使用`python 3.10`,过老的python版本可能不兼容所依赖的第三方库。
+
+pip安装:
+```bash
+pip install -r ./requirements.txt
+```
+
+如果pip安装了CPU版本的pytorch,可以通过下面的命令安装CUDA版本的pytorch:
+```bash
+# pip 安装torch + cu118
+pip3 install torch --index-url https://download.pytorch.org/whl/cu118
+```
+
+conda安装:
+```bash
+conda install --yes --file ./requirements.txt
+```
+
+### 3.2.3 下载预训练模型及模型配置文件
+
+从`Hugging Face Hub`下载模型权重及配置文件,需要先安装[Git LFS](https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large-file-storage),然后运行:
+
+```bash
+git clone --depth 1 https://huggingface.co/charent/ChatLM-mini-Chinese
+
+mv ChatLM-Chinese-0.2B model_save
+```
+
+也可以直接从`Hugging Face Hub`仓库[ChatLM-Chinese-0.2B](https://huggingface.co/charent/ChatLM-mini-Chinese)手工下载,将下载的文件移动到`model_save`目录下即可。
+
+## 3.3 Tokenizer训练
+
+原本打算直接用现成的`tokenizer`库训练的(如`sentencepiece`),但是数据集一大就容易OOM。另外预训练数据集各个领域的语料不平衡,会产生很多不必要的合并。最后使用`jieba`分词对所有的预训练语料切词后统计词频,只保留出现1500次以上的字、词,参照`PreTrainedTokenizerFast`的`BPE model`的保存格式,构造`tokenzier`,最后转换为`PreTrainedTokenizerFast`。核心代码如下,详细的处理过程见`utils/train_tokenizer.py`。
+
+```python
+# 构造merge数组
+words_merge_list = []
+for word in words_dict.keys():
+ n = len(word)
+ if n >= 2:
+ # a, b切分12345示例: 1 2345, 12 345, 123 45, 1234 5
+ for i in range(1, n):
+ a, b = ''.join(word[0: i]), ''.join(word[i: ])
+
+ if a in words_dict and b in words_dict:
+ words_merge_list.append((a, b))
+```
+本项目还提供了使用预训练模型自带的`tokenizer`根据自己的语料重新训练`tokenizer`的例子,见`train_tokenizer.ipynb`。注意,重新训练`tokenizer`后,预训练模型的权重将无法使用,需要重新训练模型权重,因为`token`对应的`id`变了。
+
+## 3.4 Text-to-Text 预训练
+
+1. 预训练数据集示例
+```json
+{
+ "prompt": "对于花园街,你有什么了解或看法吗?",
+ "response": "花园街(是香港油尖旺区的一条富有特色的街道,位于九龙旺角东部,北至界限街,南至登打士街,与通菜街及洗衣街等街道平行。现时这条街道是香港著名的购物区之一。位于亚皆老街以南的一段花园街,也就是\"波鞋街\"整条街约150米长,有50多间售卖运动鞋和运动用品的店舖。旺角道至太子道西一段则为排档区,售卖成衣、蔬菜和水果等。花园街一共分成三段。明清时代,花园街是芒角村栽种花卉的地方。此外,根据历史专家郑宝鸿的考证:花园街曾是1910年代东方殷琴拿烟厂的花园。纵火案。自2005年起,花园街一带最少发生5宗纵火案,当中4宗涉及排档起火。2010年。2010年12月6日,花园街222号一个卖鞋的排档于凌晨5时许首先起火,浓烟涌往旁边住宅大厦,消防接报4"
+}
+```
+
+2. jupyter-lab 或者 jupyter notebook:
+
+ 见文件`train.ipynb`,推荐使用jupyter-lab,避免考虑与服务器断开后终端进程被杀的情况。
+
+3. 控制台:
+
+ 控制台训练需要考虑连接断开后进程被杀的,推荐使用进程守护工具`Supervisor`或者`screen`建立连接会话。
+
+ 首先要配置`accelerate`,执行以下命令, 根据提示选择即可,参考`accelerate.yaml`,*注意:DeepSpeed在Windows安装比较麻烦*。
+ ``` bash
+ accelerate config
+ ```
+
+ 开始训练,如果要使用工程提供的配置请在下面的命令`accelerate launch`后加上参数`--config_file ./accelerate.yaml`,*该配置按照单机2xGPU配置。*
+
+ *预训练有两个脚本,本项目实现的trainer对应`train.py`,huggingface实现的trainer对应`pre_train.py`,用哪个都可以,效果一致。本项目实现的trainer训练信息展示更美观、更容易修改训练细节(如损失函数,日志记录等),均支持断点继续训练,本项目实现的trainer支持在任意位置断点后继续训练,按`ctrl+c`退出脚本时会保存断点信息。*
+
+ 单机单卡:
+ ``` bash
+ # 本项目实现的trainer
+ accelerate launch ./train.py train
+
+ # 或者使用 huggingface trainer
+ python pre_train.py
+ ```
+
+ 单机多卡:
+ ``` bash
+ # 本项目实现的trainer
+ accelerate launch --multi_gpu --num_processes 2 ./train.py train
+
+ # 或者使用 huggingface trainer
+ python pre_train.py
+ ```
+
+ 从断点处继续训练:
+ ```
+ # 本项目实现的trainer
+ accelerate launch --multi_gpu --num_processes 2 ./train.py train --is_keep_training=True
+
+ # 或者使用 huggingface trainer
+ # 需要在`pre_train.py`中的`train`函数添加`resume_from_checkpoint=True`
+ python pre_train.py
+ ```
+
+## 3.5 SFT微调
+SFT数据集全部来自[BELLE](https://github.com/LianjiaTech/BELLE)大佬的贡献,感谢。SFT数据集分别为:[generated_chat_0.4M](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)、[train_0.5M_CN](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)和[train_2M_CN](https://huggingface.co/datasets/BelleGroup/train_2M_CN),清洗后剩余约137万行。
+sft指令微调数据集示例:
+```json
+{
+ "prompt": "解释什么是欧洲启示录",
+ "response": "欧洲启示录(The Book of Revelation)是新约圣经的最后一卷书,也被称为《启示录》、《默示录》或《约翰默示录》。这本书从宗教的角度描述了世界末日的来临,以及上帝对世界的审判和拯救。 书中的主题包括来临的基督的荣耀,上帝对人性的惩罚和拯救,以及魔鬼和邪恶力量的存在。欧洲启示录是一个充满象征和暗示的文本,对于解读和理解有许多不同的方法和观点。"
+}
+```
+
+参考`data`目录下的示例`parquet`文件制作自己的数据集,数据集格式:`parquet`文件分两列,一列`prompt`文本,表示提示语,一列`response`文本,表示期待的模型输出。
+微调细节见`model/trainer.py`下的`train`方法, `is_finetune`设置为`True`时,将进行微调,微调默认会冻结embedding层和encoder层,只训练decoder层。如需要冻结其他参数,请自行调整代码。
+
+运行SFT微调:
+``` bash
+# 本项目实现的trainer, 添加参数`--is_finetune=True`即可, 参数`--is_keep_training=True`可从任意断点处继续训练
+accelerate launch --multi_gpu --num_processes 2 ./train.py --is_finetune=True
+
+# 或者使用 huggingface trainer
+python sft_train.py
+```
+
+## 3.6 RLHF(强化学习人类反馈优化方法)
+
+偏好方法这里介绍常见的两种:PPO和DPO,具体实现请自行搜索论文及博客。
+
+1. PPO方法(近似偏好优化,Proximal Policy Optimization)
+ 步骤1:使用微调数据集做有监督微调(SFT, Supervised Finetuning)。
+ 步骤2:使用偏好数据集(一个prompt至少包含2个回复,一个想要的回复,一个不想要的回复。多个回复可以按照分数排序,最想要的分数最高)训练奖励模型(RM, Reward Model)。可使用`peft`库快速搭建Lora奖励模型。
+ 步骤3:利用RM对SFT模型进行有监督PPO训练,使得模型满足偏好。
+
+2. 使用DPO(直接偏好优化,Direct Preference Optimization)微调(**本项目采用DPO微调方法,比较节省显存**)
+ 在获得SFT模型的基础上,无需训练奖励模型,取得正向回答(chosen)和负向回答(rejected)即可开始微调。微调的`chosen`文本来自原数据集[alpaca-gpt4-data-zh](https://huggingface.co/datasets/c-s-ale/alpaca-gpt4-data-zh),拒绝文本`rejected`来自SFT微调1个epoch后的模型输出,另外两个数据集:[huozi_rlhf_data_json](https://huggingface.co/datasets/Skepsun/huozi_rlhf_data_json)和[rlhf-reward-single-round-trans_chinese](https://huggingface.co/datasets/beyond/rlhf-reward-single-round-trans_chinese),合并后共8万条dpo数据。
+
+ dpo数据集处理过程见`utils/dpo_data_process.py`。
+
+DPO偏好优化数据集示例:
+```json
+ {
+ "prompt": "为给定的产品创建一个创意标语。,输入:可重复使用的水瓶。",
+ "chosen": "\"保护地球,从拥有可重复使用的水瓶开始!\"",
+ "rejected": "\"让你的水瓶成为你的生活伴侣,使用可重复使用的水瓶,让你的水瓶成为你的伙伴\""
+ }
+```
+
+运行偏好优化:
+``` bash
+python dpo_train.py
+```
+
+## 3.7 推理
+确保`model_save`目录下有以下文件:
+```bash
+ChatLM-mini-Chinese
+├─model_save
+| ├─chat_model.py
+| ├─chat_model_config.py
+| ├─config.json
+| ├─generation_config.json
+| ├─model.safetensors
+| ├─special_tokens_map.json
+| ├─tokenizer.json
+| └─tokenizer_config.json
+```
+
+1. 控制台运行:
+```bash
+python cli_demo.py
+```
+
+2. API调用
+```bash
+python api_demo.py
+```
+
+API调用示例:
+```bash
+curl --location '127.0.0.1:8812/api/chat' \
+--header 'Content-Type: application/json' \
+--header 'Authorization: Bearer Bearer' \
+--data '{
+ "input_txt": "感冒了要怎么办"
+}'
+```
+
+## 3.8 下游任务微调
+
+这里以文本中三元组信息为例,做下游微调。该任务的传统深度学习抽取方法见仓库[pytorch_IE_model](https://github.com/charent/pytorch_IE_model)。抽取出一段文本中所有的三元组,如句子`《写生随笔》是冶金工业2006年出版的图书,作者是张来亮`,抽取出三元组`(写生随笔,作者,张来亮)`和`(写生随笔,出版社,冶金工业)`。
+
+原始数据集为:[百度三元组抽取数据集](https://aistudio.baidu.com/datasetdetail/11384)。加工得到的微调数据集格式示例:
+```json
+{
+ "prompt": "请抽取出给定句子中的所有三元组。给定句子:《家乡的月亮》是宋雪莱演唱的一首歌曲,所属专辑是《久违的哥们》",
+ "response": "[(家乡的月亮,歌手,宋雪莱),(家乡的月亮,所属专辑,久违的哥们)]"
+}
+```
+
+可以直接使用`sft_train.py`脚本进行微调,脚本[finetune_IE_task.ipynb](.https://github.com/charent/ChatLM-mini-Chinese/blob/main/finetune_examples/info_extract/finetune_IE_task.ipynb)里面包含详细的解码过程。训练数据集约`17000`条,学习率`5e-5`,训练epoch`5`。微调后其他任务的对话能力也没有消失。
+
+![信息抽取任务微调后的对话能力][ie_task_chat]
+
+微调效果:
+将`百度三元组抽取数据集`公开的`dev`数据集作为测试集,对比传统方法[pytorch_IE_model](https://github.com/charent/pytorch_IE_model)。
+
+| 模型 | F1分数 | 精确率P | 召回率R |
+| :--- | :----: | :---: | :---: |
+| ChatLM-Chinese-0.2B微调 | 0.74 | 0.75 | 0.73 |
+| ChatLM-Chinese-0.2B无预训练| 0.51 | 0.53 | 0.49 |
+| 传统深度学习方法 | 0.80 | 0.79 | 80.1 |
+
+备注:`ChatLM-Chinese-0.2B无预训练`指直接初始化随机参数,开始训练,学习率`1e-4`,其他参数和微调一致。
+
+# 四、🎓引用
+如果你觉得本项目对你有所帮助,欢迎引用。
+```conf
+@misc{Charent2023,
+ author={Charent Chen},
+ title={A small chinese chat language model with 0.2B parameters base on T5},
+ year={2023},
+ publisher = {GitHub},
+ journal = {GitHub repository},
+ howpublished = {\url{https://github.com/charent/ChatLM-mini-Chinese}},
+}
+```
+
+# 五、🤔其他事项
+本项目不承担开源模型和代码导致的数据安全、舆情风险或发生任何模型被误导、滥用、传播、不当利用而产生的风险和责任。
+
+
+[showpng1]:
+
+[ie_task_chat]:
\ No newline at end of file
diff --git a/model_save/config.json b/model_save/config.json
new file mode 100644
index 0000000000000000000000000000000000000000..af10813a01cd182791c9ecfa996bfc4a813ec0e3
--- /dev/null
+++ b/model_save/config.json
@@ -0,0 +1,33 @@
+{
+ "_name_or_path": "./model_save/dpo/",
+ "architectures": [
+ "TextToTextModel"
+ ],
+ "auto_map": {
+ "AutoModelForSeq2SeqLM": "modeling_chat_model.TextToTextModel"
+ },
+ "classifier_dropout": 0.0,
+ "d_ff": 3072,
+ "d_kv": 64,
+ "d_model": 768,
+ "decoder_start_token_id": 0,
+ "dense_act_fn": "relu",
+ "dropout_rate": 0.1,
+ "eos_token_id": 1,
+ "feed_forward_proj": "relu",
+ "initializer_factor": 1.0,
+ "is_encoder_decoder": true,
+ "is_gated_act": false,
+ "layer_norm_epsilon": 1e-06,
+ "model_type": "t5",
+ "num_decoder_layers": 10,
+ "num_heads": 12,
+ "num_layers": 10,
+ "pad_token_id": 0,
+ "relative_attention_max_distance": 128,
+ "relative_attention_num_buckets": 32,
+ "torch_dtype": "float32",
+ "transformers_version": "4.36.2",
+ "use_cache": true,
+ "vocab_size": 29298
+}
diff --git a/model_save/configuration_chat_model.py b/model_save/configuration_chat_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..3472e5b838b119bb9c8c2b906cd782392133c3ae
--- /dev/null
+++ b/model_save/configuration_chat_model.py
@@ -0,0 +1,4 @@
+from transformers import T5Config
+
+class TextToTextModelConfig(T5Config):
+ model_type = 't5'
\ No newline at end of file
diff --git a/model_save/generation_config.json b/model_save/generation_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..b8de7c0849ca645b144f2d2a2015d4de250b4a6d
--- /dev/null
+++ b/model_save/generation_config.json
@@ -0,0 +1,7 @@
+{
+ "_from_model_config": true,
+ "decoder_start_token_id": 0,
+ "eos_token_id": 1,
+ "pad_token_id": 0,
+ "transformers_version": "4.36.2"
+}
diff --git a/model_save/model.safetensors b/model_save/model.safetensors
new file mode 100644
index 0000000000000000000000000000000000000000..f7ff35b9fb1c711d268c5bd9894200124623d383
--- /dev/null
+++ b/model_save/model.safetensors
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:054caeae92bcc13f0b6e7a12f86e75c8e18117279ecd89c4aa1f8ac74c95c02a
+size 750794624
diff --git a/model_save/modeling_chat_model.py b/model_save/modeling_chat_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..4c38e2eafee41b84f39482d7bc005aef0381637e
--- /dev/null
+++ b/model_save/modeling_chat_model.py
@@ -0,0 +1,74 @@
+import torch
+from torch import Tensor, LongTensor
+from transformers import T5ForConditionalGeneration, T5Config
+from transformers import TextIteratorStreamer
+from transformers.generation.configuration_utils import GenerationConfig
+
+class TextToTextModel(T5ForConditionalGeneration):
+ def __init__(self, config: T5Config) -> None:
+ '''
+ TextToTextModel继承T5ForConditionalGeneration
+ '''
+ super().__init__(config)
+
+ @torch.no_grad()
+ def my_generate(self,
+ input_ids: LongTensor,
+ attention_mask: LongTensor,
+ max_seq_len: int=256,
+ search_type: str='beam',
+ streamer: TextIteratorStreamer=None,
+ ) -> Tensor:
+ '''
+ 自定义gennerate方法方便调用、测试
+ search_type: ['greedy', 'beam', 'sampling', 'contrastive', ]
+
+ - *greedy decoding* by calling [`~generation.GenerationMixin.greedy_search`] if `num_beams=1` and
+ `do_sample=False`
+ - *contrastive search* by calling [`~generation.GenerationMixin.contrastive_search`] if `penalty_alpha>0.`
+ and `top_k>1`
+ - *multinomial sampling* by calling [`~generation.GenerationMixin.sample`] if `num_beams=1` and
+ `do_sample=True`
+ - *beam-search decoding* by calling [`~generation.GenerationMixin.beam_search`] if `num_beams>1` and
+ `do_sample=False`
+ - *beam-search multinomial sampling* by calling [`~generation.GenerationMixin.beam_sample`] if
+ `num_beams>1` and `do_sample=True`
+ '''
+ generation_config = GenerationConfig()
+ generation_config.remove_invalid_values = True
+ generation_config.eos_token_id = 1
+ generation_config.pad_token_id = 0
+ generation_config.decoder_start_token_id = self.config.decoder_start_token_id
+ generation_config.max_new_tokens = max_seq_len
+ # generation_config.repetition_penalty = 1.1 # 重复词惩罚
+
+ if search_type == 'greedy':
+ generation_config.num_beams = 1
+ generation_config.do_sample = False
+ elif search_type == 'beam':
+ generation_config.top_k = 50
+ generation_config.num_beams = 5
+ generation_config.do_sample = True
+ generation_config.top_p = 0.95
+ generation_config.no_repeat_ngram_size = 4
+ generation_config.length_penalty = -2.0
+ generation_config.early_stopping = True
+ elif search_type == 'sampling':
+ generation_config.num_beams = 1
+ generation_config.do_sample = True
+ generation_config.top_k = 50
+ generation_config.temperature = 0.98 # 越低概率越趋向于均匀分布
+ generation_config.top_p = 0.80
+ generation_config.no_repeat_ngram_size = 4
+ elif search_type == 'contrastive':
+ generation_config.penalty_alpha = 0.5
+ generation_config.top_k = 50
+
+ result = self.generate(
+ inputs=input_ids,
+ attention_mask=attention_mask,
+ generation_config=generation_config,
+ streamer=streamer,
+ )
+
+ return result
diff --git a/model_save/put_model_files_here b/model_save/put_model_files_here
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/model_save/special_tokens_map.json b/model_save/special_tokens_map.json
new file mode 100644
index 0000000000000000000000000000000000000000..ce2e549e4bcec8d401aed33bfecc2575f9309c1b
--- /dev/null
+++ b/model_save/special_tokens_map.json
@@ -0,0 +1,5 @@
+{
+ "eos_token": "[EOS]",
+ "pad_token": "[PAD]",
+ "unk_token": "[UNK]"
+}
diff --git a/model_save/tokenizer.json b/model_save/tokenizer.json
new file mode 100644
index 0000000000000000000000000000000000000000..c4f0e7c4c14c8ec9445d56556f5ee7370875c42a
--- /dev/null
+++ b/model_save/tokenizer.json
@@ -0,0 +1,52547 @@
+{
+ "version": "1.0",
+ "truncation": null,
+ "padding": null,
+ "added_tokens": [
+ {
+ "id": 0,
+ "content": "[PAD]",
+ "single_word": false,
+ "lstrip": false,
+ "rstrip": false,
+ "normalized": false,
+ "special": true
+ },
+ {
+ "id": 1,
+ "content": "[EOS]",
+ "single_word": false,
+ "lstrip": false,
+ "rstrip": false,
+ "normalized": false,
+ "special": true
+ },
+ {
+ "id": 2,
+ "content": "[SEP]",
+ "single_word": false,
+ "lstrip": false,
+ "rstrip": false,
+ "normalized": false,
+ "special": true
+ },
+ {
+ "id": 3,
+ "content": "[BOS]",
+ "single_word": false,
+ "lstrip": false,
+ "rstrip": false,
+ "normalized": false,
+ "special": true
+ },
+ {
+ "id": 4,
+ "content": "[CLS]",
+ "single_word": false,
+ "lstrip": false,
+ "rstrip": false,
+ "normalized": false,
+ "special": true
+ },
+ {
+ "id": 5,
+ "content": "[MASK]",
+ "single_word": false,
+ "lstrip": false,
+ "rstrip": false,
+ "normalized": false,
+ "special": true
+ },
+ {
+ "id": 6,
+ "content": "[UNK]",
+ "single_word": false,
+ "lstrip": false,
+ "rstrip": false,
+ "normalized": false,
+ "special": true
+ }
+ ],
+ "normalizer": null,
+ "pre_tokenizer": {
+ "type": "Sequence",
+ "pretokenizers": [
+ {
+ "type": "Whitespace"
+ },
+ {
+ "type": "Punctuation",
+ "behavior": "Isolated"
+ },
+ {
+ "type": "Digits",
+ "individual_digits": true
+ },
+ {
+ "type": "Metaspace",
+ "replacement": "▁",
+ "add_prefix_space": true,
+ "prepend_scheme": "always"
+ }
+ ]
+ },
+ "post_processor": null,
+ "decoder": {
+ "type": "Metaspace",
+ "replacement": "▁",
+ "add_prefix_space": true,
+ "prepend_scheme": "always"
+ },
+ "model": {
+ "type": "BPE",
+ "dropout": null,
+ "unk_token": "[UNK]",
+ "continuing_subword_prefix": null,
+ "end_of_word_suffix": null,
+ "fuse_unk": false,
+ "byte_fallback": false,
+ "vocab": {
+ "[PAD]": 0,
+ "[EOS]": 1,
+ "[SEP]": 2,
+ "[BOS]": 3,
+ "[CLS]": 4,
+ "[MASK]": 5,
+ "[UNK]": 6,
+ "在": 7,
+ "地球": 8,
+ "上": 9,
+ "为什么": 10,
+ "没有": 11,
+ "的": 12,
+ "感觉": 13,
+ ",": 14,
+ "重力": 15,
+ "作用": 16,
+ "一直": 17,
+ "是": 18,
+ "指向": 19,
+ "因此": 20,
+ "\n": 21,
+ "只要": 22,
+ "头": 23,
+ "远离": 24,
+ "人们": 25,
+ "就": 26,
+ "回": 27,
+ "感到": 28,
+ "。": 29,
+ "请问": 30,
+ "这起": 31,
+ "交通事故": 32,
+ "谁": 33,
+ "责任": 34,
+ "居多": 35,
+ "?": 36,
+ "小车": 37,
+ "和": 38,
+ "摩托车": 39,
+ "发生": 40,
+ "事故": 41,
+ "无": 42,
+ "红绿灯": 43,
+ "十字路口": 44,
+ "小": 45,
+ "停车": 46,
+ "看看": 47,
+ "左右": 48,
+ "觉得": 49,
+ "安全": 50,
+ "情况": 51,
+ "下": 52,
+ "刹车": 53,
+ "慢慢": 54,
+ "以": 55,
+ "时速": 56,
+ "10": 57,
+ "公里": 58,
+ "速度": 59,
+ "行驶": 60,
+ "过": 61,
+ "路口": 62,
+ "好": 63,
+ "出": 64,
+ "到": 65,
+ "正中": 66,
+ "时": 67,
+ "被": 68,
+ "左边": 69,
+ "突然": 70,
+ "快速": 71,
+ "过来": 72,
+ "撞": 73,
+ "车头": 74,
+ "前": 75,
+ "主": 76,
+ "摔": 77,
+ "膝盖": 78,
+ "伤": 79,
+ "脸部": 80,
+ "如果": 81,
+ "双方": 82,
+ "都": 83,
+ "有": 84,
+ "的话": 85,
+ "大概": 86,
+ "各": 87,
+ "占": 88,
+ "?": 89,
+ "通过": 90,
+ "信号": 91,
+ "控制": 92,
+ "应该": 93,
+ "减速": 94,
+ "慢性": 95,
+ "让": 96,
+ "右边": 97,
+ "车": 98,
+ "先行": 99,
+ "按": 100,
+ "你": 101,
+ "说": 102,
+ "好像": 103,
+ "汽车": 104,
+ "所以": 105,
+ "可能": 106,
+ "当然": 107,
+ "还要": 108,
+ "看": 109,
+ "是否": 110,
+ "齐全": 111,
+ "饮酒": 112,
+ "等": 113,
+ "具体": 114,
+ "由": 115,
+ "交警": 116,
+ "调查": 117,
+ "后": 118,
+ "认定": 119,
+ "请教": 120,
+ "怎么": 121,
+ "能": 122,
+ "很快": 123,
+ "洗": 124,
+ "干净": 125,
+ "什么": 126,
+ "方法": 127,
+ "先": 128,
+ "用": 129,
+ "清水": 130,
+ "冲": 131,
+ "一下": 132,
+ ",": 133,
+ "食盐": 134,
+ "反复": 135,
+ "直到": 136,
+ "肠": 137,
+ "黏液": 138,
+ "全": 139,
+ "去掉": 140,
+ "为止": 141,
+ "冲洗": 142,
+ "最好": 143,
+ "把": 144,
+ "油": 145,
+ "一些": 146,
+ "再": 147,
+ "下锅": 148,
+ "毛孔": 149,
+ "粗大": 150,
+ "怎么办": 151,
+ "我": 152,
+ "脸上": 153,
+ "长": 154,
+ "豆豆": 155,
+ "额头": 156,
+ "鼻子": 157,
+ "很": 158,
+ "严重": 159,
+ ".": 160,
+ "脸": 161,
+ "一点": 162,
+ "平整": 163,
+ "地方": 164,
+ "不": 165,
+ "知道": 166,
+ "要": 167,
+ "请": 168,
+ "各位": 169,
+ "教教": 170,
+ "谢谢": 171,
+ "这是": 172,
+ "很多": 173,
+ "人": 174,
+ "关心": 175,
+ "问题": 176,
+ "此": 177,
+ "我们": 178,
+ "关注": 179,
+ "收缩": 180,
+ "与": 181,
+ "舒张": 182,
+ "曾": 183,
+ "不止一次": 184,
+ "地": 185,
+ "看过": 186,
+ "一个": 187,
+ "关于": 188,
+ "洗脸": 189,
+ "就是": 190,
+ ":": 191,
+ "时应": 192,
+ "先用": 193,
+ "温热": 194,
+ "水": 195,
+ "打开": 196,
+ "以便": 197,
+ "里": 198,
+ "能够": 199,
+ "顺利": 200,
+ "去": 201,
+ "洗完": 202,
+ "冷水": 203,
+ "有助于": 204,
+ "这样": 205,
+ "说法": 206,
+ "虽然": 207,
+ "肉眼": 208,
+ "观察": 209,
+ "不过": 210,
+ "医生": 211,
+ "回答": 212,
+ "却是": 213,
+ "至今": 214,
+ "还": 215,
+ "针对": 216,
+ "开": 217,
+ "收": 218,
+ "做出": 219,
+ "任何": 220,
+ "临床": 221,
+ "报告": 222,
+ "": 223,
+ "然而": 224,
+ "对于": 225,
+ "变": 226,
+ "大": 227,
+ "缩小": 228,
+ "明确": 229,
+ "数据": 230,
+ "证明": 231,
+ "皮肤科": 232,
+ "指出": 233,
+ "的确": 234,
+ "关键": 235,
+ "在于": 236,
+ "肌肤": 237,
+ "细胞": 238,
+ "间": 239,
+ "度": 240,
+ "充足": 241,
+ "空隙": 242,
+ "变小": 243,
+ "进而": 244,
+ "往": 245,
+ "自然": 246,
+ "了": 247,
+ "只是": 248,
+ "原本": 249,
+ "明显": 250,
+ "几乎": 251,
+ "看不见": 252,
+ "属于": 253,
+ "任务": 254,
+ "仔细": 255,
+ "会": 256,
+ "发现": 257,
+ "年轻": 258,
+ "纹理": 259,
+ "呈": 260,
+ "米": 261,
+ "字形": 262,
+ "彼此": 263,
+ "来回": 264,
+ "穿梭": 265,
+ "线条": 266,
+ "保住": 267,
+ "水分": 268,
+ "较": 269,
+ "厚实": 270,
+ "也": 271,
+ "但": 272,
+ "当": 273,
+ "老化": 274,
+ "变成": 275,
+ "川": 276,
+ "平行": 277,
+ "薄": 278,
+ "、": 279,
+ "无法": 280,
+ "两大": 281,
+ "弹性": 282,
+ "可以": 283,
+ "减少": 284,
+ "阻塞": 285,
+ "物": 286,
+ "它": 287,
+ "养成": 288,
+ "清理": 289,
+ "角质": 290,
+ "习惯": 291,
+ "不要": 292,
+ "等到": 293,
+ "粉刺": 294,
+ "黑头": 295,
+ "现象": 296,
+ "才": 297,
+ "处理": 298,
+ "以往": 299,
+ "许多": 300,
+ "总是": 301,
+ "焦点": 302,
+ "仅仅": 303,
+ "放在": 304,
+ "清洁": 305,
+ "部分": 306,
+ "这": 307,
+ "重要": 308,
+ "但是": 309,
+ "组织": 310,
+ "方面": 311,
+ "一致": 312,
+ "公认": 313,
+ "成分": 314,
+ "主要": 315,
+ "功能": 316,
+ "调整": 317,
+ "角化": 318,
+ "过程": 319,
+ "去除": 320,
+ "表层": 321,
+ "老": 322,
+ "废": 323,
+ "变得": 324,
+ "平滑": 325,
+ "所": 326,
+ "使用": 327,
+ "浓度": 328,
+ "更": 329,
+ "成效": 330,
+ "息息相关": 331,
+ "帮": 332,
+ "患者": 333,
+ "进行": 334,
+ "多": 335,
+ "3%": 336,
+ "-": 337,
+ "%": 338,
+ ";": 339,
+ "而": 340,
+ "则": 341,
+ "限制": 342,
+ "0": 343,
+ ".": 344,
+ "2%": 345,
+ "1": 346,
+ "5": 347,
+ "比如": 348,
+ "碧": 349,
+ "II": 350,
+ "精致": 351,
+ "霜": 352,
+ "细致": 353,
+ "精华": 354,
+ "露": 355,
+ "含有": 356,
+ "不同": 357,
+ "比例": 358,
+ "帮助": 359,
+ "角质层": 360,
+ "全面": 361,
+ "改善": 362,
+ "肤质": 363,
+ "另外": 364,
+ "保湿": 365,
+ "干性": 366,
+ "面临": 367,
+ "危机": 368,
+ "大部分": 369,
+ "是因为": 370,
+ "保养": 371,
+ "不当": 372,
+ "所致": 373,
+ "来说": 374,
+ "像": 375,
+ "适合": 376,
+ "自己": 377,
+ "造成": 378,
+ "表皮": 379,
+ "正常": 380,
+ "长期": 381,
+ "堆积": 382,
+ "变大": 383,
+ "除了": 384,
+ "外": 385,
+ "成为": 386,
+ "必要": 387,
+ "门": 388,
+ "标榜": 389,
+ "产品": 390,
+ "同时": 391,
+ "一": 392,
+ "形成": 393,
+ "原因": 394,
+ "引起": 395,
+ "后天": 396,
+ "补": 397,
+ "2": 398,
+ "皮肤": 399,
+ "皮脂": 400,
+ "分泌": 401,
+ "旺盛": 402,
+ "平时": 403,
+ "及时": 404,
+ "做": 405,
+ "护理": 406,
+ "天天": 407,
+ "清除": 408,
+ "灰尘": 409,
+ "污垢": 410,
+ "久而久之": 411,
+ "堵塞": 412,
+ "3": 413,
+ "多年": 414,
+ "长痘": 415,
+ "反反复复": 416,
+ "多次": 417,
+ "发作": 418,
+ "痘痘": 419,
+ "外界": 420,
+ "寄生": 421,
+ "活": 422,
+ "寄生虫": 423,
+ "不断": 424,
+ "繁殖": 425,
+ "客气": 426,
+ "吃": 427,
+ "肉": 428,
+ "喝": 429,
+ "血": 430,
+ "洞": 431,
+ "看起来": 432,
+ "就象": 433,
+ "二": 434,
+ "办法": 435,
+ "特色": 436,
+ "美容": 437,
+ "达到": 438,
+ "刺激": 439,
+ "激活": 440,
+ "辅以": 441,
+ "正确": 442,
+ "家庭": 443,
+ "保持": 444,
+ "细腻": 445,
+ "每天": 446,
+ "黑": 447,
+ "本草": 448,
+ "按摩": 449,
+ "几分钟": 450,
+ "垃圾": 451,
+ "珍珠粉": 452,
+ "并且": 453,
+ "保留": 454,
+ "拍": 455,
+ "少量": 456,
+ "保证": 457,
+ "不再": 458,
+ "光滑": 459,
+ "4": 460,
+ "时要": 461,
+ "蒸汽": 462,
+ "导出": 463,
+ "液": 464,
+ "容易": 465,
+ "有效": 466,
+ "防止": 467,
+ "定期": 468,
+ "6": 469,
+ "天然": 470,
+ "精油": 471,
+ "烦恼": 472,
+ "务必": 473,
+ "做好": 474,
+ "不会": 475,
+ "因为": 476,
+ "导致": 477,
+ "渐渐": 478,
+ "别": 479,
+ "认为": 480,
+ "不错": 481,
+ "朋友": 482,
+ "注意": 483,
+ "没": 484,
+ "几年": 485,
+ "她": 486,
+ "进入": 487,
+ "皱纹": 488,
+ "起来": 489,
+ "行动": 490,
+ "!": 491,
+ "类型": 492,
+ "因": 493,
+ "油性": 494,
+ "油性皮肤": 495,
+ "混合性": 496,
+ "T": 497,
+ "型": 498,
+ "部位": 499,
+ "特别": 500,
+ "过剩": 501,
+ "毛囊": 502,
+ "膨胀": 503,
+ "随着": 504,
+ "年龄": 505,
+ "增长": 506,
+ "越来越": 507,
+ "制造": 508,
+ "并": 509,
+ "上层": 510,
+ "待": 511,
+ "之后": 512,
+ "外层": 513,
+ "方式": 514,
+ "使得": 515,
+ "其": 516,
+ "新陈代谢": 517,
+ "脱落": 518,
+ "致使": 519,
+ "扩大": 520,
+ "-": 521,
+ "化妆水": 522,
+ "敷": 523,
+ "或": 524,
+ "起到": 525,
+ "收敛": 526,
+ "效果": 527,
+ "毛巾": 528,
+ "冷敷": 529,
+ "专用": 530,
+ "冰箱": 531,
+ "冰": 532,
+ "几秒钟": 533,
+ "水果": 534,
+ "用来": 535,
+ "它们": 536,
+ "柔软": 537,
+ "抑制": 538,
+ "油脂": 539,
+ "多重": 540,
+ "功效": 541,
+ "找": 542,
+ "对": 543,
+ "易": 544,
+ "收紧": 545,
+ "柠檬汁": 546,
+ "中": 547,
+ "几滴": 548,
+ "可": 549,
+ "产生": 550,
+ "不可": 551,
+ "太": 552,
+ "浓": 553,
+ "且": 554,
+ "将": 555,
+ "直接": 556,
+ "涂抹": 557,
+ ")": 558,
+ "+": 559,
+ "事先": 560,
+ "准备": 561,
+ "小时": 562,
+ "喷": 563,
+ "清爽": 564,
+ "又": 565,
+ "鸡蛋": 566,
+ "橄榄油": 567,
+ "打散": 568,
+ "加入": 569,
+ "半个": 570,
+ "及": 571,
+ "一点点": 572,
+ "充分": 573,
+ "搅拌": 574,
+ "均匀": 575,
+ "汁": 576,
+ "使": 577,
+ "二者": 578,
+ "混合": 579,
+ "平日": 580,
+ "面膜": 581,
+ "储存": 582,
+ "一周": 583,
+ "次": 584,
+ "促进": 585,
+ "7": 586,
+ "取": 587,
+ "栗子": 588,
+ "蜂蜜": 589,
+ "面部": 590,
+ "富有": 591,
+ "治疗": 592,
+ "癫痫": 593,
+ "最": 594,
+ "权威": 595,
+ "医院": 596,
+ "哪些": 597,
+ "癫痫病": 598,
+ "时候": 599,
+ "很长": 600,
+ "时间": 601,
+ "不是": 602,
+ "一两天": 603,
+ "治好": 604,
+ "而且": 605,
+ "一两个": 606,
+ "月": 607,
+ "想要": 608,
+ "治": 609,
+ "那么": 610,
+ "就要": 611,
+ "专业": 612,
+ "只有": 613,
+ "有没有": 614,
+ "先进": 615,
+ "设备": 616,
+ "这些": 617,
+ "赶紧": 618,
+ "找到": 619,
+ "正规": 620,
+ "以外": 621,
+ "治病": 622,
+ "一样": 623,
+ "选择": 624,
+ "事情": 625,
+ "选": 626,
+ "疾病": 627,
+ "有着": 628,
+ "专家": 629,
+ "才能": 630,
+ "得到": 631,
+ "先要": 632,
+ "病情": 633,
+ "确定": 634,
+ "清楚": 635,
+ "然后": 636,
+ "根据": 637,
+ "来": 638,
+ "好转": 639,
+ "降压药": 640,
+ "喜": 641,
+ "两种": 642,
+ "药": 643,
+ "各有": 644,
+ "特点": 645,
+ "哪种": 646,
+ "服用": 647,
+ "180": 648,
+ "95": 649,
+ "推荐": 650,
+ "“": 651,
+ "+": 652,
+ "”": 653,
+ "区": 654,
+ "无尽": 655,
+ "工会": 656,
+ "吗": 657,
+ "你们": 658,
+ "解散": 659,
+ "听": 660,
+ "神": 661,
+ "成员": 662,
+ "副会长": 663,
+ "卷": 664,
+ "财产": 665,
+ "跑": 666,
+ "路": 667,
+ "(": 668,
+ "几千": 669,
+ "W": 670,
+ "呢": 671,
+ "哎": 672,
+ "真是": 673,
+ "人心": 674,
+ "老师": 675,
+ "青": 676,
+ "明天": 677,
+ "跌": 678,
+ "散户": 679,
+ "卖出": 680,
+ "主力": 681,
+ "资金": 682,
+ "却": 683,
+ "周三": 684,
+ "该股": 685,
+ "处于": 686,
+ "上市": 687,
+ "以来": 688,
+ "低迷": 689,
+ "状态": 690,
+ "从": 691,
+ "成交量": 692,
+ "得": 693,
+ "现在": 694,
+ "也许": 695,
+ "介入": 696,
+ "形态": 697,
+ "还会": 698,
+ "便宜": 699,
+ "筹码": 700,
+ "以后": 701,
+ "收集": 702,
+ "不足以": 703,
+ "仓": 704,
+ "地步": 705,
+ "建议": 706,
+ "等等": 707,
+ "只": 708,
+ "股票": 709,
+ "将来": 710,
+ "看好": 711,
+ "不言而喻": 712,
+ "短线": 713,
+ "操作": 714,
+ "标志": 715,
+ "趋势": 716,
+ "城内": 717,
+ "还是": 718,
+ "例如": 719,
+ ":": 720,
+ "the": 721,
+ "of": 722,
+ "China": 723,
+ "越南": 724,
+ "中国": 725,
+ "南面": 726,
+ "综合": 727,
+ "该": 728,
+ "字典": 729,
+ "还有": 730,
+ "两个": 731,
+ "例句": 732,
+ "西班牙": 733,
+ "欧洲": 734,
+ "南部": 735,
+ "墨西哥": 736,
+ "美国": 737,
+ "古代": 738,
+ "官职": 739,
+ "拜": 740,
+ "常用": 741,
+ "以下": 742,
+ "词语": 743,
+ "①": 744,
+ "一定": 745,
+ "授予": 746,
+ "某种": 747,
+ "任命": 748,
+ "《": 749,
+ "封建": 750,
+ "论": 751,
+ "》": 752,
+ "不到": 753,
+ "之": 754,
+ "矣": 755,
+ "②": 756,
+ "除": 757,
+ "史记": 758,
+ "·": 759,
+ "侯": 760,
+ "已": 761,
+ "尽": 762,
+ "未": 763,
+ "吾": 764,
+ "亦": 765,
+ "欲": 766,
+ "③": 767,
+ "迁": 768,
+ "调动": 769,
+ "一般": 770,
+ "指": 771,
+ "提升": 772,
+ "传": 773,
+ "郎中": 774,
+ "为": 775,
+ "流放": 776,
+ "夫人": 777,
+ "[": 778,
+ "]": 779,
+ "特指": 780,
+ "在外": 781,
+ "长安": 782,
+ "诗": 783,
+ "外地": 784,
+ "官": 785,
+ "④": 786,
+ "选拔": 787,
+ "提拔": 788,
+ "九江": 789,
+ "太守": 790,
+ "叫": 791,
+ "转": 792,
+ "初": 793,
+ "年": 794,
+ "⑤": 795,
+ "有罪": 796,
+ "得以": 797,
+ "赏": 798,
+ ")": 799,
+ "降级": 800,
+ "书": 801,
+ "⑥": 802,
+ "罪": 803,
+ "京城": 804,
+ "任职": 805,
+ "哭": 806,
+ "司马": 807,
+ "封建社会": 808,
+ "大臣": 809,
+ "年老": 810,
+ "请求": 811,
+ "辞职": 812,
+ "意思": 813,
+ "赐": 814,
+ "身体": 815,
+ "回到": 816,
+ "家乡": 817,
+ "密度": 818,
+ "小于": 819,
+ "小球": 820,
+ "倾斜": 821,
+ "下降": 822,
+ "给出": 823,
+ "解题": 824,
+ "步骤": 825,
+ "题目": 826,
+ "转动": 827,
+ "向": 828,
+ "方向": 829,
+ "运动": 830,
+ "解": 831,
+ "水中": 832,
+ "设有": 833,
+ "体积": 834,
+ "相同": 835,
+ "水球": 836,
+ "这个": 837,
+ "同一": 838,
+ "位置": 839,
+ "(": 840,
+ "距离": 841,
+ "由于": 842,
+ "大于": 843,
+ "质量": 844,
+ "动": 845,
+ "满足": 846,
+ "受到": 847,
+ "合力": 848,
+ "提供": 849,
+ "这时": 850,
+ "F": 851,
+ "=": 852,
+ "mv": 853,
+ "^": 854,
+ "/": 855,
+ "r": 856,
+ "需要": 857,
+ "最终": 858,
+ "最近": 859,
+ "处": 860,
+ "哪里": 861,
+ "沙发": 862,
+ "家具": 863,
+ "卖": 864,
+ "地址": 865,
+ "中华": 866,
+ "大街": 867,
+ "超市": 868,
+ "即": 869,
+ "讲解": 870,
+ "如图所示": 871,
+ "A": 872,
+ "B": 873,
+ "圆": 874,
+ "直径": 875,
+ "两端": 876,
+ "小张": 877,
+ "点": 878,
+ "小王": 879,
+ "出发": 880,
+ "他们": 881,
+ "第一次": 882,
+ "相遇": 883,
+ "C": 884,
+ "80": 885,
+ "D": 886,
+ "第二次": 887,
+ "60": 888,
+ "求": 889,
+ "周长": 890,
+ "设": 891,
+ "方程": 892,
+ "解答": 893,
+ "长为": 894,
+ "X": 895,
+ "*": 896,
+ "360": 897,
+ "走": 898,
+ "比": 899,
+ "路程": 900,
+ "乘": 901,
+ "等于": 902,
+ "其中": 903,
+ "之一": 904,
+ "AB": 905,
+ "AC": 906,
+ "CD": 907,
+ "8": 908,
+ "0": 909,
+ "*": 910,
+ "2": 911,
+ "个人": 912,
+ "增加": 913,
+ "两次": 914,
+ "加": 915,
+ "AD": 916,
+ "3": 917,
+ "4": 918,
+ "A": 919,
+ "B": 920,
+ "半": 921,
+ "6": 922,
+ "=": 923,
+ "1": 924,
+ "BC": 925,
+ "Word": 926,
+ "文档": 927,
+ "一页": 928,
+ "文字": 929,
+ "怎样": 930,
+ "真": 931,
+ "布满": 932,
+ "右键": 933,
+ "段落": 934,
+ "里面": 935,
+ "字体": 936,
+ "加大": 937,
+ "大事": 938,
+ "武汉": 939,
+ "接到": 940,
+ "群众": 941,
+ "天": 942,
+ "分局": 943,
+ "天桥": 944,
+ "炸弹": 945,
+ "民警": 946,
+ "一起": 947,
+ "现场": 948,
+ "桥梁": 949,
+ "红色": 950,
+ "小心翼翼": 951,
+ "拆开": 952,
+ "报纸": 953,
+ "包裹": 954,
+ "最后": 955,
+ "果然": 956,
+ "个": 957,
+ "一对": 958,
+ "王": 959,
+ "…": 960,
+ "警察": 961,
+ "表示": 962,
+ "严肃": 963,
+ "追究": 964,
+ "报警": 965,
+ "着实": 966,
+ "忽悠": 967,
+ "以为": 968,
+ "简单": 969,
+ "地理": 970,
+ "基础知识": 971,
+ "填空": 972,
+ "100%": 973,
+ "考点": 974,
+ "知识": 975,
+ "清单": 976,
+ "地图": 977,
+ "面对": 978,
+ "_": 979,
+ "左": 980,
+ "标的": 981,
+ "箭头": 982,
+ "方": 983,
+ "指示": 984,
+ "方格": 985,
+ "状": 986,
+ "图": 987,
+ "辨别": 988,
+ "南": 989,
+ "北纬": 990,
+ "纬度": 991,
+ "数值": 992,
+ "向北": 993,
+ "递增": 994,
+ "东": 995,
+ "向东": 996,
+ "经": 997,
+ "向西": 998,
+ "南北": 999,
+ "极为": 1000,
+ "中心": 1001,
+ "标出": 1002,
+ "自转": 1003,
+ "顺时针": 1004,
+ "极": 1005,
+ "东西": 1006,
+ "自": 1007,
+ "东经": 1008,
+ "度数": 1009,
+ "增大": 1010,
+ "减小": 1011,
+ "反之": 1012,
+ "概念": 1013,
+ "实地": 1014,
+ "程度": 1015,
+ "形式": 1016,
+ "式": 1017,
+ "线段": 1018,
+ "用途": 1019,
+ "地点": 1020,
+ "实际": 1021,
+ "大小": 1022,
+ "比较": 1023,
+ "分母": 1024,
+ "愈": 1025,
+ "范围": 1026,
+ "内容": 1027,
+ "粗略": 1028,
+ "详细": 1029,
+ "高低": 1030,
+ "起伏": 1031,
+ "高度": 1032,
+ "海拔": 1033,
+ "定义": 1034,
+ "地形": 1035,
+ "密集": 1036,
+ "越": 1037,
+ "稀疏": 1038,
+ "种类": 1039,
+ "山顶": 1040,
+ "盆地": 1041,
+ "山谷": 1042,
+ "北": 1043,
+ "西": 1044,
+ "100": 1045,
+ "厘米": 1046,
+ "代表": 1047,
+ "千米": 1048,
+ "不太好": 1049,
+ "画": 1050,
+ "地面": 1051,
+ "某个": 1052,
+ "高出": 1053,
+ "海平面": 1054,
+ "另": 1055,
+ "缓": 1056,
+ "懂": 1057,
+ "啦": 1058,
+ "初一": 1059,
+ "呀": 1060,
+ "呼": 1061,
+ "下体": 1062,
+ "很痒": 1063,
+ "怎么回事": 1064,
+ "正好": 1065,
+ "例假": 1066,
+ "!": 1067,
+ "是不是": 1068,
+ "关系": 1069,
+ "啊": 1070,
+ "开始": 1071,
+ "得病": 1072,
+ "告诉": 1073,
+ "我下": 1074,
+ "恩": 1075,
+ "这种": 1076,
+ "天气": 1077,
+ "皮疹": 1078,
+ "没关系": 1079,
+ "澡": 1080,
+ "大腿": 1081,
+ "根": 1082,
+ "附近": 1083,
+ "出汗": 1084,
+ "那里": 1085,
+ "潮湿": 1086,
+ "起": 1087,
+ "那种": 1088,
+ "薄荷": 1089,
+ "卫生巾": 1090,
+ "ABC": 1091,
+ "垫": 1092,
+ "手机": 1093,
+ "wifi": 1094,
+ "型号": 1095,
+ "飞行": 1096,
+ "模式": 1097,
+ "关掉": 1098,
+ "或者": 1099,
+ "忘记": 1100,
+ "密码": 1101,
+ "保存": 1102,
+ "重新": 1103,
+ "连接": 1104,
+ "希望": 1105,
+ "满意": 1106,
+ "好评": 1107,
+ "紧急": 1108,
+ "避孕药": 1109,
+ "月经": 1110,
+ "推迟": 1111,
+ "多久": 1112,
+ "已经": 1113,
+ "各人": 1114,
+ "体质": 1115,
+ "若": 1116,
+ "担心": 1117,
+ "怀孕": 1118,
+ "药店": 1119,
+ "买个": 1120,
+ "早早": 1121,
+ "孕": 1122,
+ "试纸": 1123,
+ "检测": 1124,
+ "七天": 1125,
+ "结果": 1126,
+ "采纳": 1127,
+ "霉菌性": 1128,
+ "阴道炎": 1129,
+ "会上": 1130,
+ "行": 1131,
+ "感染": 1132,
+ "胎儿": 1133,
+ "目前": 1134,
+ "可能性": 1135,
+ "较大": 1136,
+ "25": 1137,
+ "号": 1138,
+ "于": 1139,
+ "五天": 1140,
+ "霉菌": 1141,
+ "复发": 1142,
+ "小苏打": 1143,
+ "出来": 1144,
+ "不能": 1145,
+ "用药": 1146,
+ "不痒": 1147,
+ "白带": 1148,
+ "恶心": 1149,
+ "完全": 1150,
+ "问": 1151,
+ "我能": 1152,
+ "阴道": 1153,
+ "尽快": 1154,
+ "HCG": 1155,
+ "无论": 1156,
+ "与否": 1157,
+ "清洗": 1158,
+ "一般说来": 1159,
+ "影响": 1160,
+ "治愈": 1161,
+ "母鸡": 1162,
+ "交配": 1163,
+ "如何": 1164,
+ "受精": 1165,
+ "小鸡": 1166,
+ "有个": 1167,
+ "相对": 1168,
+ "接": 1169,
+ "完成": 1170,
+ "外表": 1171,
+ "好象": 1172,
+ "肛门": 1173,
+ "其实": 1174,
+ "解剖": 1175,
+ "一只": 1176,
+ "输卵管": 1177,
+ "尿道": 1178,
+ "跟": 1179,
+ "哺乳动物": 1180,
+ "基本上": 1181,
+ "雄性": 1182,
+ "差异": 1183,
+ "很大": 1184,
+ "word": 1185,
+ "插入": 1186,
+ "键": 1187,
+ "居中": 1188,
+ "想": 1189,
+ "打": 1190,
+ "字号": 1191,
+ "500": 1192,
+ "靠": 1193,
+ "下方": 1194,
+ "显示": 1195,
+ "解决": 1196,
+ "高手": 1197,
+ "指导": 1198,
+ "写出": 1199,
+ "多谢": 1200,
+ "\"": 1201,
+ "菜单": 1202,
+ "符号": 1203,
+ "图标": 1204,
+ "改变": 1205,
+ "就行了": 1206,
+ "我试": 1207,
+ "快点": 1208,
+ "长高": 1209,
+ "160": 1210,
+ "高": 1211,
+ "摄入": 1212,
+ "钙质": 1213,
+ "如": 1214,
+ "牛奶": 1215,
+ "酸奶": 1216,
+ "有益": 1217,
+ "跑步": 1218,
+ "篮球": 1219,
+ "跳": 1220,
+ "高等": 1221,
+ "每日": 1222,
+ "早睡早起": 1223,
+ "以免": 1224,
+ "错过": 1225,
+ "晚上": 1226,
+ "生长": 1227,
+ "市面上": 1228,
+ "中文名": 1229,
+ "英文名": 1230,
+ "本人": 1231,
+ "苏": 1232,
+ "女": 1233,
+ "释义": 1234,
+ "平凡": 1235,
+ "安静": 1236,
+ "非常": 1237,
+ "友善": 1238,
+ "女孩": 1239,
+ "嘉": 1240,
+ "美丽": 1241,
+ "甜美": 1242,
+ "受欢迎": 1243,
+ "16": 1244,
+ "男": 1245,
+ "宝宝": 1246,
+ "8": 1247,
+ "颗": 1248,
+ "牙齿": 1249,
+ "我家": 1250,
+ "身高": 1251,
+ "体重": 1252,
+ "28": 1253,
+ "斤": 1254,
+ "少": 1255,
+ "脚掌": 1256,
+ "脚": 1257,
+ "有些": 1258,
+ "白色": 1259,
+ "破皮": 1260,
+ "右脚": 1261,
+ "像是": 1262,
+ "经验": 1263,
+ "人事": 1264,
+ "一种": 1265,
+ "缺乏": 1266,
+ "维生素": 1267,
+ "青菜": 1268,
+ "手足": 1269,
+ "脱皮": 1270,
+ "软膏": 1271,
+ "第二个": 1272,
+ "空气": 1273,
+ "干燥": 1274,
+ "等待": 1275,
+ "期间": 1276,
+ "湿润": 1277,
+ "战场": 1278,
+ "盗贼": 1279,
+ "为了": 1280,
+ "拿": 1281,
+ "踏上": 1282,
+ "喜欢": 1283,
+ "超级": 1284,
+ "烂": 1285,
+ "FS": 1286,
+ "技能": 1287,
+ "胜率": 1288,
+ "基本": 1289,
+ "死": 1290,
+ "踢": 1291,
+ "骨": 1292,
+ "经常": 1293,
+ "反而": 1294,
+ "1000": 1295,
+ "LR": 1296,
+ "陷阱": 1297,
+ "躲": 1298,
+ "拌": 1299,
+ "BT": 1300,
+ "郁闷": 1301,
+ "怎么样": 1302,
+ "中立": 1303,
+ "说实话": 1304,
+ "贼": 1305,
+ "对方": 1306,
+ "单挑": 1307,
+ "不好": 1308,
+ "弄": 1309,
+ "法术": 1310,
+ "轻易": 1311,
+ "复活": 1312,
+ "战士": 1313,
+ "过去": 1314,
+ "助攻": 1315,
+ "不管": 1316,
+ "目标": 1317,
+ "拼命": 1318,
+ "杀": 1319,
+ "尝试": 1320,
+ "敌方": 1321,
+ "他": 1322,
+ "除非": 1323,
+ "装备": 1324,
+ "牛": 1325,
+ "运气": 1326,
+ "否则": 1327,
+ "很难": 1328,
+ "杀掉": 1329,
+ "一次": 1330,
+ "就算": 1331,
+ "回去": 1332,
+ "就行": 1333,
+ "腹泻": 1334,
+ "见效": 1335,
+ "奶粉": 1336,
+ "已有": 1337,
+ "岁": 1338,
+ "性别": 1339,
+ "张": 1340,
+ "奶奶": 1341,
+ "检查": 1342,
+ "大便": 1343,
+ "蒙脱石": 1344,
+ "益生菌": 1345,
+ "按照": 1346,
+ "用量": 1347,
+ "给": 1348,
+ "孩子": 1349,
+ "吃药": 1350,
+ "红": 1351,
+ "之类": 1352,
+ "饭": 1353,
+ "为主": 1354,
+ "停": 1355,
+ "确实": 1356,
+ "不愈": 1357,
+ "考虑": 1358,
+ "含": 1359,
+ "乳糖": 1360,
+ "配方": 1361,
+ "一元": 1362,
+ "车间": 1363,
+ "名": 1364,
+ "工人": 1365,
+ "生产": 1366,
+ "两": 1367,
+ "栓": 1368,
+ "两头": 1369,
+ "一套": 1370,
+ "12": 1371,
+ "18": 1372,
+ "多少": 1373,
+ "一天": 1374,
+ "刚好": 1375,
+ "配套": 1376,
+ "要求": 1377,
+ "快": 1378,
+ "21": 1379,
+ "气体": 1380,
+ "分别": 1381,
+ "溶液": 1382,
+ "出现": 1383,
+ "下述": 1384,
+ "紫色": 1385,
+ ";": 1386,
+ "紫": 1387,
+ "橙色": 1388,
+ "无色": 1389,
+ "蓝色": 1390,
+ "加热": 1391,
+ "恢复": 1392,
+ "浑浊": 1393,
+ "澄清": 1394,
+ "淡黄色": 1395,
+ "沉淀": 1396,
+ "酸性": 1397,
+ "高锰酸钾": 1398,
+ "工作": 1399,
+ "职业": 1400,
+ "赚钱": 1401,
+ "一门": 1402,
+ "俗话说": 1403,
+ "成功": 1404,
+ "努力": 1405,
+ "机遇": 1406,
+ "先天": 1407,
+ "条件": 1408,
+ "重庆": 1409,
+ "尖锐湿疣": 1410,
+ "常规": 1411,
+ "物理疗法": 1412,
+ "疣": 1413,
+ "较少": 1414,
+ "三百": 1415,
+ "至": 1416,
+ "五百": 1417,
+ "花费": 1418,
+ "下来": 1419,
+ "留下": 1420,
+ "疤痕": 1421,
+ "此类": 1422,
+ "疗法": 1423,
+ "费用": 1424,
+ "患病": 1425,
+ "常": 1426,
+ "惨不忍睹": 1427,
+ "体": 1428,
+ "内部": 1429,
+ "女性": 1430,
+ "生殖道": 1431,
+ "内": 1432,
+ "采用": 1433,
+ "手术": 1434,
+ "其他": 1435,
+ "大家": 1436,
+ "最为": 1437,
+ "病毒": 1438,
+ "数量": 1439,
+ "价格": 1440,
+ "略有不同": 1441,
+ "收费": 1442,
+ "标准": 1443,
+ "各地": 1444,
+ "几百": 1445,
+ "目的": 1446,
+ "健康": 1447,
+ "一切": 1448,
+ "吧": 1449,
+ "西方": 1450,
+ "经济学": 1451,
+ "论文": 1452,
+ "这方面": 1453,
+ "尽量": 1454,
+ "谱": 1455,
+ "京都": 1456,
+ "出名": 1457,
+ "网站": 1458,
+ "上古": 1459,
+ "运动会": 1460,
+ "有人": 1461,
+ "作弊": 1462,
+ "下午": 1463,
+ "系统": 1464,
+ "提示": 1465,
+ "可是": 1466,
+ "每次": 1467,
+ "这次": 1468,
+ "几秒": 1469,
+ "BUG": 1470,
+ "卡": 1471,
+ "具体情况": 1472,
+ "包": 1473,
+ "装满": 1474,
+ "完": 1475,
+ "下线": 1476,
+ "第二天": 1477,
+ "马上": 1478,
+ "上线": 1479,
+ "空": 1480,
+ "格": 1481,
+ "物品": 1482,
+ "活动": 1483,
+ "交": 1484,
+ "第一": 1485,
+ "分为": 1486,
+ "四个": 1487,
+ "环节": 1488,
+ "初步": 1489,
+ "了解": 1490,
+ "销售": 1491,
+ "顾问": 1492,
+ "带到": 1493,
+ "客户": 1494,
+ "分钟": 1495,
+ "视频": 1496,
+ "介绍": 1497,
+ "集团": 1498,
+ "历史": 1499,
+ "品牌": 1500,
+ "诞生": 1501,
+ "历程": 1502,
+ "企业": 1503,
+ "理念": 1504,
+ "哲学": 1505,
+ "国际": 1506,
+ "合作伙伴": 1507,
+ "第二": 1508,
+ "体验": 1509,
+ "剧场": 1510,
+ "接下来": 1511,
+ "短片": 1512,
+ "影片": 1513,
+ "共有": 1514,
+ "SUV": 1515,
+ "两部": 1516,
+ "时长": 1517,
+ "模拟": 1518,
+ "消费者": 1519,
+ "感受": 1520,
+ "融入": 1521,
+ "第三": 1522,
+ "互动": 1523,
+ "观看": 1524,
+ "人员": 1525,
+ "顾客": 1526,
+ "一共": 1527,
+ "组": 1528,
+ "每组": 1529,
+ "一台": 1530,
+ "32": 1531,
+ "屏": 1532,
+ "电脑": 1533,
+ "屏幕": 1534,
+ "操控": 1535,
+ "接近": 1536,
+ "ipad": 1537,
+ "集成": 1538,
+ "项目": 1539,
+ "包括": 1540,
+ "研发": 1541,
+ "团队": 1542,
+ "车身": 1543,
+ "颜色": 1544,
+ "车辆": 1545,
+ "核心技术": 1546,
+ "演示": 1547,
+ "测试": 1548,
+ "20": 1549,
+ "第四": 1550,
+ "整车": 1551,
+ "技术": 1552,
+ "陪": 1553,
+ "身边": 1554,
+ "随时": 1555,
+ "示范": 1556,
+ "前面": 1557,
+ "看似": 1558,
+ "鸡肋": 1559,
+ "真的": 1560,
+ "感兴趣": 1561,
+ "做个": 1562,
+ "祝": 1563,
+ "愉快": 1564,
+ "真有": 1565,
+ "这么": 1566,
+ "巧": 1567,
+ "事": 1568,
+ "建立": 1569,
+ "武器": 1570,
+ "手上": 1571,
+ "老婆": 1572,
+ "万一": 1573,
+ "上去": 1574,
+ "水平": 1575,
+ "肯定": 1576,
+ "前所未有": 1577,
+ "随便": 1578,
+ "取消": 1579,
+ "几次": 1580,
+ "恭喜": 1581,
+ "事实证明": 1582,
+ "~": 1583,
+ "有所": 1584,
+ "建": 1585,
+ "人物": 1586,
+ "所谓": 1587,
+ "ID": 1588,
+ "幸运": 1589,
+ "合成": 1590,
+ "算": 1591,
+ "强化": 1592,
+ "强": 1593,
+ "哪": 1594,
+ "爆": 1595,
+ "以前": 1596,
+ "爽": 1597,
+ "一身": 1598,
+ "呵呵": 1599,
+ "看来": 1600,
+ "相信": 1601,
+ "裁缝": 1602,
+ "玩家": 1603,
+ "实验": 1604,
+ "专门": 1605,
+ "合": 1606,
+ "家": 1607,
+ "成": 1608,
+ "曾经": 1609,
+ "石头": 1610,
+ "哈哈": 1611,
+ "那": 1612,
+ "枪": 1613,
+ "升级": 1614,
+ "仓库": 1615,
+ "存放": 1616,
+ "安排": 1617,
+ "多么": 1618,
+ "合理": 1619,
+ "各自": 1620,
+ "发挥": 1621,
+ "强项": 1622,
+ "加油": 1623,
+ "哦": 1624,
+ "安装": 1625,
+ "进": 1626,
+ "高分": 1627,
+ "XP": 1628,
+ "安": 1629,
+ "指点": 1630,
+ "用户": 1631,
+ "熟悉": 1632,
+ "WindowsXP": 1633,
+ "分区": 1634,
+ "NTFS": 1635,
+ "不仅仅": 1636,
+ "一件": 1637,
+ "首先": 1638,
+ "您": 1639,
+ "转换": 1640,
+ "支持": 1641,
+ "中文": 1642,
+ "出错": 1643,
+ "说不定": 1644,
+ "修复": 1645,
+ "相关": 1646,
+ "一般来说": 1647,
+ "再用": 1648,
+ "分出": 1649,
+ "OK": 1650,
+ "光盘": 1651,
+ "放入": 1652,
+ "光驱": 1653,
+ "引导": 1654,
+ "启动": 1655,
+ "控制台": 1656,
+ "运行": 1657,
+ "命令": 1658,
+ "建议您": 1659,
+ "举动": 1660,
+ "费力": 1661,
+ "讨好": 1662,
+ "九年": 1663,
+ "级": 1664,
+ "相似": 1665,
+ "图形": 1666,
+ "梯形": 1667,
+ "ABCD": 1668,
+ "E": 1669,
+ "分成": 1670,
+ "9": 1671,
+ "AE": 1672,
+ "值": 1673,
+ "华夏": 1674,
+ "公司": 1675,
+ "广发": 1676,
+ "理财": 1677,
+ "题": 1678,
+ "买": 1679,
+ "南方": 1680,
+ "易方达": 1681,
+ "基金": 1682,
+ "你好": 1683,
+ "原名": 1684,
+ "时期": 1685,
+ "生于": 1686,
+ "浙江": 1687,
+ "吴国": 1688,
+ "之际": 1689,
+ "献给": 1690,
+ "差": 1691,
+ "宠爱": 1692,
+ "迷惑": 1693,
+ "无心": 1694,
+ "掩护": 1695,
+ "表现": 1696,
+ "爱国": 1697,
+ "女子": 1698,
+ "高尚": 1699,
+ "思想": 1700,
+ "传说": 1701,
+ "吴": 1702,
+ "灭": 1703,
+ "五": 1704,
+ "湖": 1705,
+ "后人": 1706,
+ "怀念": 1707,
+ "儿子": 1708,
+ "学期": 1709,
+ "班": 1710,
+ "一位": 1711,
+ "体育": 1712,
+ "关系密切": 1713,
+ "高一": 1714,
+ "一所": 1715,
+ "学得": 1716,
+ "相当": 1717,
+ "学习": 1718,
+ "兴趣": 1719,
+ "成绩": 1720,
+ "对此": 1721,
+ "虽": 1722,
+ "劝": 1723,
+ "没见": 1724,
+ "有时": 1725,
+ "即便": 1726,
+ "嘴": 1727,
+ "答应": 1728,
+ "反应": 1729,
+ "上课": 1730,
+ "连": 1731,
+ "课本": 1732,
+ "两眼": 1733,
+ "着": 1734,
+ "发": 1735,
+ "直": 1736,
+ "根本": 1737,
+ "课": 1738,
+ "失望": 1739,
+ "那个": 1740,
+ "女生": 1741,
+ "总": 1742,
+ "粘": 1743,
+ "着急": 1744,
+ "解决办法": 1745,
+ "我该": 1746,
+ "带": 1747,
+ "小孩": 1748,
+ "心理医生": 1749,
+ "转到": 1750,
+ "学校": 1751,
+ "沟通": 1752,
+ "较为": 1753,
+ "平等": 1754,
+ "交流": 1755,
+ "教训": 1756,
+ "学习成绩": 1757,
+ "女孩子": 1758,
+ "么": 1759,
+ "这件": 1760,
+ "叙述": 1761,
+ "母亲": 1762,
+ "青春期": 1763,
+ "同": 1764,
+ "男孩子": 1765,
+ "父亲": 1766,
+ "合适": 1767,
+ "好好": 1768,
+ "毕竟": 1769,
+ "高中": 1770,
+ "潜意识": 1771,
+ "强烈": 1772,
+ "当成": 1773,
+ "成年人": 1774,
+ "更好": 1775,
+ "足够": 1776,
+ "尊重": 1777,
+ "反感": 1778,
+ "段": 1779,
+ "反叛": 1780,
+ "心理": 1781,
+ "拧": 1782,
+ "干": 1783,
+ "试想": 1784,
+ "愿意": 1785,
+ "看待": 1786,
+ "眼光": 1787,
+ "而是": 1788,
+ "家长": 1789,
+ "强势": 1790,
+ "姿态": 1791,
+ "庆幸": 1792,
+ "严厉": 1793,
+ "缓和": 1794,
+ "语气": 1795,
+ "激起": 1796,
+ "更为": 1797,
+ "以上": 1798,
+ "算是": 1799,
+ "分析": 1800,
+ "下面": 1801,
+ "主意": 1802,
+ "仅供参考": 1803,
+ "爸爸": 1804,
+ "谈": 1805,
+ "交到": 1806,
+ "欢迎": 1807,
+ "家里": 1808,
+ "玩": 1809,
+ "一方面": 1810,
+ "锻炼": 1811,
+ "人际交往": 1812,
+ "能力": 1813,
+ "硬性": 1814,
+ "反对": 1815,
+ "交往": 1816,
+ "异性": 1817,
+ "暗中": 1818,
+ "压抑": 1819,
+ "与其": 1820,
+ "不如": 1821,
+ "包容": 1822,
+ "所有": 1823,
+ "千万别": 1824,
+ "单独": 1825,
+ "人际": 1826,
+ "嘛": 1827,
+ "不用": 1828,
+ "转学": 1829,
+ "说句": 1830,
+ "笑话": 1831,
+ "这里": 1832,
+ "至少": 1833,
+ "吸引": 1834,
+ "蛮": 1835,
+ "吸引力": 1836,
+ "这话": 1837,
+ "父母": 1838,
+ "吓": 1839,
+ "做到": 1840,
+ "一半": 1841,
+ "道理": 1842,
+ "在意": 1843,
+ "讲道理": 1844,
+ "激励": 1845,
+ "自尊心": 1846,
+ "打击": 1847,
+ "举个": 1848,
+ "例子": 1849,
+ "原来": 1850,
+ "所在": 1851,
+ "重点": 1852,
+ "99%": 1853,
+ "记忆": 1854,
+ "那年": 1855,
+ "年级": 1856,
+ "学生": 1857,
+ "大学": 1858,
+ "我读": 1859,
+ "87": 1860,
+ "很少": 1861,
+ "钱": 1862,
+ "读书": 1863,
+ "考取": 1864,
+ "初中": 1865,
+ "毕业": 1866,
+ "全年": 1867,
+ "结束": 1868,
+ "班级": 1869,
+ "倒数": 1870,
+ "第五": 1871,
+ "不想": 1872,
+ "读": 1873,
+ "后来": 1874,
+ "想想": 1875,
+ "全市": 1876,
+ "高二": 1877,
+ "早": 1878,
+ "恋爱": 1879,
+ "当时": 1880,
+ "甚至": 1881,
+ "早恋": 1882,
+ "女友": 1883,
+ "至于": 1884,
+ "以及": 1885,
+ "走过": 1886,
+ "弯路": 1887,
+ "体会": 1888,
+ "挺": 1889,
+ "辛苦": 1890,
+ "11": 1891,
+ "服": 1892,
+ "钢铁": 1893,
+ "300": 1894,
+ "400": 1895,
+ "200": 1896,
+ "鼻炎": 1897,
+ "鼻塞": 1898,
+ "刚": 1899,
+ "鼻涕": 1900,
+ "黄": 1901,
+ "黄色": 1902,
+ "睡觉": 1903,
+ "打呼噜": 1904,
+ "多大": 1905,
+ "儿童": 1906,
+ "青少年": 1907,
+ "多发": 1908,
+ "群体": 1909,
+ "太小": 1910,
+ "自身": 1911,
+ "调解": 1912,
+ "呼吸系统": 1913,
+ "敏感": 1914,
+ "脆弱": 1915,
+ "流": 1916,
+ "一个月": 1917,
+ "还好": 1918,
+ "不了": 1919,
+ "鼻腔": 1920,
+ "分泌物": 1921,
+ "妨碍": 1922,
+ "呼吸": 1923,
+ "不像": 1924,
+ "大人": 1925,
+ "似的": 1926,
+ "舒服": 1927,
+ "非得": 1928,
+ "实在": 1929,
+ "忍不住": 1930,
+ "打个": 1931,
+ "出去": 1932,
+ "会得": 1933,
+ "试着": 1934,
+ "闻": 1935,
+ "气味": 1936,
+ "味道": 1937,
+ "没事": 1938,
+ "味觉": 1939,
+ "消失": 1940,
+ "热水": 1941,
+ "倒": 1942,
+ "杯子": 1943,
+ "小心": 1944,
+ "烫": 1945,
+ "祛痘": 1946,
+ "洗面奶": 1947,
+ "长痘痘": 1948,
+ "刺激性": 1949,
+ "太强": 1950,
+ "破坏": 1951,
+ "亲": 1952,
+ "平常": 1953,
+ "熬夜": 1954,
+ "辣": 1955,
+ "喝点": 1956,
+ "睡": 1957,
+ "枕头": 1958,
+ "颈椎病": 1959,
+ "颈椎": 1960,
+ "人体": 1961,
+ "弯曲": 1962,
+ "23": 1963,
+ "支撑": 1964,
+ "生理": 1965,
+ "枕": 1966,
+ "怎样才能": 1967,
+ "内心": 1968,
+ "强大": 1969,
+ "学会": 1970,
+ "独处": 1971,
+ "常说": 1972,
+ "忍受": 1973,
+ "孤独": 1974,
+ "下班": 1975,
+ "放学": 1976,
+ "计划": 1977,
+ "之外": 1978,
+ "利用": 1979,
+ "放松": 1980,
+ "深入": 1981,
+ "乐观": 1982,
+ "遇到": 1983,
+ "乱": 1984,
+ "依然": 1985,
+ "原有": 1986,
+ "风度": 1987,
+ "幽默": 1988,
+ "平和": 1989,
+ "心态": 1990,
+ "敏捷": 1991,
+ "思维": 1992,
+ "思考问题": 1993,
+ "解决问题": 1994,
+ "规划": 1995,
+ "思路": 1996,
+ "三": 1997,
+ "勇气": 1998,
+ "毅力": 1999,
+ "来源": 2000,
+ "自我": 2001,
+ "积蓄": 2002,
+ "力量": 2003,
+ "接受": 2004,
+ "考验": 2005,
+ "要是": 2006,
+ "想着": 2007,
+ "记者": 2008,
+ "期望": 2009,
+ "必须": 2010,
+ "做人": 2011,
+ "原则": 2012,
+ "四": 2013,
+ "精神": 2014,
+ "独立": 2015,
+ "也就是说": 2016,
+ "干扰": 2017,
+ "拥有": 2018,
+ "依赖": 2019,
+ "生存": 2020,
+ "树立": 2021,
+ "世界观": 2022,
+ "人生观": 2023,
+ "价值观": 2024,
+ "生命": 2025,
+ "轨迹": 2026,
+ "主线": 2027,
+ "下去": 2028,
+ "性格": 2029,
+ "行为": 2030,
+ "生活": 2031,
+ "结局": 2032,
+ "摆脱": 2033,
+ "懒惰": 2034,
+ "负责": 2035,
+ "负担": 2036,
+ "抱怨": 2037,
+ "反": 2038,
+ "想方设法": 2039,
+ "别人": 2040,
+ "一方": 2041,
+ "想法": 2042,
+ "实现": 2043,
+ "寄托": 2044,
+ "身上": 2045,
+ "舞台": 2046,
+ "检验": 2047,
+ "24": 2048,
+ "位": 2049,
+ "名人": 2050,
+ "全国": 2051,
+ "观众": 2052,
+ "整个": 2053,
+ "场": 2054,
+ "智慧": 2055,
+ "语言": 2056,
+ "表达": 2057,
+ "观点": 2058,
+ "描述": 2059,
+ "愿景": 2060,
+ "任何人": 2061,
+ "因素": 2062,
+ "受阻": 2063,
+ "认识": 2064,
+ "三个": 2065,
+ "自从": 2066,
+ "认": 2067,
+ "每隔": 2068,
+ "或是": 2069,
+ "几天": 2070,
+ "约": 2071,
+ "忙": 2072,
+ "话题": 2073,
+ "从来": 2074,
+ "电话": 2075,
+ "聊天": 2076,
+ "见面": 2077,
+ "聊": 2078,
+ "真不知道": 2079,
+ "适当": 2080,
+ "主动": 2081,
+ "爱": 2082,
+ "共同": 2083,
+ "寻找": 2084,
+ "多些": 2085,
+ "幸福": 2086,
+ "付出": 2087,
+ "好处": 2088,
+ "水壶": 2089,
+ "放": 2090,
+ "洗净": 2091,
+ "竹": 2092,
+ "碳": 2093,
+ "煮": 2094,
+ "开水": 2095,
+ "听说": 2096,
+ "松软": 2097,
+ "美味": 2098,
+ "一片": 2099,
+ "完后": 2100,
+ "沾": 2101,
+ "米粒": 2102,
+ "用水": 2103,
+ "晾干": 2104,
+ "继续": 2105,
+ "注意事项": 2106,
+ "必需": 2107,
+ "a": 2108,
+ "c": 2109,
+ "再生": 2110,
+ "桶": 2111,
+ "制作": 2112,
+ "矿泉水": 2113,
+ "公斤": 2114,
+ "自来水": 2115,
+ "片": 2116,
+ "浸泡": 2117,
+ "煮沸": 2118,
+ "可口": 2119,
+ "冲泡": 2120,
+ "茶叶": 2121,
+ "咖啡": 2122,
+ "爽口": 2123,
+ "容器": 2124,
+ "玻璃瓶": 2125,
+ "不锈钢": 2126,
+ "瓶": 2127,
+ "维持": 2128,
+ "花瓶": 2129,
+ "鲜艳": 2130,
+ "持久": 2131,
+ "上海": 2132,
+ "哪家": 2133,
+ "2010": 2134,
+ "2012": 2135,
+ "连续": 2136,
+ "获得": 2137,
+ "十大": 2138,
+ "不孕": 2139,
+ "不育": 2140,
+ "专科医院": 2141,
+ "称号": 2142,
+ "2015": 2143,
+ "荣获": 2144,
+ "上海市": 2145,
+ "星级": 2146,
+ "教授": 2147,
+ "优秀": 2148,
+ "诊疗": 2149,
+ "从事": 2150,
+ "教学": 2151,
+ "30": 2152,
+ "师从": 2153,
+ "我国": 2154,
+ "著名": 2155,
+ "博士生": 2156,
+ "导师": 2157,
+ "第十一": 2158,
+ "享受": 2159,
+ "政府": 2160,
+ "现任": 2161,
+ "业务": 2162,
+ "院长": 2163,
+ "学科": 2164,
+ "宫": 2165,
+ "腹腔镜": 2166,
+ "镜": 2167,
+ "培训": 2168,
+ "主任": 2169,
+ "医师": 2170,
+ "生殖": 2171,
+ "近": 2172,
+ "共和": 2173,
+ "交叉口": 2174,
+ "冬天": 2175,
+ "进补": 2176,
+ "夏天": 2177,
+ "胃": 2178,
+ "适宜": 2179,
+ "大量": 2180,
+ "有时候": 2181,
+ "吃些": 2182,
+ "清淡": 2183,
+ "秋季": 2184,
+ "过量": 2185,
+ "有害": 2186,
+ "有病": 2187,
+ "病": 2188,
+ "加重": 2189,
+ "脾胃": 2190,
+ "肝脏": 2191,
+ "夏季": 2192,
+ "冷饮": 2193,
+ "多有": 2194,
+ "减弱": 2195,
+ "这时候": 2196,
+ "承受": 2197,
+ "紊乱": 2198,
+ "重": 2199,
+ "药物": 2200,
+ "轻": 2201,
+ "食物": 2202,
+ "做法": 2203,
+ "科学": 2204,
+ "高血压": 2205,
+ "萝卜": 2206,
+ "健胃": 2207,
+ "消食": 2208,
+ "宽": 2209,
+ "胸": 2210,
+ "山药": 2211,
+ "日常": 2212,
+ "食用": 2213,
+ "芝麻": 2214,
+ "花生": 2215,
+ "红枣": 2216,
+ "每个": 2217,
+ "身体状况": 2218,
+ "补品": 2219,
+ "燕窝": 2220,
+ "人参": 2221,
+ "并非": 2222,
+ "每种": 2223,
+ "对象": 2224,
+ "适应症": 2225,
+ "应": 2226,
+ "实用": 2227,
+ "滋补": 2228,
+ "缺": 2229,
+ "啥": 2230,
+ "肉类": 2231,
+ "牛羊肉": 2232,
+ "经过": 2233,
+ "尚未": 2234,
+ "完全恢复": 2235,
+ "过于": 2236,
+ "油腻": 2237,
+ "食品": 2238,
+ "不易": 2239,
+ "消化吸收": 2240,
+ "体内": 2241,
+ "过多": 2242,
+ "糖类": 2243,
+ "物质": 2244,
+ "诱发": 2245,
+ "饮食": 2246,
+ "调养": 2247,
+ "养生": 2248,
+ "气温": 2249,
+ "流失": 2250,
+ "多汁": 2251,
+ "富含": 2252,
+ "汤": 2253,
+ "粥": 2254,
+ "沐浴": 2255,
+ "前后": 2256,
+ "适量": 2257,
+ "饮水": 2258,
+ "体力": 2259,
+ "消耗": 2260,
+ "后应": 2261,
+ "饮用": 2262,
+ "盐水": 2263,
+ "每餐": 2264,
+ "瘦身": 2265,
+ "护肤": 2266,
+ "鱼肉": 2267,
+ "鸭肉": 2268,
+ "莲子": 2269,
+ "丝瓜": 2270,
+ "豆腐": 2271,
+ "首选": 2272,
+ "食材": 2273,
+ "荷叶": 2274,
+ "主角": 2275,
+ "祝你好运": 2276,
+ "点击": 2277,
+ "居里": 2278,
+ "温度": 2279,
+ "高于": 2280,
+ "失去": 2281,
+ "转变": 2282,
+ "铁": 2283,
+ "钴": 2284,
+ "镍": 2285,
+ "四种": 2286,
+ "金属": 2287,
+ "室温": 2288,
+ "℃": 2289,
+ "低温": 2290,
+ "写": 2291,
+ "姓名": 2292,
+ "身份证": 2293,
+ "号码": 2294,
+ "哪个": 2295,
+ "未成年": 2296,
+ "许可": 2297,
+ "您好": 2298,
+ "正式": 2299,
+ "登记": 2300,
+ "默认": 2301,
+ "未成年人": 2302,
+ "制约": 2303,
+ "领取": 2304,
+ "奖品": 2305,
+ "执行": 2306,
+ "告诉您": 2307,
+ "审核": 2308,
+ "成年": 2309,
+ "差不多": 2310,
+ "不必": 2311,
+ "超过": 2312,
+ "新": 2313,
+ "疲劳": 2314,
+ "谢谢您": 2315,
+ "诊断": 2316,
+ "幻觉": 2317,
+ "非": 2318,
+ "性": 2319,
+ "妄想": 2320,
+ "存在": 2321,
+ "症状": 2322,
+ "心理治疗": 2323,
+ "胆结石": 2324,
+ "成份": 2325,
+ "胆固醇": 2326,
+ "胆红素": 2327,
+ "钙": 2328,
+ "镁": 2329,
+ "结石": 2330,
+ "之所以": 2331,
+ "胆汁": 2332,
+ "变异": 2333,
+ "盐": 2334,
+ "含量": 2335,
+ "过少": 2336,
+ "溶解": 2337,
+ "逐渐": 2338,
+ "凝聚": 2339,
+ "本质": 2340,
+ "内在": 2341,
+ "肝": 2342,
+ "胆": 2343,
+ "代谢": 2344,
+ "异常": 2345,
+ "从而": 2346,
+ "进一步": 2347,
+ "恶化": 2348,
+ "循环": 2349,
+ "吸收": 2350,
+ "多余": 2351,
+ "增多": 2352,
+ "休克": 2353,
+ "急性": 2354,
+ "胆囊炎": 2355,
+ "胰腺炎": 2356,
+ "常见": 2357,
+ "并发症": 2358,
+ "几种": 2359,
+ "中毒": 2360,
+ "胆道": 2361,
+ "梗阻": 2362,
+ "细菌": 2363,
+ "毒素": 2364,
+ "右": 2365,
+ "上腹": 2366,
+ "疼痛": 2367,
+ "黄疸": 2368,
+ "高热": 2369,
+ "面色苍白": 2370,
+ "四肢": 2371,
+ "冰冷": 2372,
+ "血压": 2373,
+ "出血": 2374,
+ "胆管": 2375,
+ "发炎": 2376,
+ "脓肿": 2377,
+ "侵蚀": 2378,
+ "血管": 2379,
+ "剧烈": 2380,
+ "绞痛": 2381,
+ "吐血": 2382,
+ "严重者": 2383,
+ "向上": 2384,
+ "扩散": 2385,
+ "寒战": 2386,
+ "全身": 2387,
+ "乏力": 2388,
+ "胆囊": 2389,
+ "坏死": 2390,
+ "穿孔": 2391,
+ "腹膜炎": 2392,
+ "一旦": 2393,
+ "脓性": 2394,
+ "流入": 2395,
+ "腹腔": 2396,
+ "尤其": 2397,
+ "腹痛": 2398,
+ "加剧": 2399,
+ "腹肌": 2400,
+ "压痛": 2401,
+ "腹": 2402,
+ "紧张": 2403,
+ "进货": 2404,
+ "街": 2405,
+ "那些": 2406,
+ "大批": 2407,
+ "试试": 2408,
+ "广州": 2409,
+ "西路": 2410,
+ "工厂": 2411,
+ "库存": 2412,
+ "辐射": 2413,
+ "防护": 2414,
+ "通常": 2415,
+ "防辐射": 2416,
+ "铅": 2417,
+ "而成": 2418,
+ "板材": 2419,
+ "用于": 2420,
+ "环境": 2421,
+ "施工": 2422,
+ "医用": 2423,
+ "X光": 2424,
+ "CT": 2425,
+ "室": 2426,
+ "射线": 2427,
+ "隔音": 2428,
+ "材料": 2429,
+ "抵挡": 2430,
+ "应用": 2431,
+ "医学": 2432,
+ "研究": 2433,
+ "工程": 2434,
+ "必不可少": 2435,
+ "保障": 2436,
+ "广泛应用": 2437,
+ "锅炉": 2438,
+ "压力": 2439,
+ "管道": 2440,
+ "航空航天": 2441,
+ "机械": 2442,
+ "军工": 2443,
+ "电力": 2444,
+ "电子": 2445,
+ "多个": 2446,
+ "行业": 2447,
+ "工作者": 2448,
+ "受": 2449,
+ "危害": 2450,
+ "现今": 2451,
+ "超": 2452,
+ "同类": 2453,
+ "进口": 2454,
+ "可减轻": 2455,
+ "三十": 2456,
+ "重量": 2457,
+ "外观": 2458,
+ "性能": 2459,
+ "更佳": 2460,
+ "心疼": 2461,
+ "拜托": 2462,
+ "看得": 2463,
+ "太少": 2464,
+ "争取": 2465,
+ "不得了": 2466,
+ "难道": 2467,
+ "男生": 2468,
+ "美女": 2469,
+ "越是": 2470,
+ "女神": 2471,
+ "且不说": 2472,
+ "找个": 2473,
+ "女朋友": 2474,
+ "一辈子": 2475,
+ "暗恋": 2476,
+ "幼稚": 2477,
+ "值得": 2478,
+ "保护": 2479,
+ "份": 2480,
+ "一生": 2481,
+ "机会": 2482,
+ "放弃": 2483,
+ "贷款": 2484,
+ "今年": 2485,
+ "好多": 2486,
+ "收益": 2487,
+ "25%": 2488,
+ "八月": 2489,
+ "景": 2490,
+ "明年": 2491,
+ "投资": 2492,
+ "打算": 2493,
+ "些": 2494,
+ "风险": 2495,
+ "小点": 2496,
+ "怕": 2497,
+ "银行": 2498,
+ "俺": 2499,
+ "贷": 2500,
+ "到手": 2501,
+ "麻烦": 2502,
+ "15": 2503,
+ "万": 2504,
+ "利息": 2505,
+ "赚": 2506,
+ "一年": 2507,
+ "15%": 2508,
+ "20%": 2509,
+ "太难": 2510,
+ "这年头": 2511,
+ "毛色": 2512,
+ "为何": 2513,
+ "名称": 2514,
+ "非洲": 2515,
+ "后腿": 2516,
+ "短": 2517,
+ "狗": 2518,
+ "耳朵": 2519,
+ "2007": 2520,
+ "盛大": 2521,
+ "区别": 2522,
+ "软件": 2523,
+ "免费": 2524,
+ "下载": 2525,
+ "0.01": 2526,
+ "M": 2527,
+ "如题": 2528,
+ "54": 2529,
+ "中型": 2530,
+ "坦克": 2531,
+ "毫米": 2532,
+ "55": 2533,
+ "62": 2534,
+ "苏联": 2535,
+ "主板": 2536,
+ "主机": 2537,
+ "开关": 2538,
+ "故障": 2539,
+ "短路": 2540,
+ "鼻梁": 2541,
+ "难看": 2542,
+ "即使": 2543,
+ "糟糕": 2544,
+ "不妨": 2545,
+ "老是": 2546,
+ "胸闷": 2547,
+ "40": 2548,
+ "喘": 2549,
+ "讲话": 2550,
+ "气": 2551,
+ "不够": 2552,
+ "一段时间": 2553,
+ "为此": 2554,
+ "心电图": 2555,
+ "没什么": 2556,
+ "不知": 2557,
+ "主观": 2558,
+ "轻者": 2559,
+ "重者": 2560,
+ "难受": 2561,
+ "似乎": 2562,
+ "呼吸困难": 2563,
+ "器官": 2564,
+ "功能性": 2565,
+ "最早": 2566,
+ "病因": 2567,
+ "后果": 2568,
+ "一般来讲": 2569,
+ "不仅": 2570,
+ "生理性": 2571,
+ "某些": 2572,
+ "病理性": 2573,
+ "呼吸道": 2574,
+ "气管": 2575,
+ "支气管": 2576,
+ "肿瘤": 2577,
+ "狭窄": 2578,
+ "压": 2579,
+ "甲状腺肿": 2580,
+ "纵隔": 2581,
+ "肺部": 2582,
+ "肺气肿": 2583,
+ "支气管炎": 2584,
+ "哮喘": 2585,
+ "肺": 2586,
+ "气胸": 2587,
+ "心脏": 2588,
+ "先天性": 2589,
+ "心脏病": 2590,
+ "风湿性": 2591,
+ "冠心病": 2592,
+ "膈": 2593,
+ "肌": 2594,
+ "病变": 2595,
+ "症": 2596,
+ "体液": 2597,
+ "酸碱": 2598,
+ "平衡": 2599,
+ "失调": 2600,
+ "专科": 2601,
+ "积极": 2602,
+ "今天": 2603,
+ "MM": 2604,
+ "肺炎": 2605,
+ "高烧": 2606,
+ "咳嗽": 2607,
+ "小叶": 2608,
+ "未必": 2609,
+ "种": 2610,
+ "手段": 2611,
+ "确诊": 2612,
+ "血液": 2613,
+ "白细胞": 2614,
+ "计数": 2615,
+ "可达": 2616,
+ "每": 2617,
+ "20000": 2618,
+ "—": 2619,
+ "30000": 2620,
+ "中性": 2621,
+ "粒细胞": 2622,
+ "80%": 2623,
+ "x": 2624,
+ "线": 2625,
+ "本病": 2626,
+ "可见": 2627,
+ "大片": 2628,
+ "阴影": 2629,
+ "典型": 2630,
+ "分布": 2631,
+ "限于": 2632,
+ "大多数": 2633,
+ "片状": 2634,
+ "感染性": 2635,
+ "抗炎": 2636,
+ "电信": 2637,
+ "黄金": 2638,
+ "价位": 2639,
+ "350": 2640,
+ "420": 2641,
+ "做生意": 2642,
+ "本事": 2643,
+ "qq": 2644,
+ "学学": 2645,
+ "不算什么": 2646,
+ "难": 2647,
+ "两天": 2648,
+ "嘉实": 2649,
+ "稳健": 2650,
+ "分红": 2651,
+ "净值": 2652,
+ "两支": 2653,
+ "策略": 2654,
+ "有点": 2655,
+ "一支": 2656,
+ "购": 2657,
+ "指数": 2658,
+ "型基金": 2659,
+ "追踪": 2660,
+ "沪": 2661,
+ "深": 2662,
+ "后市": 2663,
+ "经济": 2664,
+ "穷": 2665,
+ "句": 2666,
+ "极端": 2667,
+ "彻底": 2668,
+ "现代汉语": 2669,
+ "词典": 2670,
+ "有关": 2671,
+ "条": 2672,
+ "原文": 2673,
+ "】": 2674,
+ "|": 2675,
+ "用尽": 2676,
+ "牌子": 2677,
+ "五一": 2678,
+ "入手": 2679,
+ "一款": 2680,
+ "娱乐": 2681,
+ "牌": 2682,
+ "丰富": 2683,
+ "MP3": 2684,
+ "录音": 2685,
+ "相册": 2686,
+ "亲自": 2687,
+ "捉": 2688,
+ "火爆": 2689,
+ "樱桃": 2690,
+ "新浪网": 2691,
+ "通": 2692,
+ "新浪": 2693,
+ "天堂": 2694,
+ "火": 2695,
+ "网": 2696,
+ "小雨": 2697,
+ "点儿": 2698,
+ "游戏": 2699,
+ "名字": 2700,
+ "评论": 2701,
+ "哈": 2702,
+ "宫颈": 2703,
+ "白斑": 2704,
+ "妇科疾病": 2705,
+ "子宫颈": 2706,
+ "部": 2707,
+ "灰白色": 2708,
+ "透明": 2709,
+ "斑块": 2710,
+ "癌变": 2711,
+ "黑色素": 2712,
+ "退化": 2713,
+ "死亡": 2714,
+ "色素": 2715,
+ "到处": 2716,
+ "两侧": 2717,
+ "呈现": 2718,
+ "乳白色": 2719,
+ "侵犯": 2720,
+ "嘴唇": 2721,
+ "手部": 2722,
+ "手臂": 2723,
+ "腿部": 2724,
+ "生殖器": 2725,
+ "放心": 2726,
+ "奖金": 2727,
+ "缴纳": 2728,
+ "个人所得税": 2729,
+ "哪位": 2730,
+ "职务": 2731,
+ "发明": 2732,
+ "取得": 2733,
+ "员工": 2734,
+ "奖励": 2735,
+ "收入": 2736,
+ "劳务": 2737,
+ "报酬": 2738,
+ "工资": 2739,
+ "所得": 2740,
+ "偶然": 2741,
+ "使用权": 2742,
+ "这句": 2743,
+ "莫名其妙": 2744,
+ "诗句": 2745,
+ "完整": 2746,
+ "如下": 2747,
+ "盆": 2748,
+ "假": 2749,
+ "记不清": 2750,
+ "时代": 2751,
+ "执着": 2752,
+ "文人": 2753,
+ "这首": 2754,
+ "太太": 2755,
+ "门外": 2756,
+ "夹": 2757,
+ "豆子": 2758,
+ "洗脚": 2759,
+ "飘": 2760,
+ "块": 2761,
+ "生姜": 2762,
+ "银子": 2763,
+ "头上": 2764,
+ "插": 2765,
+ "一朵": 2766,
+ "香": 2767,
+ "微博": 2768,
+ "类似": 2769,
+ "空间": 2770,
+ "主页": 2771,
+ "发个": 2772,
+ "消息": 2773,
+ "设置": 2774,
+ "修改": 2775,
+ "菩提": 2776,
+ "虎": 2777,
+ "龙": 2778,
+ "暴": 2779,
+ "社会主义": 2780,
+ "解放": 2781,
+ "生产力": 2782,
+ "发展": 2783,
+ "消灭": 2784,
+ "剥削": 2785,
+ "消除": 2786,
+ "打胎": 2787,
+ "上千": 2788,
+ "胚胎": 2789,
+ "发育": 2790,
+ "就诊": 2791,
+ "当地": 2792,
+ "因人而异": 2793,
+ "情形": 2794,
+ "数字": 2795,
+ "提醒": 2796,
+ "涉及": 2797,
+ "生育": 2798,
+ "结合": 2799,
+ "安全性": 2800,
+ "一家": 2801,
+ "有所不同": 2802,
+ "专业性": 2803,
+ "魔": 2804,
+ "几级": 2805,
+ "学": 2806,
+ "等级": 2807,
+ "50": 2808,
+ "港口": 2809,
+ "熟练": 2810,
+ "被动": 2811,
+ "全力": 2812,
+ "前途": 2813,
+ "`": 2814,
+ "大虾": 2815,
+ "多加": 2816,
+ "气功": 2817,
+ "练": 2818,
+ "后面": 2819,
+ "前期": 2820,
+ "很差": 2821,
+ "厉害": 2822,
+ "地下": 2823,
+ "怪": 2824,
+ "魔女": 2825,
+ "光环": 2826,
+ "入口": 2827,
+ "随机": 2828,
+ "进去": 2829,
+ "换个": 2830,
+ "试": 2831,
+ "攻防": 2832,
+ "深处": 2833,
+ "双倍": 2834,
+ "声望": 2835,
+ "第一个": 2836,
+ "礼拜": 2837,
+ "阿拉": 2838,
+ "休息": 2839,
+ "凌晨": 2840,
+ "下周": 2841,
+ "服务器": 2842,
+ "维护": 2843,
+ "页面": 2844,
+ "查看": 2845,
+ "参加": 2846,
+ "大酒店": 2847,
+ "维也纳": 2848,
+ "130": 2849,
+ "步行": 2850,
+ "加油站": 2851,
+ "站": 2852,
+ "乘坐": 2853,
+ "专线": 2854,
+ "下车": 2855,
+ "地铁": 2856,
+ "号线": 2857,
+ "南站": 2858,
+ "1.4": 2859,
+ "酒店": 2860,
+ "店": 2861,
+ "同意": 2862,
+ "认同": 2863,
+ "少数": 2864,
+ "解释": 2865,
+ "其一": 2866,
+ "竞技": 2867,
+ "象征": 2868,
+ "身份": 2869,
+ "区分": 2870,
+ "新手": 2871,
+ "小白": 2872,
+ "其二": 2873,
+ "热衷": 2874,
+ "虚荣": 2875,
+ "可耻": 2876,
+ "可笑": 2877,
+ "暂且": 2878,
+ "谈论": 2879,
+ "荣誉": 2880,
+ "征战": 2881,
+ "无双": 2882,
+ "兄弟": 2883,
+ "成果": 2884,
+ "【": 2885,
+ "譬如": 2886,
+ "上面": 2887,
+ "令人": 2888,
+ "它会": 2889,
+ "视": 2890,
+ "以至于": 2891,
+ "不配": 2892,
+ "好听": 2893,
+ "欠缺": 2894,
+ "实战": 2895,
+ "队友": 2896,
+ "默契": 2897,
+ "说白了": 2898,
+ "心中": 2899,
+ "最低": 2900,
+ "战绩": 2901,
+ "错": 2902,
+ "成都": 2903,
+ "将军": 2904,
+ "升": 2905,
+ "适应": 2906,
+ "杀人": 2907,
+ "到底": 2908,
+ "素质": 2909,
+ "光荣": 2910,
+ "称": 2911,
+ "真正": 2912,
+ "还应": 2913,
+ "具备": 2914,
+ "众人": 2915,
+ "赞同": 2916,
+ "低": 2917,
+ "耻辱": 2918,
+ "回归": 2919,
+ "自以为是": 2920,
+ "者": 2921,
+ "更加": 2922,
+ "小弟": 2923,
+ "见解": 2924,
+ "无非": 2925,
+ "一句": 2926,
+ "话": 2927,
+ "本身": 2928,
+ "善恶": 2929,
+ "硬": 2930,
+ "家教": 2931,
+ "人为": 2932,
+ "越来越少": 2933,
+ "局势": 2934,
+ "单单": 2935,
+ "站台": 2936,
+ "标题": 2937,
+ "自杀": 2938,
+ "这门": 2939,
+ "聚集": 2940,
+ "再说": 2941,
+ "这类": 2942,
+ "价钱": 2943,
+ "老百姓": 2944,
+ "意见": 2945,
+ "只能": 2946,
+ "站点": 2947,
+ "民众": 2948,
+ "反映": 2949,
+ "咯": 2950,
+ "装": 2951,
+ "美观": 2952,
+ "好看": 2953,
+ "前端": 2954,
+ "申购": 2955,
+ "代码": 2956,
+ "端": 2957,
+ "费": 2958,
+ "费率": 2959,
+ "固定": 2960,
+ "申": 2961,
+ "持有": 2962,
+ "越长": 2963,
+ "越低": 2964,
+ "联赛": 2965,
+ "足彩": 2966,
+ "延期": 2967,
+ "比赛": 2968,
+ "310": 2969,
+ "北京": 2970,
+ "日": 2971,
+ "上午": 2972,
+ "发布": 2973,
+ "通知": 2974,
+ "期": 2975,
+ "计算": 2976,
+ "字": 2977,
+ "〔": 2978,
+ "〕": 2979,
+ "120": 2980,
+ "[": 2981,
+ "]": 2982,
+ "事宜": 2983,
+ "各省": 2984,
+ "自治区": 2985,
+ "直辖市": 2986,
+ "确认": 2987,
+ "原定": 2988,
+ "致": 2989,
+ "场次": 2990,
+ "胜负": 2991,
+ "14": 2992,
+ "任选": 2993,
+ "第": 2994,
+ "全场": 2995,
+ "进球": 2996,
+ "发行": 2997,
+ "管理": 2998,
+ "规定": 2999,
+ "决定": 3000,
+ "上述": 3001,
+ "比赛结果": 3002,
+ "为准": 3003,
+ "均": 3004,
+ "信息": 3005,
+ "仍": 3006,
+ "同期": 3007,
+ "十二月": 3008,
+ "一日": 3009,
+ "今晚": 3010,
+ "哪能": 3011,
+ "看到": 3012,
+ "查询": 3013,
+ "剩余": 3014,
+ "点数": 3015,
+ "第一种": 3016,
+ "看见": 3017,
+ "第二种": 3018,
+ "见": 3019,
+ "下图": 3020,
+ "礼物": 3021,
+ "玩具": 3022,
+ "43": 3023,
+ "41": 3024,
+ "115": 3025,
+ "5": 3026,
+ "妖": 3027,
+ "加点": 3028,
+ "刀": 3029,
+ "不敢": 3030,
+ "级别": 3031,
+ "智": 3032,
+ "据说": 3033,
+ "无敌": 3034,
+ "弓": 3035,
+ "攻击": 3036,
+ "全部": 3037,
+ "入味": 3038,
+ "用料": 3039,
+ "牛肉": 3040,
+ "末": 3041,
+ "豆瓣酱": 3042,
+ "酱油": 3043,
+ "豆": 3044,
+ "葱": 3045,
+ "姜": 3046,
+ "蒜": 3047,
+ "共": 3048,
+ "少许": 3049,
+ "克": 3050,
+ "75": 3051,
+ "切成": 3052,
+ "l": 3053,
+ "焯": 3054,
+ "炒锅": 3055,
+ "上火": 3056,
+ "烧热": 3057,
+ "松散": 3058,
+ "高汤": 3059,
+ "移至": 3060,
+ "出锅": 3061,
+ "咸": 3062,
+ "鲜": 3063,
+ "风味": 3064,
+ "相传": 3065,
+ "清朝": 3066,
+ "同治": 3067,
+ "年间": 3068,
+ "桥": 3069,
+ "店主": 3070,
+ "外号": 3071,
+ "陈": 3072,
+ "烹制": 3073,
+ "喜爱": 3074,
+ "名声": 3075,
+ "独到": 3076,
+ "高三": 3077,
+ "数学题": 3078,
+ "急求": 3079,
+ "在线": 3080,
+ "据": 3081,
+ "甲": 3082,
+ "乙": 3083,
+ "磁盘": 3084,
+ "病毒感染": 3085,
+ "量": 3086,
+ "y": 3087,
+ "单位": 3088,
+ "比特": 3089,
+ "数": 3090,
+ "秒": 3091,
+ "函数": 3092,
+ "e": 3093,
+ "显然": 3094,
+ ">": 3095,
+ "增长率": 3096,
+ "提炼": 3097,
+ "不等式": 3098,
+ "无视": 3099,
+ "护卫": 3100,
+ "记得": 3101,
+ "上次": 3102,
+ "pk": 3103,
+ "宠": 3104,
+ "h": 3105,
+ "打到": 3106,
+ "记错": 3107,
+ "详解": 3108,
+ "↓": 3109,
+ "前排": 3110,
+ "后排": 3111,
+ "受伤": 3112,
+ "发动": 3113,
+ "互相": 3114,
+ "角色": 3115,
+ "挂": 3116,
+ "反击": 3117,
+ "帮派": 3118,
+ "怎么弄": 3119,
+ "〖": 3120,
+ "功德": 3121,
+ "〗": 3122,
+ "累积": 3123,
+ "每周": 3124,
+ "选定": 3125,
+ "功臣": 3126,
+ "帐户": 3127,
+ "先生": 3128,
+ "各种": 3129,
+ "价值": 3130,
+ "道具": 3131,
+ "高级": 3132,
+ "套餐": 3133,
+ "成功率": 3134,
+ "兑换": 3135,
+ "失败": 3136,
+ "活力": 3137,
+ "补偿": 3138,
+ "差点": 3139,
+ "转运": 3140,
+ "好运": 3141,
+ "手写": 3142,
+ "讲义": 3143,
+ "购买": 3144,
+ "相应": 3145,
+ "家人": 3146,
+ "出事": 3147,
+ "脑子": 3148,
+ "胡思乱想": 3149,
+ "总要": 3150,
+ "忧虑": 3151,
+ "悲观": 3152,
+ "空闲": 3153,
+ "偶尔": 3154,
+ "听听": 3155,
+ "轻松": 3156,
+ "音乐": 3157,
+ "记住": 3158,
+ "百分之": 3159,
+ "90": 3160,
+ "档案": 3161,
+ "人才": 3162,
+ "部门": 3163,
+ "盖章": 3164,
+ "办理": 3165,
+ "帮帮我": 3166,
+ "街道": 3167,
+ "计划生育": 3168,
+ "办公室": 3169,
+ "实践": 3170,
+ "之内": 3171,
+ "办": 3172,
+ "反正": 3173,
+ "有空": 3174,
+ "结婚证": 3175,
+ "户口本": 3176,
+ "所在地": 3177,
+ "居委会": 3178,
+ "表": 3179,
+ "盖": 3180,
+ "章": 3181,
+ "老公": 3182,
+ "户口": 3183,
+ "一张": 3184,
+ "听课": 3185,
+ "45": 3186,
+ "理论": 3187,
+ "代办": 3188,
+ "社区": 3189,
+ "母子": 3190,
+ "元": 3191,
+ "检查一下": 3192,
+ "保健": 3193,
+ "粉红色": 3194,
+ "本本": 3195,
+ "产检": 3196,
+ "出生": 3197,
+ "带回": 3198,
+ "送": 3199,
+ "分": 3200,
+ "埃弗顿": 3201,
+ "富勒姆": 3202,
+ "维拉": 3203,
+ "斯图加": 3204,
+ "堡": 3205,
+ "拉齐奥": 3206,
+ "乌鸡": 3207,
+ "猜": 3208,
+ "换": 3209,
+ "公积金": 3210,
+ "保险": 3211,
+ "半年前": 3212,
+ "合同": 3213,
+ "到期": 3214,
+ "没法": 3215,
+ "高人": 3216,
+ "打电话": 3217,
+ "原": 3218,
+ "城市": 3219,
+ "归还": 3220,
+ "国家": 3221,
+ "不得": 3222,
+ "社会保险": 3223,
+ "证件": 3224,
+ "协商": 3225,
+ "劳动": 3226,
+ "仲裁": 3227,
+ "申请": 3228,
+ "离职": 3229,
+ "本": 3230,
+ "打出": 3231,
+ "养老保险": 3232,
+ "转移": 3233,
+ "允许": 3234,
+ "帐号": 3235,
+ "政策": 3236,
+ "自动": 3237,
+ "合并": 3238,
+ "咨询": 3239,
+ "大大": 3240,
+ "WINDOWS": 3241,
+ "委托": 3242,
+ "交易": 3243,
+ "窗口": 3244,
+ "跳出": 3245,
+ "输": 3246,
+ "插件": 3247,
+ "关闭": 3248,
+ "IE": 3249,
+ "拦截": 3250,
+ "说好": 3251,
+ "进不去": 3252,
+ "形容": 3253,
+ "气质": 3254,
+ "世界": 3255,
+ "何种": 3256,
+ "女人": 3257,
+ "词汇": 3258,
+ "丰富多彩": 3259,
+ "温柔": 3260,
+ "漂亮": 3261,
+ "可爱": 3262,
+ "清纯": 3263,
+ "成熟": 3264,
+ "优雅": 3265,
+ "浪漫": 3266,
+ "热情": 3267,
+ "魅力": 3268,
+ "内涵": 3269,
+ "什么样": 3270,
+ "能干": 3271,
+ "古典": 3272,
+ "美人": 3273,
+ "狂热": 3274,
+ "抛开": 3275,
+ "容貌": 3276,
+ "不说": 3277,
+ "单": 3278,
+ "欣赏": 3279,
+ "茉莉": 3280,
+ "花儿": 3281,
+ "依旧": 3282,
+ "绽放": 3283,
+ "绝": 3284,
+ "美": 3285,
+ "界定": 3286,
+ "素养": 3287,
+ "审美": 3288,
+ "意识": 3289,
+ "领悟": 3290,
+ "诠释": 3291,
+ "固然": 3292,
+ "引人注目": 3293,
+ "令人难忘": 3294,
+ "具有": 3295,
+ "善良": 3296,
+ "作为": 3297,
+ "潇洒": 3298,
+ "理由": 3299,
+ "男人": 3300,
+ "缺少": 3301,
+ "资质": 3302,
+ "低头": 3303,
+ "不胜": 3304,
+ "莲花": 3305,
+ "道": 3306,
+ "诗经": 3307,
+ "美好": 3308,
+ "外型": 3309,
+ "温和": 3310,
+ "加上": 3311,
+ "或许": 3312,
+ "众多": 3313,
+ "男性": 3314,
+ "心目": 3315,
+ "一首": 3316,
+ "钟": 3317,
+ "十二": 3318,
+ "声": 3319,
+ "明亮": 3320,
+ "幻影": 3321,
+ "闪亮": 3322,
+ "显得": 3323,
+ "可怜": 3324,
+ "去年": 3325,
+ "雨": 3326,
+ "那样": 3327,
+ "冷": 3328,
+ "灰色": 3329,
+ "头发": 3330,
+ "草": 3331,
+ "蓝": 3332,
+ "颤抖": 3333,
+ "心头": 3334,
+ "声音": 3335,
+ "想象": 3336,
+ "厚": 3337,
+ "布": 3338,
+ "惭愧": 3339,
+ "粗糙": 3340,
+ "很小": 3341,
+ "快乐": 3342,
+ "笑": 3343,
+ "心": 3344,
+ "由此": 3345,
+ "侧面": 3346,
+ "看出": 3347,
+ "美貌": 3348,
+ "征服": 3349,
+ "眼睛": 3350,
+ "心灵": 3351,
+ "不知不觉": 3352,
+ "足以": 3353,
+ "融化": 3354,
+ "美德": 3355,
+ "一见钟情": 3356,
+ "挑剔": 3357,
+ "盯": 3358,
+ "心里": 3359,
+ "大为": 3360,
+ "充满": 3361,
+ "憧憬": 3362,
+ "感性": 3363,
+ "理性": 3364,
+ "中来": 3365,
+ "明白": 3366,
+ "季节": 3367,
+ "变迁": 3368,
+ "轮回": 3369,
+ "将会": 3370,
+ "人间": 3371,
+ "带来": 3372,
+ "深情": 3373,
+ "温馨": 3374,
+ "和谐": 3375,
+ "忘": 3376,
+ "诱人": 3377,
+ "帧": 3378,
+ "难以": 3379,
+ "优点": 3380,
+ "特长": 3381,
+ "完美": 3382,
+ "丧失": 3383,
+ "人生": 3384,
+ "长久": 3385,
+ "伙伴": 3386,
+ "跟着": 3387,
+ "岁月": 3388,
+ "老人": 3389,
+ "绝不会": 3390,
+ "旁人": 3391,
+ "整形": 3392,
+ "韵味": 3393,
+ "实质": 3394,
+ "如此": 3395,
+ "不尽": 3396,
+ "文字描述": 3397,
+ "人人": 3398,
+ "面前": 3399,
+ "说话": 3400,
+ "包含": 3401,
+ "深刻": 3402,
+ "生硬": 3403,
+ "表演": 3404,
+ "本体": 3405,
+ "散发": 3406,
+ "可不是": 3407,
+ "真假": 3408,
+ "之分": 3409,
+ "故": 3410,
+ "骨子里": 3411,
+ "本能": 3412,
+ "相伴": 3413,
+ "终结": 3414,
+ "听到": 3415,
+ "竖": 3416,
+ "几千年": 3417,
+ "文化": 3418,
+ "传统": 3419,
+ "很多很多": 3420,
+ "有意思": 3421,
+ "悲哀": 3422,
+ "上班": 3423,
+ "几个": 3424,
+ "结婚": 3425,
+ "脾气": 3426,
+ "坏": 3427,
+ "逼": 3428,
+ "她们": 3429,
+ "动辄": 3430,
+ "婚前": 3431,
+ "不顾": 3432,
+ "形象": 3433,
+ "娶": 3434,
+ "没多久": 3435,
+ "便": 3436,
+ "折磨": 3437,
+ "小事": 3438,
+ "打架": 3439,
+ "发起": 3440,
+ "想到": 3441,
+ "字眼": 3442,
+ "独有": 3443,
+ "思考": 3444,
+ "语调": 3445,
+ "更具": 3446,
+ "感染力": 3447,
+ "马克思": 3448,
+ "最大": 3449,
+ "如今": 3450,
+ "歧视": 3451,
+ "地位": 3452,
+ "遗憾": 3453,
+ "当今": 3454,
+ "现代": 3455,
+ "社会": 3456,
+ "不得不": 3457,
+ "承认": 3458,
+ "谈到": 3459,
+ "令": 3460,
+ "男士": 3461,
+ "心痛": 3462,
+ "无奈": 3463,
+ "应当": 3464,
+ "当今社会": 3465,
+ "追求": 3466,
+ "人格": 3467,
+ "一面": 3468,
+ "何况": 3469,
+ "正如": 3470,
+ "之间": 3471,
+ "春风": 3472,
+ "忧愁": 3473,
+ "理解": 3474,
+ "关怀": 3475,
+ "无疑": 3476,
+ "爱情": 3477,
+ "巧克力": 3478,
+ "世上": 3479,
+ "男子": 3480,
+ "野": 3481,
+ "泼": 3482,
+ "粗": 3483,
+ "接触": 3484,
+ "意味着": 3485,
+ "最能": 3486,
+ "打动": 3487,
+ "尽管": 3488,
+ "不同于": 3489,
+ "平静": 3490,
+ "湖泊": 3491,
+ "是从": 3492,
+ "清风": 3493,
+ "雪花": 3494,
+ "冬季": 3495,
+ "一场": 3496,
+ "舒展": 3497,
+ "春天": 3498,
+ "纤细": 3499,
+ "手": 3500,
+ "轻轻": 3501,
+ "抚摸": 3502,
+ "愈合": 3503,
+ "青春": 3504,
+ "醒来": 3505,
+ "痛苦": 3506,
+ "甜蜜": 3507,
+ "诗意": 3508,
+ "缓缓": 3509,
+ "轻轻地": 3510,
+ "身旁": 3511,
+ "扩展": 3512,
+ "宽松": 3513,
+ "归属": 3514,
+ "特有": 3515,
+ "正是": 3516,
+ "美学": 3517,
+ "赋予": 3518,
+ "最佳": 3519,
+ "韵律": 3520,
+ "独特": 3521,
+ "加之": 3522,
+ "性情": 3523,
+ "置身于": 3524,
+ "统一": 3525,
+ "鲜明": 3526,
+ "对比": 3527,
+ "构成": 3528,
+ "一道": 3529,
+ "风景": 3530,
+ "使人": 3531,
+ "品味": 3532,
+ "着迷": 3533,
+ "微妙": 3534,
+ "美的": 3535,
+ "性感": 3536,
+ "展现": 3537,
+ "爱慕": 3538,
+ "优美": 3539,
+ "体态": 3540,
+ "流逝": 3541,
+ "总会": 3542,
+ "消瘦": 3543,
+ "抽象": 3544,
+ "美感": 3545,
+ "永恒": 3546,
+ "北方": 3547,
+ "绝世": 3548,
+ "城": 3549,
+ "国": 3550,
+ "宁": 3551,
+ "面": 3552,
+ "齿": 3553,
+ "闲": 3554,
+ "落叶": 3555,
+ "何": 3556,
+ "明珠": 3557,
+ "珊瑚": 3558,
+ "远": 3559,
+ "光彩": 3560,
+ "答案": 3561,
+ "管理员": 3562,
+ "不见": 3563,
+ "html": 3564,
+ "员": 3565,
+ "爱问": 3566,
+ "留": 3567,
+ "符合": 3568,
+ "规则": 3569,
+ "删除": 3570,
+ "阅读": 3571,
+ "网友": 3572,
+ "互助": 3573,
+ "问答": 3574,
+ "平台": 3575,
+ "参与": 3576,
+ "分享": 3577,
+ "利益": 3578,
+ "良好": 3579,
+ "法规": 3580,
+ "无关": 3581,
+ "发言": 3582,
+ "强制": 3583,
+ "提交": 3584,
+ "扣除": 3585,
+ "处罚": 3586,
+ "停用": 3587,
+ "账号": 3588,
+ "无论是": 3589,
+ "发表": 3590,
+ "承担": 3591,
+ "谨慎": 3592,
+ "共享": 3593,
+ "网络": 3594,
+ "编辑": 3595,
+ "服务": 3596,
+ "移除": 3597,
+ "举报": 3598,
+ "权利": 3599,
+ "关键点": 3600,
+ "纯": 3601,
+ "论坛": 3602,
+ "性质": 3603,
+ "例": 3604,
+ "嘻嘻": 3605,
+ "笼统": 3606,
+ "以至": 3607,
+ "回答者": 3608,
+ "无法回答": 3609,
+ "外语": 3610,
+ "说明": 3611,
+ "纯粹": 3612,
+ "网络游戏": 3613,
+ "带有": 3614,
+ "调侃": 3615,
+ "QQ号": 3616,
+ "联系方式": 3617,
+ "提问": 3618,
+ "聊聊天": 3619,
+ "找人": 3620,
+ "短时间": 3621,
+ "句型": 3622,
+ "人口": 3623,
+ "日本": 3624,
+ "韩国": 3625,
+ "实际意义": 3626,
+ "路过": 3627,
+ "顶": 3628,
+ "网上": 3629,
+ "搜": 3630,
+ "不发": 3631,
+ "种族": 3632,
+ "肤色": 3633,
+ "性取向": 3634,
+ "宗教": 3635,
+ "民族": 3636,
+ "地域": 3637,
+ "残疾": 3638,
+ "状况": 3639,
+ "回复": 3640,
+ "每位": 3641,
+ "使用者": 3642,
+ "警告": 3643,
+ "不便": 3644,
+ "敬请": 3645,
+ "见谅": 3646,
+ "更新": 3647,
+ "公告": 3648,
+ "禁止": 3649,
+ "下列": 3650,
+ "违反": 3651,
+ "现行": 3652,
+ "法律法规": 3653,
+ "仇恨": 3654,
+ "宣扬": 3655,
+ "邪教": 3656,
+ "色情": 3657,
+ "暴力": 3658,
+ "犯罪": 3659,
+ "官员": 3660,
+ "侮辱": 3661,
+ "他人": 3662,
+ "伤害": 3663,
+ "侵害": 3664,
+ "合法权益": 3665,
+ "法律": 3666,
+ "行政": 3667,
+ "宣传": 3668,
+ "广告": 3669,
+ "浏览": 3670,
+ "格式": 3671,
+ "栏目": 3672,
+ "主题": 3673,
+ "其它": 3674,
+ "当前": 3675,
+ "作": 3676,
+ "禁用": 3677,
+ "封号": 3678,
+ "重复": 3679,
+ "秩序": 3680,
+ "非常明显": 3681,
+ "转载": 3682,
+ "版权": 3683,
+ "非法": 3684,
+ "攻击性": 3685,
+ "言论": 3686,
+ "冒充": 3687,
+ "工作人员": 3688,
+ "意义": 3689,
+ "昵称": 3690,
+ "违法行为": 3691,
+ "诉讼": 3692,
+ "协助": 3693,
+ "主管": 3694,
+ "不问": 3695,
+ "田": 3696,
+ "╬": 3697,
+ "猫": 3698,
+ "游记": 3699,
+ "久": 3700,
+ "悟": 3701,
+ "统计": 3702,
+ "最快": 3703,
+ "太久": 3704,
+ "优先": 3705,
+ "内存": 3706,
+ "分配": 3707,
+ "一部分": 3708,
+ "流畅": 3709,
+ "管理器": 3710,
+ "进程": 3711,
+ "对应": 3712,
+ "程序": 3713,
+ "优先级": 3714,
+ "搞笑": 3715,
+ "妈妈": 3716,
+ "小猪": 3717,
+ "也好": 3718,
+ "小狗": 3719,
+ "猪": 3720,
+ "外人": 3721,
+ "零": 3722,
+ "鱼": 3723,
+ "武士": 3724,
+ "崇拜": 3725,
+ "歌迷": 3726,
+ "偶": 3727,
+ "偶像": 3728,
+ "开办": 3729,
+ "购物": 3730,
+ "手续": 3731,
+ "注册": 3732,
+ "08": 3733,
+ "诛": 3734,
+ "仙": 3735,
+ "新区": 3736,
+ "我想": 3737,
+ "问下": 3738,
+ "坐骑": 3739,
+ "慢": 3740,
+ "直线": 3741,
+ "划算": 3742,
+ "空中": 3743,
+ "新出": 3744,
+ "属性": 3745,
+ "加成": 3746,
+ "哺乳期": 3747,
+ "雪山": 3748,
+ "金": 3749,
+ "止痛": 3750,
+ "剂": 3751,
+ "抱": 3752,
+ "手腕": 3753,
+ "痛": 3754,
+ "喂奶": 3755,
+ "关节": 3756,
+ "错位": 3757,
+ "很痛": 3758,
+ "软组织": 3759,
+ "扭": 3760,
+ "类": 3761,
+ "药品": 3762,
+ "中药": 3763,
+ "川芎": 3764,
+ "桃仁": 3765,
+ "红花": 3766,
+ "麝香": 3767,
+ "病症": 3768,
+ "活血": 3769,
+ "消肿": 3770,
+ "风湿性关节炎": 3771,
+ "痛风": 3772,
+ "骨质增生": 3773,
+ "肢体": 3774,
+ "肿胀": 3775,
+ "神经性": 3776,
+ "头痛": 3777,
+ "风湿": 3778,
+ "关节炎": 3779,
+ "小宝宝": 3780,
+ "孕妇": 3781,
+ "用法": 3782,
+ "挤出": 3783,
+ "药剂": 3784,
+ "涂": 3785,
+ "患处": 3786,
+ "早日康复": 3787,
+ "祖": 3788,
+ "硬币": 3789,
+ "交了": 3790,
+ "小岛": 3791,
+ "宝石": 3792,
+ "PS": 3793,
+ "摧毁": 3794,
+ "偷袭": 3795,
+ "新版": 3796,
+ "指定": 3797,
+ "私密": 3798,
+ "私信": 3799,
+ "大自然": 3800,
+ "照": 3801,
+ "提前": 3802,
+ "多长时间": 3803,
+ "预约": 3804,
+ "偏": 3805,
+ "偏好": 3806,
+ "赶上": 3807,
+ "衣服": 3808,
+ "以内": 3809,
+ "分店": 3810,
+ "情绪": 3811,
+ "不定": 3812,
+ "卫生": 3813,
+ "角度": 3814,
+ "讲": 3815,
+ "穿": 3816,
+ "查找": 3817,
+ "码": 3818,
+ "QQ": 3819,
+ "临时": 3820,
+ "会话": 3821,
+ "头像": 3822,
+ "彩色": 3823,
+ "隐身": 3824,
+ "好友": 3825,
+ "而已": 3826,
+ "点开": 3827,
+ "新建": 3828,
+ "联系人": 3829,
+ "TM": 3830,
+ "输入": 3831,
+ "填": 3832,
+ "空白处": 3833,
+ "右击": 3834,
+ "简洁": 3835,
+ "列表": 3836,
+ "要选": 3837,
+ "企鹅": 3838,
+ "单击": 3839,
+ "脱发": 3840,
+ "能过": 3841,
+ "如何治": 3842,
+ "多数": 3843,
+ "锁定": 3844,
+ "头皮": 3845,
+ "萎缩": 3846,
+ "中医": 3847,
+ "对策": 3848,
+ "肾": 3849,
+ "下手": 3850,
+ "会长": 3851,
+ "会出": 3852,
+ "第二季": 3853,
+ "漫画": 3854,
+ "快要": 3855,
+ "完结": 3856,
+ "动漫": 3857,
+ "播出": 3858,
+ "率": 3859,
+ "网页": 3860,
+ "精通": 3861,
+ "运用": 3862,
+ "稍稍": 3863,
+ "重装": 3864,
+ "更改": 3865,
+ "涂料": 3866,
+ "反馈": 3867,
+ "机体": 3868,
+ "染色": 3869,
+ "错误": 3870,
+ "手动": 3871,
+ "客户端": 3872,
+ "须": 3873,
+ "计算机": 3874,
+ "文件夹": 3875,
+ "验证码": 3876,
+ "多种": 3877,
+ "比如说": 3878,
+ "途中": 3879,
+ "代理": 3880,
+ "局域网": 3881,
+ "单纯": 3882,
+ "不管怎么": 3883,
+ "绝对": 3884,
+ "传奇": 3885,
+ "G": 3886,
+ "变为": 3887,
+ "开通": 3888,
+ "忍者": 3889,
+ "想开": 3890,
+ "P": 3891,
+ "K": 3892,
+ "PK": 3893,
+ "防御": 3894,
+ "随": 3895,
+ "暗杀": 3896,
+ "生命力": 3897,
+ "忍": 3898,
+ "奇迹": 3899,
+ "仗": 3900,
+ "不算": 3901,
+ "不加": 3902,
+ "抗": 3903,
+ "石化": 3904,
+ "洁净": 3905,
+ "LZ": 3906,
+ "列举": 3907,
+ "超强": 3908,
+ "再就是": 3909,
+ "因果": 3910,
+ "练级": 3911,
+ "必备": 3912,
+ "配合": 3913,
+ "舞者": 3914,
+ "男友": 3915,
+ "相处": 3916,
+ "半年": 3917,
+ "种种原因": 3918,
+ "别扭": 3919,
+ "折腾": 3920,
+ "同事": 3921,
+ "感情": 3922,
+ "基础": 3923,
+ "动不动": 3924,
+ "动摇": 3925,
+ "生气": 3926,
+ "考察": 3927,
+ "期限": 3928,
+ "哥哥": 3929,
+ "姐姐": 3930,
+ "提出": 3931,
+ "他会": 3932,
+ "补充": 3933,
+ "仙剑": 3934,
+ "RMB": 3935,
+ "刚才": 3936,
+ "钱包": 3937,
+ "多元": 3938,
+ "新车": 3939,
+ "转向": 3940,
+ "好不好": 3941,
+ "充": 3942,
+ "72": 3943,
+ "1200": 3944,
+ "总共": 3945,
+ "144": 3946,
+ "徽章": 3947,
+ "早上": 3948,
+ "爸妈": 3949,
+ "爷爷奶奶": 3950,
+ "买不到": 3951,
+ "冥王星": 3952,
+ "福": 3953,
+ "科斯": 3954,
+ "顶级": 3955,
+ "不怕": 3956,
+ "马丁": 3957,
+ "葡萄": 3958,
+ "花": 3959,
+ "既然": 3960,
+ "买好": 3961,
+ "刷": 3962,
+ "记录": 3963,
+ "掉": 3964,
+ "PD": 3965,
+ "创造": 3966,
+ "官方": 3967,
+ "父": 3968,
+ "回来": 3969,
+ "炒": 3970,
+ "销量": 3971,
+ "杀毒软件": 3972,
+ "瑞星": 3973,
+ "相比": 3974,
+ "麦": 3975,
+ "复杂": 3976,
+ "凑合": 3977,
+ "信任": 3978,
+ "卡巴": 3979,
+ "杀毒": 3980,
+ "安全卫士": 3981,
+ "自带": 3982,
+ "首要": 3983,
+ "干嘛": 3984,
+ "毒": 3985,
+ "强调": 3986,
+ "只会": 3987,
+ "没用": 3988,
+ "f": 3989,
+ "绝对值": 3990,
+ "导": 3991,
+ "如图": 3992,
+ "嗯": 3993,
+ "几何": 3994,
+ "直观": 3995,
+ "角度看": 3996,
+ "图像": 3997,
+ "沿": 3998,
+ "翻": 3999,
+ "导数": 4000,
+ "表明": 4001,
+ "一侧": 4002,
+ "另一侧": 4003,
+ "不变": 4004,
+ "'": 4005,
+ "猫咪": 4006,
+ "谈谈": 4007,
+ "cat": 4008,
+ "兔子": 4009,
+ "and": 4010,
+ "携带": 4011,
+ "幼虫": 4012,
+ "梳理": 4013,
+ "时会": 4014,
+ "传染病": 4015,
+ "菌": 4016,
+ "肚子": 4017,
+ "拉稀": 4018,
+ "点点": 4019,
+ "成虫": 4020,
+ "小猫": 4021,
+ "贫血": 4022,
+ "咬伤": 4023,
+ "过敏": 4024,
+ "皮肤病": 4025,
+ "痒": 4026,
+ "疙瘩": 4027,
+ "往往": 4028,
+ "红肿": 4029,
+ "咬": 4030,
+ "那时": 4031,
+ "女儿": 4032,
+ "培养": 4033,
+ "一粒": 4034,
+ "棕": 4035,
+ "黑色": 4036,
+ "细细": 4037,
+ "打着": 4038,
+ "细": 4039,
+ "屎": 4040,
+ "脚踝": 4041,
+ "上用": 4042,
+ "梳子": 4043,
+ "梳": 4044,
+ "消化": 4045,
+ "逗号": 4046,
+ "水里": 4047,
+ "上会": 4048,
+ "血色": 4049,
+ "棕色": 4050,
+ "生命周期": 4051,
+ "住": 4052,
+ "宿主": 4053,
+ "吸血": 4054,
+ "产卵": 4055,
+ "卵": 4056,
+ "去过": 4057,
+ "地毯": 4058,
+ "到来": 4059,
+ "二氧化碳": 4060,
+ "震动": 4061,
+ "两年": 4062,
+ "天内": 4063,
+ "暖气": 4064,
+ "杀死": 4065,
+ "杀灭": 4066,
+ "市场": 4067,
+ "有效期": 4068,
+ "各不相同": 4069,
+ "立刻": 4070,
+ "吸尘器": 4071,
+ "袋子": 4072,
+ "扔掉": 4073,
+ "大大减少": 4074,
+ "房子": 4075,
+ "长成": 4076,
+ "污染": 4077,
+ "床": 4078,
+ "长效": 4079,
+ "房屋": 4080,
+ "一步": 4081,
+ "加以": 4082,
+ "缝隙": 4083,
+ "墙角": 4084,
+ "吸": 4085,
+ "遵循": 4086,
+ "出没": 4087,
+ "太阳": 4088,
+ "晒": 4089,
+ "宠物": 4090,
+ "外出": 4091,
+ "选用": 4092,
+ "断断续续": 4093,
+ "坚持": 4094,
+ "周围": 4095,
+ "更换": 4096,
+ "有限": 4097,
+ "脖子": 4098,
+ "国内": 4099,
+ "篇文章": 4100,
+ "提到": 4101,
+ "酯": 4102,
+ "拟": 4103,
+ "有机": 4104,
+ "阿": 4105,
+ "不宜": 4106,
+ "舔": 4107,
+ "圈": 4108,
+ "厌食": 4109,
+ "洗掉": 4110,
+ "无效": 4111,
+ "国产": 4112,
+ "机理": 4113,
+ "迅速": 4114,
+ "渗透到": 4115,
+ "皮下": 4116,
+ "药效": 4117,
+ "持续时间": 4118,
+ "严格": 4119,
+ "超出": 4120,
+ "说明书": 4121,
+ "皮肤过敏": 4122,
+ "贵": 4123,
+ "国外": 4124,
+ "无害": 4125,
+ "孵化": 4126,
+ "喂": 4127,
+ "六个月": 4128,
+ "注射": 4129,
+ "激素": 4130,
+ "2000": 4131,
+ "by": 4132,
+ "达": 4133,
+ "拿来": 4134,
+ "做成": 4135,
+ "有毒": 4136,
+ "化学物质": 4137,
+ "麻醉": 4138,
+ "正在": 4139,
+ "不让": 4140,
+ "传染": 4141,
+ "培训班": 4142,
+ "工程师": 4143,
+ "首页": 4144,
+ "课程": 4145,
+ "师资": 4146,
+ "校园": 4147,
+ "授课": 4148,
+ "报名": 4149,
+ "热线": 4150,
+ "010": 4151,
+ "机构": 4152,
+ "北京市": 4153,
+ "分校": 4154,
+ "招生": 4155,
+ "}": 4156,
+ "需": 4157,
+ "原价": 4158,
+ "报价": 4159,
+ "教育": 4160,
+ "学院": 4161,
+ "直属": 4162,
+ "全民": 4163,
+ "事业单位": 4164,
+ "位于": 4165,
+ "成立": 4166,
+ "规模": 4167,
+ "教学质量": 4168,
+ "合作": 4169,
+ "开设": 4170,
+ "中小学": 4171,
+ "唯一": 4172,
+ "设计": 4173,
+ "动画": 4174,
+ "艺术": 4175,
+ "澳大利亚": 4176,
+ "研究院": 4177,
+ "多媒体": 4178,
+ "案例": 4179,
+ "需求": 4180,
+ "域": 4181,
+ "DC": 4182,
+ "树": 4183,
+ "森林": 4184,
+ "解决方案": 4185,
+ "结构": 4186,
+ "邮件地址": 4187,
+ "传递": 4188,
+ "邮件": 4189,
+ "协议": 4190,
+ "邮箱": 4191,
+ "特性": 4192,
+ "垃圾邮件": 4193,
+ "防范": 4194,
+ "构建": 4195,
+ "分布式": 4196,
+ "办公": 4197,
+ "VPN": 4198,
+ "路由": 4199,
+ "Internet": 4200,
+ "线路": 4201,
+ "5000": 4202,
+ "价": 4203,
+ "备": 4204,
+ "注": 4205,
+ "限": 4206,
+ "点至": 4207,
+ "累计": 4208,
+ "小说": 4209,
+ "傻": 4210,
+ "桌面": 4211,
+ "呃": 4212,
+ "资料": 4213,
+ "链接": 4214,
+ "页": 4215,
+ "稍微": 4216,
+ "盗版": 4217,
+ "申报": 4218,
+ "抵": 4219,
+ "本月": 4220,
+ "减去": 4221,
+ "抵扣": 4222,
+ "扣": 4223,
+ "税款": 4224,
+ "合计": 4225,
+ "税收": 4226,
+ "入": 4227,
+ "我要": 4228,
+ "税": 4229,
+ "增值税": 4230,
+ "附加": 4231,
+ "1982": 4232,
+ "22": 4233,
+ "星座": 4234,
+ "阴历": 4235,
+ "巨蟹座": 4236,
+ "泰": 4237,
+ "韩": 4238,
+ "正品": 4239,
+ "护肤品": 4240,
+ "代购": 4241,
+ "不少": 4242,
+ "顺": 4243,
+ "泰国": 4244,
+ "缓慢": 4245,
+ "黄连": 4246,
+ "解毒": 4247,
+ "生病": 4248,
+ "辣椒": 4249,
+ "抽烟": 4250,
+ "清热解毒": 4251,
+ "蔬菜": 4252,
+ "绿茶": 4253,
+ "每年": 4254,
+ "快到": 4255,
+ "预防": 4256,
+ "热": 4257,
+ "中成药": 4258,
+ "地黄丸": 4259,
+ "调理": 4260,
+ "流鼻血": 4261,
+ "烧": 4262,
+ "避免": 4263,
+ "频繁": 4264,
+ "查": 4265,
+ "血常规": 4266,
+ "多喝水": 4267,
+ "相关性": 4268,
+ "Ⅱ": 4269,
+ "持股": 4270,
+ "最小": 4271,
+ "风格": 4272,
+ "投": 4273,
+ "阿尔法": 4274,
+ "优势": 4275,
+ "大盘": 4276,
+ "成长": 4277,
+ "组合": 4278,
+ "够": 4279,
+ "几只": 4280,
+ "业绩": 4281,
+ "银色": 4282,
+ "黎明": 4283,
+ "亡灵": 4284,
+ "怪物": 4285,
+ "换取": 4286,
+ "TL": 4287,
+ "ST": 4288,
+ "BOSS": 4289,
+ "提高": 4290,
+ "瘟疫": 4291,
+ "教堂": 4292,
+ "符文": 4293,
+ "剪": 4294,
+ "短发": 4295,
+ "发质": 4296,
+ "软": 4297,
+ "发型": 4298,
+ "图片": 4299,
+ "完毕": 4300,
+ "I": 4301,
+ "E": 4302,
+ "双击": 4303,
+ "大区": 4304,
+ "登陆": 4305,
+ "物理": 4306,
+ "加速度": 4307,
+ "射": 4308,
+ "子弹": 4309,
+ "成正比": 4310,
+ "最高点": 4311,
+ "落": 4312,
+ "最大值": 4313,
+ "定律": 4314,
+ "m": 4315,
+ "此时": 4316,
+ "G": 4317,
+ "13": 4318,
+ "大城市": 4319,
+ "生日礼物": 4320,
+ "mp3": 4321,
+ "一双": 4322,
+ "乔丹": 4323,
+ "运动鞋": 4324,
+ "补丁": 4325,
+ "版本": 4326,
+ "底": 4327,
+ "那位": 4328,
+ "老大": 4329,
+ "解说": 4330,
+ "不行": 4331,
+ "算命": 4332,
+ "命": 4333,
+ "恐惧": 4334,
+ "楼上": 4335,
+ "好事": 4336,
+ "最起码": 4337,
+ "佛": 4338,
+ "皇帝": 4339,
+ "武则天": 4340,
+ "虔诚": 4341,
+ "佛教徒": 4342,
+ "某种意义": 4343,
+ "法": 4344,
+ "遭遇": 4345,
+ "今": 4346,
+ "如来": 4347,
+ "真实": 4348,
+ "义": 4349,
+ "前要": 4350,
+ "念": 4351,
+ "信仰": 4352,
+ "长寿": 4353,
+ "金刚": 4354,
+ "身": 4355,
+ "坚固": 4356,
+ "力": 4357,
+ "究竟": 4358,
+ "众生": 4359,
+ "出自": 4360,
+ "品质": 4361,
+ "换句话说": 4362,
+ "聪明": 4363,
+ "说到底": 4364,
+ "带给": 4365,
+ "偷": 4366,
+ "推开": 4367,
+ "佛教": 4368,
+ "朝": 4369,
+ "全新": 4370,
+ "更有意义": 4371,
+ "碰巧": 4372,
+ "几句": 4373,
+ "缘分": 4374,
+ "网址": 4375,
+ "愿": 4376,
+ "阿弥陀佛": 4377,
+ "电子商务": 4378,
+ "买点": 4379,
+ "方便": 4380,
+ "开放": 4381,
+ "58": 4382,
+ "银行卡": 4383,
+ "信誉": 4384,
+ "出过": 4385,
+ "值班": 4386,
+ "投诉": 4387,
+ "即可": 4388,
+ "腰疼": 4389,
+ "腰椎": 4390,
+ "尿常规": 4391,
+ "进不了": 4392,
+ "文件": 4393,
+ "退出": 4394,
+ "界面": 4395,
+ "告知": 4396,
+ "稳定": 4397,
+ "路径": 4398,
+ "windows": 4399,
+ "残留": 4400,
+ "添加": 4401,
+ "exe": 4402,
+ "再次": 4403,
+ "后台": 4404,
+ "update": 4405,
+ "del": 4406,
+ "选项": 4407,
+ "250": 4408,
+ "150": 4409,
+ "芹菜": 4410,
+ "干辣椒": 4411,
+ "豆瓣": 4412,
+ "味精": 4413,
+ "姜片": 4414,
+ "清汤": 4415,
+ "制作方法": 4416,
+ "刺": 4417,
+ "薄片": 4418,
+ "装入": 4419,
+ "碗": 4420,
+ "料酒": 4421,
+ "拌匀": 4422,
+ "6.5": 4423,
+ "花椒": 4424,
+ "炸": 4425,
+ "出色": 4426,
+ "捞出": 4427,
+ "剁": 4428,
+ "锅内": 4429,
+ "原油": 4430,
+ "装盘": 4431,
+ "汤汁": 4432,
+ "粘稠": 4433,
+ "稍": 4434,
+ "渣": 4435,
+ "白菜": 4436,
+ "锅中": 4437,
+ "不开": 4438,
+ "肉片": 4439,
+ "筷子": 4440,
+ "装配": 4441,
+ "料": 4442,
+ "盘": 4443,
+ "撒上": 4444,
+ "随即": 4445,
+ "浓厚": 4446,
+ "麻辣": 4447,
+ "香味": 4448,
+ "道菜": 4449,
+ "技术性": 4450,
+ "难度": 4451,
+ "辅料": 4452,
+ "定": 4453,
+ "酸菜": 4454,
+ "原料": 4455,
+ "中段": 4456,
+ "一袋": 4457,
+ "洗洗": 4458,
+ "乐": 4459,
+ "豆芽": 4460,
+ "生菜": 4461,
+ "放进去": 4462,
+ "四川": 4463,
+ "若干": 4464,
+ "依据": 4465,
+ "口味": 4466,
+ "淀粉": 4467,
+ "放过": 4468,
+ "现成": 4469,
+ "可用": 4470,
+ "鱼片": 4471,
+ "一边": 4472,
+ "待用": 4473,
+ "切丝": 4474,
+ "两段": 4475,
+ "两三个": 4476,
+ "翻炒": 4477,
+ "一会": 4478,
+ "加水": 4479,
+ "盖上": 4480,
+ "锅盖": 4481,
+ "分开": 4482,
+ "盖子": 4483,
+ "煮开": 4484,
+ "闻到": 4485,
+ "尝尝": 4486,
+ "葱花": 4487,
+ "起锅": 4488,
+ "裹": 4489,
+ "嫩": 4490,
+ "好吃": 4491,
+ "同样": 4492,
+ "车型": 4493,
+ "全是": 4494,
+ "怎": 4495,
+ "麽": 4496,
+ "事儿": 4497,
+ "行走": 4498,
+ "轮子": 4499,
+ "扭矩": 4500,
+ "输出": 4501,
+ "可变": 4502,
+ "路面": 4503,
+ "浪费": 4504,
+ "扭力": 4505,
+ "车轮": 4506,
+ "正统": 4507,
+ "H2": 4508,
+ "卫士": 4509,
+ "显卡": 4510,
+ "画面": 4511,
+ "最小化": 4512,
+ "降到": 4513,
+ "最差": 4514,
+ "极限": 4515,
+ "特工": 4516,
+ "直升机": 4517,
+ "光头": 4518,
+ "白人": 4519,
+ "黑人": 4520,
+ "越狱": 4521,
+ "一架": 4522,
+ "右侧": 4523,
+ "躺": 4524,
+ "昏迷": 4525,
+ "一针": 4526,
+ "一集": 4527,
+ "驾驶员": 4528,
+ "第一集": 4529,
+ "李": 4530,
+ "编写": 4531,
+ "文学史": 4532,
+ "史": 4533,
+ "十分": 4534,
+ "感谢": 4535,
+ "上下": 4536,
+ "代": 4537,
+ "上传": 4538,
+ "点卡": 4539,
+ "华东": 4540,
+ "鼠标": 4541,
+ "滚": 4542,
+ "挽回": 4543,
+ "转过": 4544,
+ "客服": 4545,
+ "提": 4546,
+ "耐心": 4547,
+ "苹果": 4548,
+ "壳": 4549,
+ "洛克": 4550,
+ "要说": 4551,
+ "注重": 4552,
+ "差异化": 4553,
+ "民法": 4554,
+ "选择题": 4555,
+ "有限责任": 4556,
+ "社团": 4557,
+ "法人": 4558,
+ "公益": 4559,
+ "态度": 4560,
+ "怪怪的": 4561,
+ "联系": 4562,
+ "立即": 4563,
+ "隔": 4564,
+ "不理": 4565,
+ "样子": 4566,
+ "缠": 4567,
+ "白": 4568,
+ "宝贝": 4569,
+ "磨牙": 4570,
+ "晚": 4571,
+ "每天晚上": 4572,
+ "爸": 4573,
+ "毛病": 4574,
+ "遗传": 4575,
+ "消化不良": 4576,
+ "蛔虫": 4577,
+ "小儿": 4578,
+ "散": 4579,
+ "上要": 4580,
+ "做些": 4581,
+ "易消化": 4582,
+ "肠蠕动": 4583,
+ "较慢": 4584,
+ "氏": 4585,
+ "纽": 4586,
+ "肠道": 4587,
+ "Q": 4588,
+ "币": 4589,
+ "天下": 4590,
+ "午餐": 4591,
+ "号称": 4592,
+ "骗人": 4593,
+ "人气": 4594,
+ "盗": 4595,
+ "官方网站": 4596,
+ "举行": 4597,
+ "投票": 4598,
+ "赠送": 4599,
+ "收获": 4600,
+ "层": 4601,
+ "NPC": 4602,
+ "总之": 4603,
+ "N": 4604,
+ "道士": 4605,
+ "招": 4606,
+ "狗狗": 4607,
+ "心情": 4608,
+ "从不": 4609,
+ "内向": 4610,
+ "高兴": 4611,
+ "无聊": 4612,
+ "当兵": 4613,
+ "上学": 4614,
+ "网吧": 4615,
+ "没意思": 4616,
+ "以下几点": 4617,
+ "离开": 4618,
+ "亲朋好友": 4619,
+ "迷茫": 4620,
+ "千万": 4621,
+ "饮用水": 4622,
+ "烧开": 4623,
+ "生成": 4624,
+ "致癌": 4625,
+ "胺": 4626,
+ "一定量": 4627,
+ "增高": 4628,
+ "血红蛋白": 4629,
+ "氧化": 4630,
+ "缺氧": 4631,
+ "窒息": 4632,
+ "北美洲": 4633,
+ "西北": 4634,
+ "仅次于": 4635,
+ "北面": 4636,
+ "加拿大": 4637,
+ "湖面": 4638,
+ "面积": 4639,
+ "平方公里": 4640,
+ "深度": 4641,
+ "1.2": 4642,
+ "河流": 4643,
+ "注入": 4644,
+ "岛屿": 4645,
+ "岛": 4646,
+ "公园": 4647,
+ "波斯": 4648,
+ "群岛": 4649,
+ "稀少": 4650,
+ "水质": 4651,
+ "清澈": 4652,
+ "季节性": 4653,
+ "旅游": 4654,
+ "矿物": 4655,
+ "人工": 4656,
+ "法国": 4657,
+ "探险家": 4658,
+ "取自": 4659,
+ "法语": 4660,
+ "意": 4661,
+ "学历": 4662,
+ "大学生": 4663,
+ "初中生": 4664,
+ "相爱": 4665,
+ "未来": 4666,
+ "亲戚": 4667,
+ "估计": 4668,
+ "媳妇": 4669,
+ "养活": 4670,
+ "念头": 4671,
+ "‘": 4672,
+ "寒": 4673,
+ "’": 4674,
+ "退休": 4675,
+ "不知所措": 4676,
+ "帮帮忙": 4677,
+ "身体健康": 4678,
+ "副": 4679,
+ "职称": 4680,
+ "高校": 4681,
+ "图书馆": 4682,
+ "除去": 4683,
+ "打球": 4684,
+ "可行": 4685,
+ "方案": 4686,
+ "种种": 4687,
+ "综合征": 4688,
+ "克服": 4689,
+ "乐趣": 4690,
+ "生机": 4691,
+ "忙碌": 4692,
+ "老年人": 4693,
+ "当做": 4694,
+ "自已": 4695,
+ "集体": 4696,
+ "协会": 4697,
+ "保持良好": 4698,
+ "人际关系": 4699,
+ "思想家": 4700,
+ "哲学家": 4701,
+ "有事": 4702,
+ "得意": 4703,
+ "从中": 4704,
+ "益处": 4705,
+ "度过": 4706,
+ "晚年": 4707,
+ "生意": 4708,
+ "人家": 4709,
+ "打工": 4710,
+ "做点": 4711,
+ "帮忙": 4712,
+ "新兴": 4713,
+ "创业者": 4714,
+ "们": 4715,
+ "青睐": 4716,
+ "深受": 4717,
+ "AA": 4718,
+ "挺不错": 4719,
+ "脐带": 4720,
+ "急": 4721,
+ "B超": 4722,
+ "周": 4723,
+ "觉": 4724,
+ "姐妹": 4725,
+ "当初": 4726,
+ "怀": 4727,
+ "胎心": 4728,
+ "胎动": 4729,
+ "绕": 4730,
+ "劲": 4731,
+ "顺产": 4732,
+ "太大": 4733,
+ "多月": 4734,
+ "照片": 4735,
+ "半月": 4736,
+ "卢森堡": 4737,
+ "公国": 4738,
+ "作者": 4739,
+ "未知": 4740,
+ "The": 4741,
+ "1993": 4742,
+ "南斯拉夫": 4743,
+ "官方语言": 4744,
+ "通用": 4745,
+ "德语": 4746,
+ "民间": 4747,
+ "口语": 4748,
+ "居民": 4749,
+ "信奉": 4750,
+ "天主教": 4751,
+ "首都": 4752,
+ "西北部": 4753,
+ "德国": 4754,
+ "比利时": 4755,
+ "接壤": 4756,
+ "属": 4757,
+ "海洋": 4758,
+ "大陆": 4759,
+ "气候": 4760,
+ "平均气温": 4761,
+ "平均": 4762,
+ "降水量": 4763,
+ "公元前": 4764,
+ "部族": 4765,
+ "居住": 4766,
+ "公元": 4767,
+ "入侵": 4768,
+ "先后": 4769,
+ "法兰克": 4770,
+ "王国": 4771,
+ "帝国": 4772,
+ "~": 4773,
+ "神圣": 4774,
+ "罗马帝国": 4775,
+ "阿登": 4776,
+ "伯爵": 4777,
+ "公爵": 4778,
+ "世纪": 4779,
+ "奥地利": 4780,
+ "统治": 4781,
+ "会议": 4782,
+ "荷兰": 4783,
+ "国王": 4784,
+ "兼任": 4785,
+ "大公": 4786,
+ "德意志": 4787,
+ "同盟": 4788,
+ "伦敦": 4789,
+ "协定": 4790,
+ "19": 4791,
+ "实行": 4792,
+ "1890": 4793,
+ "年前": 4794,
+ "卢": 4795,
+ "大战": 4796,
+ "占领": 4797,
+ "1984": 4798,
+ "次年": 4799,
+ "北约": 4800,
+ "1958": 4801,
+ "西部": 4802,
+ "北部": 4803,
+ "地势": 4804,
+ "高地": 4805,
+ "布尔": 4806,
+ "普拉": 4807,
+ "550": 4808,
+ "平原": 4809,
+ "河": 4810,
+ "中游": 4811,
+ "左岸": 4812,
+ "支流": 4813,
+ "寒冷": 4814,
+ "枯竭": 4815,
+ "覆盖率": 4816,
+ "土地": 4817,
+ "看下": 4818,
+ "十月": 4819,
+ "谢": 4820,
+ "大哥": 4821,
+ "68": 4822,
+ "体魄": 4823,
+ "防": 4824,
+ "2100": 4825,
+ "负重": 4826,
+ "武林": 4827,
+ "外传": 4828,
+ "鸟": 4829,
+ "破": 4830,
+ "游侠": 4831,
+ "增益": 4832,
+ "加满": 4833,
+ "拉开": 4834,
+ "差距": 4835,
+ "の": 4836,
+ "追杀": 4837,
+ "逃跑": 4838,
+ "抢": 4839,
+ "挂机": 4840,
+ "琢磨": 4841,
+ "符": 4842,
+ "→": 4843,
+ "剩下": 4844,
+ "无用": 4845,
+ "有钱": 4846,
+ "抗性": 4847,
+ "风": 4848,
+ "超高": 4849,
+ "沉默": 4850,
+ "乃至": 4851,
+ "差别": 4852,
+ "对手": 4853,
+ "61": 4854,
+ "持续": 4855,
+ "满级": 4856,
+ "最高": 4857,
+ "单体": 4858,
+ "800": 4859,
+ "警戒": 4860,
+ "剑": 4861,
+ "太低": 4862,
+ "用处": 4863,
+ "道德": 4864,
+ "斗志": 4865,
+ "加到": 4866,
+ "眩晕": 4867,
+ "虚弱": 4868,
+ "邪": 4869,
+ "P": 4870,
+ "柳": 4871,
+ "神仙": 4872,
+ "负面": 4873,
+ "释放": 4874,
+ "关键时刻": 4875,
+ "居家": 4876,
+ "旅行": 4877,
+ "招牌": 4878,
+ "血量": 4879,
+ "75%": 4880,
+ "施放": 4881,
+ "配有": 4882,
+ "生物": 4883,
+ "总结": 4884,
+ "指教": 4885,
+ "春雨": 4886,
+ "六月": 4887,
+ "遇": 4888,
+ "中秋": 4889,
+ "明": 4890,
+ "流产": 4891,
+ "星期": 4892,
+ "流血": 4893,
+ "还用": 4894,
+ "医": 4895,
+ "人流": 4896,
+ "不适": 4897,
+ "复查": 4898,
+ "愁": 4899,
+ "工科": 4900,
+ "博士": 4901,
+ "奋斗": 4902,
+ "省会": 4903,
+ "考前": 4904,
+ "认真": 4905,
+ "中考": 4906,
+ "考": 4907,
+ "50000": 4908,
+ "省": 4909,
+ "男孩": 4910,
+ "短信": 4911,
+ "高考": 4912,
+ "中间": 4913,
+ "咱": 4914,
+ "饭店": 4915,
+ "受不了": 4916,
+ "苦": 4917,
+ "不得已": 4918,
+ "全家": 4919,
+ "兄弟姐妹": 4920,
+ "书生": 4921,
+ "诸位": 4922,
+ "骂": 4923,
+ "通报": 4924,
+ "讲个": 4925,
+ "故事": 4926,
+ "干部": 4927,
+ "无论如何": 4928,
+ "姑娘": 4929,
+ "回家": 4930,
+ "正": 4931,
+ "开会": 4932,
+ "放下": 4933,
+ "伤心": 4934,
+ "出门": 4935,
+ "上网": 4936,
+ "叼": 4937,
+ "家伙": 4938,
+ "好人": 4939,
+ "哪有": 4940,
+ "小女孩": 4941,
+ "我刚": 4942,
+ "日子": 4943,
+ "生日": 4944,
+ "眼泪": 4945,
+ "流氓": 4946,
+ "接着": 4947,
+ "吃饭": 4948,
+ "庆祝": 4949,
+ "现实": 4950,
+ "不足": 4951,
+ "成就感": 4952,
+ "寻求": 4953,
+ "黑社会": 4954,
+ "要么": 4955,
+ "街头": 4956,
+ "混": 4957,
+ "讲过": 4958,
+ "半天": 4959,
+ "在家": 4960,
+ "领导": 4961,
+ "发生冲突": 4962,
+ "第一位": 4963,
+ "吸毒": 4964,
+ "得不到": 4965,
+ "重视": 4966,
+ "碰到": 4967,
+ "远不如": 4968,
+ "反省": 4969,
+ "尊敬": 4970,
+ "赞美": 4971,
+ "一个男孩": 4972,
+ "70": 4973,
+ "数学": 4974,
+ "下滑": 4975,
+ "外面": 4976,
+ "对待": 4977,
+ "做饭": 4978,
+ "干什么": 4979,
+ "搞": 4980,
+ "小男孩": 4981,
+ "好坏": 4982,
+ "次要": 4983,
+ "唱歌": 4984,
+ "明星": 4985,
+ "这边": 4986,
+ "总在": 4987,
+ "指责": 4988,
+ "否定": 4989,
+ "那边": 4990,
+ "基本功": 4991,
+ "英语": 4992,
+ "叫做": 4993,
+ "从根本上": 4994,
+ "谴责": 4995,
+ "回头": 4996,
+ "昨天": 4997,
+ "假如": 4998,
+ "儿女": 4999,
+ "更要": 5000,
+ "讲究": 5001,
+ "收到": 5002,
+ "男同学": 5003,
+ "纸条": 5004,
+ "妈": 5005,
+ "心事": 5006,
+ "淡化": 5007,
+ "写信": 5008,
+ "呵": 5009,
+ "事是": 5010,
+ "中学": 5011,
+ "来到": 5012,
+ "暗示": 5013,
+ "周期": 5014,
+ "应对": 5015,
+ "技巧": 5016,
+ "储备": 5017,
+ "长短": 5018,
+ "倾听": 5019,
+ "欧洲杯": 5020,
+ "小组": 5021,
+ "预选赛": 5022,
+ "九个": 5023,
+ "第一名": 5024,
+ "第二名": 5025,
+ "抽签": 5026,
+ "波兰": 5027,
+ "本次": 5028,
+ "出线": 5029,
+ "分组": 5030,
+ "乌克兰": 5031,
+ "球队": 5032,
+ "支": 5033,
+ "世界杯": 5034,
+ "排名": 5035,
+ "积分": 5036,
+ "意大利": 5037,
+ "英格兰": 5038,
+ "克罗地亚": 5039,
+ "葡萄牙": 5040,
+ "俄罗斯": 5041,
+ "希腊": 5042,
+ "捷克": 5043,
+ "瑞典": 5044,
+ "瑞士": 5045,
+ "塞尔维亚": 5046,
+ "土耳其": 5047,
+ "丹麦": 5048,
+ "斯洛伐克": 5049,
+ "罗马尼亚": 5050,
+ "档": 5051,
+ "以色列": 5052,
+ "保加利亚": 5053,
+ "芬兰": 5054,
+ "挪威": 5055,
+ "爱尔兰": 5056,
+ "苏格兰": 5057,
+ "斯洛文尼亚": 5058,
+ "拉脱维亚": 5059,
+ "匈牙利": 5060,
+ "立陶宛": 5061,
+ "白俄罗斯": 5062,
+ "威尔士": 5063,
+ "马其顿": 5064,
+ "黑山": 5065,
+ "阿尔巴尼亚": 5066,
+ "爱沙尼亚": 5067,
+ "格鲁吉亚": 5068,
+ "冰岛": 5069,
+ "亚美尼亚": 5070,
+ "哈萨克斯坦": 5071,
+ "第六": 5072,
+ "阿塞拜疆": 5073,
+ "仪式": 5074,
+ "获胜": 5075,
+ "积": 5076,
+ "平局": 5077,
+ "输球": 5078,
+ "得分": 5079,
+ "支队": 5080,
+ "顺序": 5081,
+ "b": 5082,
+ "d": 5083,
+ "客场": 5084,
+ "小组赛": 5085,
+ "g": 5086,
+ "i": 5087,
+ "公平": 5088,
+ "竞赛": 5089,
+ "j": 5090,
+ "判定": 5091,
+ "各个": 5092,
+ "五名": 5093,
+ "淘汰赛": 5094,
+ "对阵": 5095,
+ "形势": 5096,
+ "排位": 5097,
+ "参照": 5098,
+ "国家队": 5099,
+ "种子": 5100,
+ "晋级": 5101,
+ "一条": 5102,
+ "两队": 5103,
+ "回合": 5104,
+ "共计": 5105,
+ "客队": 5106,
+ "打成": 5107,
+ "点球": 5108,
+ "足协": 5109,
+ "承办": 5110,
+ "决赛": 5111,
+ "阶段": 5112,
+ "A1": 5113,
+ "B1": 5114,
+ "C1": 5115,
+ "A2": 5116,
+ "B2": 5117,
+ "A4": 5118,
+ "足球": 5119,
+ "系数": 5120,
+ "日程": 5121,
+ "采取": 5122,
+ "制": 5123,
+ "第一轮": 5124,
+ "第二轮": 5125,
+ "第三轮": 5126,
+ "交战": 5127,
+ "数都": 5128,
+ "平": 5129,
+ "四分之一": 5130,
+ "半决赛": 5131,
+ "胜者": 5132,
+ "赛程": 5133,
+ "2011": 5134,
+ "26": 5135,
+ "29": 5136,
+ "日到": 5137,
+ "SS": 5138,
+ "困惑": 5139,
+ "新技能": 5140,
+ "本来": 5141,
+ "毛毛": 5142,
+ "妖精": 5143,
+ "费劲": 5144,
+ "算了": 5145,
+ "老总": 5146,
+ "我会": 5147,
+ "凤凰": 5148,
+ "WX": 5149,
+ "MG": 5150,
+ "厕所": 5151,
+ "电视": 5152,
+ "老虎": 5153,
+ "身后": 5154,
+ "干掉": 5155,
+ "法师": 5156,
+ "别提": 5157,
+ "最强": 5158,
+ "平庸": 5159,
+ "估价": 5160,
+ "能卖": 5161,
+ "D": 5162,
+ "盾": 5163,
+ "7": 5164,
+ "W": 5165,
+ "侠": 5166,
+ "下个": 5167,
+ "加密": 5168,
+ "我用": 5169,
+ "代言": 5170,
+ "永久": 5171,
+ "隐私": 5172,
+ "动态": 5173,
+ "IP": 5174,
+ "拨号": 5175,
+ "近来": 5176,
+ "IP地址": 5177,
+ "开头": 5178,
+ "网速": 5179,
+ "才行": 5180,
+ "拨": 5181,
+ "所述": 5182,
+ "宽带": 5183,
+ "机房": 5184,
+ "服务器端": 5185,
+ "关机": 5186,
+ "开机": 5187,
+ "两台": 5188,
+ "冲突": 5189,
+ "只好": 5190,
+ "保暖": 5191,
+ "深圳": 5192,
+ "监控": 5193,
+ "摄像机": 5194,
+ "科技": 5195,
+ "有限公司": 5196,
+ "品种": 5197,
+ "摄像头": 5198,
+ "红外": 5199,
+ "帮到": 5200,
+ "买车": 5201,
+ "86": 5202,
+ "S": 5203,
+ "极速": 5204,
+ "330": 5205,
+ "开过": 5206,
+ "百万": 5207,
+ "加速": 5208,
+ "急速": 5209,
+ "天蝎": 5210,
+ "T": 5211,
+ "可否": 5212,
+ "电压": 5213,
+ "线圈": 5214,
+ "供电": 5215,
+ "同名": 5216,
+ "接入": 5217,
+ "电路": 5218,
+ "侧": 5219,
+ "一根": 5220,
+ "二次": 5221,
+ "端的": 5222,
+ "线上": 5223,
+ "源": 5224,
+ "计量": 5225,
+ "电流": 5226,
+ "用电": 5227,
+ "那有": 5228,
+ "建筑": 5229,
+ "装饰": 5230,
+ "无意": 5231,
+ "好奇": 5232,
+ "两者": 5233,
+ "党": 5234,
+ "走开": 5235,
+ "百度": 5236,
+ "室内": 5237,
+ "布置": 5238,
+ "平面": 5239,
+ "展示": 5240,
+ "建筑物": 5241,
+ "NET": 5242,
+ "源码": 5243,
+ "比尔": 5244,
+ "盖茨": 5245,
+ "战略": 5246,
+ "仍然": 5247,
+ "阐明": 5248,
+ "缘由": 5249,
+ "场景": 5250,
+ "微软": 5251,
+ "清晰": 5252,
+ "2002": 5253,
+ "后缀": 5254,
+ "着手": 5255,
+ "产品名称": 5256,
+ "2003": 5257,
+ "惟一": 5258,
+ "Visual": 5259,
+ "Studio": 5260,
+ "开发工具": 5261,
+ "事实上": 5262,
+ "代号": 5263,
+ "2005": 5264,
+ "看成": 5265,
+ "Windows": 5266,
+ "Office": 5267,
+ "一组": 5268,
+ "MSN": 5269,
+ "订阅": 5270,
+ "特征": 5271,
+ "手表": 5272,
+ "高质量": 5273,
+ "时尚": 5274,
+ "昂贵": 5275,
+ "联通": 5276,
+ "几点": 5277,
+ "解释一下": 5278,
+ "事物": 5279,
+ "连接起来": 5280,
+ "外部": 5281,
+ "Oracle": 5282,
+ "ERP": 5283,
+ "套件": 5284,
+ "PC": 5285,
+ "IT": 5286,
+ "商务": 5287,
+ "面向": 5288,
+ "Service": 5289,
+ "基于": 5290,
+ "XML": 5291,
+ "Web": 5292,
+ "整合": 5293,
+ "灵活性": 5294,
+ "创建": 5295,
+ "开发": 5296,
+ "部署": 5297,
+ "主席": 5298,
+ "Jack": 5299,
+ "竞争": 5300,
+ "竞争对手": 5301,
+ "更快": 5302,
+ "转化": 5303,
+ "既": 5304,
+ "作出": 5305,
+ "付": 5306,
+ "事实": 5307,
+ "厂商": 5308,
+ "名词": 5309,
+ "有趣": 5310,
+ "认可": 5311,
+ "不同之处": 5312,
+ "技术人员": 5313,
+ "之上": 5314,
+ "新一代": 5315,
+ "变化": 5316,
+ "高性能": 5317,
+ "应用程序": 5318,
+ "精确": 5319,
+ "公共": 5320,
+ "Language": 5321,
+ "调用": 5322,
+ "核心": 5323,
+ "For": 5324,
+ "Excel": 5325,
+ "企业级": 5326,
+ "程序开发": 5327,
+ "重用": 5328,
+ "共性": 5329,
+ "访问": 5330,
+ "日志": 5331,
+ "移动": 5332,
+ "智能": 5333,
+ "Explorer": 5334,
+ "浏览器": 5335,
+ "赞扬": 5336,
+ "票": 5337,
+ "赞": 5338,
+ "一票": 5339,
+ "堵": 5340,
+ "何必": 5341,
+ "呐喊": 5342,
+ "差劲": 5343,
+ "竟": 5344,
+ "鄙视": 5345,
+ "实际上": 5346,
+ "999": 5347,
+ "36": 5348,
+ "42": 5349,
+ "39": 5350,
+ "修": 5351,
+ "接过": 5352,
+ "北边": 5353,
+ "鬼": 5354,
+ "对话": 5355,
+ "澳洲": 5356,
+ "普通": 5357,
+ "澳": 5358,
+ "一流": 5359,
+ "门槛": 5360,
+ "名校": 5361,
+ "哪些方面": 5362,
+ "更高": 5363,
+ "误区": 5364,
+ "毕业生": 5365,
+ "good": 5366,
+ "满意度": 5367,
+ "极低": 5368,
+ "三星": 5369,
+ "评估": 5370,
+ "何为": 5371,
+ "同学": 5372,
+ "xx": 5373,
+ "分给": 5374,
+ "松": 5375,
+ "不时": 5376,
+ "HD": 5377,
+ "便会": 5378,
+ "联想": 5379,
+ "讲师": 5380,
+ "设想": 5381,
+ "相对论": 5382,
+ "抓": 5383,
+ "紧": 5384,
+ "学生会": 5385,
+ "不满": 5386,
+ "人少": 5387,
+ "激烈": 5388,
+ "困难": 5389,
+ "难得": 5390,
+ "就业": 5391,
+ "教": 5392,
+ "教给": 5393,
+ "前提": 5394,
+ "并不一定": 5395,
+ "扎实": 5396,
+ "学到": 5397,
+ "这点": 5398,
+ "假设": 5399,
+ "两人": 5400,
+ "相等": 5401,
+ "应聘": 5402,
+ "面试": 5403,
+ "名气": 5404,
+ "一块": 5405,
+ "很强": 5406,
+ "别的": 5407,
+ "来得": 5408,
+ "本文": 5409,
+ "本站": 5410,
+ "留学": 5411,
+ "讨论": 5412,
+ "拷贝": 5413,
+ "不留": 5414,
+ "卸载": 5415,
+ "魔法": 5416,
+ "优化大师": 5417,
+ "放到": 5418,
+ "回收站": 5419,
+ "清空": 5420,
+ "机器": 5421,
+ "盘中": 5422,
+ "痕迹": 5423,
+ "有过": 5424,
+ "展开": 5425,
+ "解法": 5426,
+ "行列": 5427,
+ "交换": 5428,
+ "公式": 5429,
+ "变换": 5430,
+ "激活码": 5431,
+ "excel": 5432,
+ "复制粘贴": 5433,
+ "数据量": 5434,
+ "理想": 5435,
+ "试一下": 5436,
+ "按钮": 5437,
+ "事件": 5438,
+ "声明": 5439,
+ "变量": 5440,
+ "On": 5441,
+ "Error": 5442,
+ "False": 5443,
+ "刷新": 5444,
+ "In": 5445,
+ "每条": 5446,
+ "写入": 5447,
+ "简称": 5448,
+ "To": 5449,
+ "列": 5450,
+ "If": 5451,
+ "忽略": 5452,
+ "256": 5453,
+ "金额": 5454,
+ "大写": 5455,
+ "True": 5456,
+ "财富": 5457,
+ "支付": 5458,
+ "消费": 5459,
+ "急需": 5460,
+ "5173": 5461,
+ "客户服务": 5462,
+ "为您服务": 5463,
+ "感谢您": 5464,
+ "海马": 5465,
+ "海": 5466,
+ "马": 5467,
+ "附": 5468,
+ "海藻": 5469,
+ "性生活": 5470,
+ "游泳": 5471,
+ "直立": 5472,
+ "摆动": 5473,
+ "背鳍": 5474,
+ "前进": 5475,
+ "雌": 5476,
+ "育儿": 5477,
+ "腔": 5478,
+ "用作": 5479,
+ "性功能": 5480,
+ "衰竭": 5481,
+ "つ": 5482,
+ "w": 5483,
+ "中部": 5484,
+ "t": 5485,
+ "催生": 5486,
+ "﹑": 5487,
+ "於": 5488,
+ "退": 5489,
+ "谜": 5490,
+ "英文": 5491,
+ "发音": 5492,
+ "WOW": 5493,
+ "缺失": 5494,
+ "求解": 5495,
+ "准确": 5496,
+ "3.3": 5497,
+ "版": 5498,
+ "目录": 5499,
+ "环形": 5500,
+ "跑道": 5501,
+ "每分钟": 5502,
+ "停下来": 5503,
+ "首次": 5504,
+ "追上": 5505,
+ "抱歉": 5506,
+ "大师": 5507,
+ "建筑面积": 5508,
+ "105": 5509,
+ "平米": 5510,
+ "92": 5511,
+ "餐桌": 5512,
+ "橱柜": 5513,
+ "旁边": 5514,
+ "屋子": 5515,
+ "拥挤": 5516,
+ "户型": 5517,
+ "书房": 5518,
+ "出差": 5519,
+ "周六": 5520,
+ "今天上午": 5521,
+ "不停": 5522,
+ "餐厅": 5523,
+ "阳台": 5524,
+ "客厅": 5525,
+ "暗": 5526,
+ "玻璃": 5527,
+ "房间": 5528,
+ "白天": 5529,
+ "铝合金": 5530,
+ "红线": 5531,
+ "卧室": 5532,
+ "落地": 5533,
+ "窗帘": 5534,
+ "暂时": 5535,
+ "晾": 5536,
+ "练习": 5537,
+ "英语口语": 5538,
+ "外国人": 5539,
+ "不要紧": 5540,
+ "不光": 5541,
+ "听懂": 5542,
+ "母语": 5543,
+ "人有": 5544,
+ "突破": 5545,
+ "说错": 5546,
+ "自尊": 5547,
+ "敢于": 5548,
+ "加强": 5549,
+ "新闻": 5550,
+ "听力": 5551,
+ "积累": 5552,
+ "而言": 5553,
+ "当天": 5554,
+ "单词": 5555,
+ "take": 5556,
+ "自我感觉": 5557,
+ "前些天": 5558,
+ "英语老师": 5559,
+ "很漂亮": 5560,
+ "&": 5561,
+ "X": 5562,
+ "<": 5563,
+ "取值": 5564,
+ "已知": 5565,
+ "分辨": 5566,
+ "人会": 5567,
+ "某": 5568,
+ "一再": 5569,
+ "试问": 5570,
+ "会想": 5571,
+ "迟早": 5572,
+ "资格": 5573,
+ "好比": 5574,
+ "如果说": 5575,
+ "爱上": 5576,
+ "对得起": 5577,
+ "良心": 5578,
+ "起码": 5579,
+ "不论是": 5580,
+ "所有人": 5581,
+ "丸": 5582,
+ "大葱": 5583,
+ "切碎": 5584,
+ "搅拌机": 5585,
+ "制成": 5586,
+ "形状": 5587,
+ "成型": 5588,
+ "固化": 5589,
+ "包装": 5590,
+ "订购": 5591,
+ "胶带": 5592,
+ "经营": 5593,
+ "自行车": 5594,
+ "电动车": 5595,
+ "微型": 5596,
+ "贵州": 5597,
+ "存钱": 5598,
+ "开户": 5599,
+ "存": 5600,
+ "不去": 5601,
+ "网点": 5602,
+ "象": 5603,
+ "存折": 5604,
+ "留在": 5605,
+ "这样的话": 5606,
+ "询问": 5607,
+ "填写": 5608,
+ "授权": 5609,
+ "拿到": 5610,
+ "出钱": 5611,
+ "下次": 5612,
+ "磨损": 5613,
+ "磁场": 5614,
+ "经络": 5615,
+ "不通": 5616,
+ "不信": 5617,
+ "针对性": 5618,
+ "人民": 5619,
+ "挺大": 5620,
+ "经常出现": 5621,
+ "使用寿命": 5622,
+ "机子": 5623,
+ "部件": 5624,
+ "有无": 5625,
+ "优化": 5626,
+ "硬盘": 5627,
+ "注册表": 5628,
+ "来看": 5629,
+ "硬件": 5630,
+ "电源": 5631,
+ "CPU": 5632,
+ "风扇": 5633,
+ "散热": 5634,
+ "奇怪": 5635,
+ "柴油": 5636,
+ "拖": 5637,
+ "排放": 5638,
+ "浓浓的": 5639,
+ "烟": 5640,
+ "冒出来": 5641,
+ "倍": 5642,
+ "发动机": 5643,
+ "精细": 5644,
+ "外国": 5645,
+ "降低": 5646,
+ "社交": 5647,
+ "想一想": 5648,
+ "改进": 5649,
+ "图书": 5650,
+ "杂志": 5651,
+ "多元化": 5652,
+ "心理学": 5653,
+ "开店": 5654,
+ "十年": 5655,
+ "边": 5656,
+ "跪求": 5657,
+ "肿痛": 5658,
+ "发热": 5659,
+ "受限": 5660,
+ "脊柱": 5661,
+ "食指": 5662,
+ "中指": 5663,
+ "僵硬": 5664,
+ "西药": 5665,
+ "离子": 5666,
+ "导入": 5667,
+ "紫外线": 5668,
+ "西医": 5669,
+ "尚无": 5670,
+ "对症": 5671,
+ "镇痛": 5672,
+ "麻木": 5673,
+ "族": 5674,
+ "类药物": 5675,
+ "积液": 5676,
+ "给予": 5677,
+ "局部": 5678,
+ "抽取": 5679,
+ "封闭": 5680,
+ "当选": 5681,
+ "保守": 5682,
+ "就医": 5683,
+ "寻": 5684,
+ "中线": 5685,
+ "医药": 5686,
+ "股": 5687,
+ "基本面": 5688,
+ "盘子": 5689,
+ "恶": 5690,
+ "重组": 5691,
+ "预期": 5692,
+ "近期": 5693,
+ "上升": 5694,
+ "通道": 5695,
+ "自动关机": 5696,
+ "笔记本": 5697,
+ "蓝屏": 5698,
+ "一大堆": 5699,
+ "触": 5700,
+ "动静": 5701,
+ "重新安装": 5702,
+ "排除": 5703,
+ "重装系统": 5704,
+ "维修": 5705,
+ "扬州": 5706,
+ "特产": 5707,
+ "烟花": 5708,
+ "三月": 5709,
+ "这座": 5710,
+ "园": 5711,
+ "城中": 5712,
+ "园林": 5713,
+ "秀丽": 5714,
+ "风光": 5715,
+ "悠久": 5716,
+ "少不了": 5717,
+ "备受": 5718,
+ "产地": 5719,
+ "古籍": 5720,
+ "记述": 5721,
+ "中是": 5722,
+ "一颗": 5723,
+ "高档": 5724,
+ "品": 5725,
+ "装饰品": 5726,
+ "收藏": 5727,
+ "炉": 5728,
+ "作品": 5729,
+ "仿制": 5730,
+ "青铜": 5731,
+ "造型": 5732,
+ "妙": 5733,
+ "更能": 5734,
+ "体现": 5735,
+ "题材": 5736,
+ "广泛": 5737,
+ "打破": 5738,
+ "单调": 5739,
+ "构图": 5740,
+ "景物": 5741,
+ "相结合": 5742,
+ "多层次": 5743,
+ "更是": 5744,
+ "观赏": 5745,
+ "灯": 5746,
+ "塔": 5747,
+ "花卉": 5748,
+ "壶": 5749,
+ "杯": 5750,
+ "用品": 5751,
+ "尊": 5752,
+ "技艺": 5753,
+ "精湛": 5754,
+ "色彩": 5755,
+ "绚丽": 5756,
+ "实用性": 5757,
+ "划分": 5758,
+ "啤酒": 5759,
+ "柜": 5760,
+ "套": 5761,
+ "几": 5762,
+ "罐": 5763,
+ "工艺": 5764,
+ "镶嵌": 5765,
+ "流行": 5766,
+ "地区": 5767,
+ "点缀": 5768,
+ "美化": 5769,
+ "唐代": 5770,
+ "兴盛": 5771,
+ "自古": 5772,
+ "历代": 5773,
+ "文章": 5774,
+ "诗人": 5775,
+ "演出": 5776,
+ "写下": 5777,
+ "千年": 5778,
+ "相互作用": 5779,
+ "图案": 5780,
+ "粘贴": 5781,
+ "面料": 5782,
+ "延续": 5783,
+ "直到现在": 5784,
+ "沿用": 5785,
+ "此法": 5786,
+ "艺人": 5787,
+ "密切关系": 5788,
+ "战争": 5789,
+ "后代": 5790,
+ "技师": 5791,
+ "探索": 5792,
+ "口感": 5793,
+ "韧性": 5794,
+ "一体": 5795,
+ "绿叶": 5796,
+ "甜度": 5797,
+ "色泽": 5798,
+ "甜味": 5799,
+ "适中": 5800,
+ "已成": 5801,
+ "亲友": 5802,
+ "郊区": 5803,
+ "青山": 5804,
+ "山": 5805,
+ "质地": 5806,
+ "优良": 5807,
+ "本市": 5808,
+ "四季": 5809,
+ "皆": 5810,
+ "供应": 5811,
+ "尤为": 5812,
+ "蛋黄": 5813,
+ "壮": 5814,
+ "排卵": 5815,
+ "煮熟": 5816,
+ "蛋白": 5817,
+ "一说": 5818,
+ "以此": 5819,
+ "师傅": 5820,
+ "得名": 5821,
+ "创": 5822,
+ "白糖": 5823,
+ "麦芽": 5824,
+ "手工": 5825,
+ "精制": 5826,
+ "香甜": 5827,
+ "江南": 5828,
+ "品尝": 5829,
+ "赞赏": 5830,
+ "从此": 5831,
+ "列为": 5832,
+ "四方": 5833,
+ "1927": 5834,
+ "西湖": 5835,
+ "博览会": 5836,
+ "一等奖": 5837,
+ "鸡肉": 5838,
+ "清香": 5839,
+ "商标": 5840,
+ "礼品": 5841,
+ "乡": 5842,
+ "节": 5843,
+ "鲜美": 5844,
+ "藕": 5845,
+ "明代": 5846,
+ "易于": 5847,
+ "尤": 5848,
+ "糕点": 5849,
+ "圆形": 5850,
+ "酥": 5851,
+ "改为": 5852,
+ "方形": 5853,
+ "更名": 5854,
+ "又名": 5855,
+ "面粉": 5856,
+ "麻油": 5857,
+ "香料": 5858,
+ "发酵": 5859,
+ "多层": 5860,
+ "折叠": 5861,
+ "文火": 5862,
+ "烘烤": 5863,
+ "调味": 5864,
+ "日常生活": 5865,
+ "甜": 5866,
+ "脆": 5867,
+ "四大": 5868,
+ "畅销": 5869,
+ "国内外": 5870,
+ "腌": 5871,
+ "酱": 5872,
+ "切": 5873,
+ "缸": 5874,
+ "工序": 5875,
+ "腌制": 5876,
+ "双": 5877,
+ "稀": 5878,
+ "乳": 5879,
+ "黄瓜": 5880,
+ "菜": 5881,
+ "历史悠久": 5882,
+ "清代": 5883,
+ "列入": 5884,
+ "宫廷": 5885,
+ "早晚": 5886,
+ "1903": 5887,
+ "获": 5888,
+ "三年": 5889,
+ "1911": 5890,
+ "奖章": 5891,
+ "1931": 5892,
+ "北平": 5893,
+ "1979": 5894,
+ "评为": 5895,
+ "江苏省": 5896,
+ "厂家": 5897,
+ "两家": 5898,
+ "厂": 5899,
+ "市场占有率": 5900,
+ "位居": 5901,
+ "首": 5902,
+ "宋代": 5903,
+ "水系": 5904,
+ "泉水": 5905,
+ "酿造": 5906,
+ "健身": 5907,
+ "菜系": 5908,
+ "组成部分": 5909,
+ "小吃": 5910,
+ "点心": 5911,
+ "温水": 5912,
+ "面团": 5913,
+ "面条": 5914,
+ "多变": 5915,
+ "擅长": 5916,
+ "覆盖": 5917,
+ "各式": 5918,
+ "多以": 5919,
+ "配以": 5920,
+ "趋于": 5921,
+ "新鲜": 5922,
+ "突出": 5923,
+ "兼有": 5924,
+ "浓郁": 5925,
+ "实惠": 5926,
+ "包子": 5927,
+ "翡翠": 5928,
+ "糯米": 5929,
+ "卷子": 5930,
+ "饼": 5931,
+ "火烧": 5932,
+ "桂花": 5933,
+ "糖": 5934,
+ "糕": 5935,
+ "馄饨": 5936,
+ "美食": 5937,
+ "富": 5938,
+ "社": 5939,
+ "春": 5940,
+ "新世界": 5941,
+ "电": 5942,
+ "大厦": 5943,
+ "皇宫": 5944,
+ "聚": 5945,
+ "清": 5946,
+ "一份": 5947,
+ "清新": 5948,
+ "心境": 5949,
+ "西班牙语": 5950,
+ "问问": 5951,
+ "海南": 5952,
+ "海边": 5953,
+ "海棠": 5954,
+ "湾": 5955,
+ "热门": 5956,
+ "旅游景点": 5957,
+ "交通": 5958,
+ "并不多": 5959,
+ "乘以": 5960,
+ "恰好": 5961,
+ "老二": 5962,
+ "传递信息": 5963,
+ "左下角": 5964,
+ "万分": 5965,
+ "梦到": 5966,
+ "男朋友": 5967,
+ "分不清": 5968,
+ "梦": 5969,
+ "恐怖": 5970,
+ "梦见": 5971,
+ "灾难": 5972,
+ "降临": 5973,
+ "生": 5974,
+ "少女": 5975,
+ "无能": 5976,
+ "订婚": 5977,
+ "青年": 5978,
+ "人来": 5979,
+ "提过": 5980,
+ "打扰": 5981,
+ "睡眠": 5982,
+ "事业": 5983,
+ "病人": 5984,
+ "康复": 5985,
+ "商人": 5986,
+ "失眠": 5987,
+ "睡着": 5988,
+ "妻子": 5989,
+ "入睡": 5990,
+ "夫妻": 5991,
+ "一把": 5992,
+ "剪刀": 5993,
+ "底下": 5994,
+ "时节": 5995,
+ "要少": 5996,
+ "螃蟹": 5997,
+ "姜蒜": 5998,
+ "切忌": 5999,
+ "呕吐": 6000,
+ "营养不良": 6001,
+ "心慌": 6002,
+ "记忆力": 6003,
+ "减退": 6004,
+ "四肢无力": 6005,
+ "措施": 6006,
+ "铁质": 6007,
+ "鸭": 6008,
+ "羊": 6009,
+ "肾脏": 6010,
+ "黄豆": 6011,
+ "番茄": 6012,
+ "黑木耳": 6013,
+ "香菇": 6014,
+ "紫菜": 6015,
+ "桃子": 6016,
+ "桂圆": 6017,
+ "葡萄干": 6018,
+ "祖国": 6019,
+ "早期": 6020,
+ "妊娠": 6021,
+ "寒凉": 6022,
+ "不利": 6023,
+ "堕胎": 6024,
+ "甲鱼": 6025,
+ "称为": 6026,
+ "滋阴": 6027,
+ "营养": 6028,
+ "菜肴": 6029,
+ "较强": 6030,
+ "因而": 6031,
+ "之力": 6032,
+ "更强": 6033,
+ "忌食": 6034,
+ "滑": 6035,
+ "又称": 6036,
+ "薏米": 6037,
+ "同源": 6038,
+ "之物": 6039,
+ "子宫": 6040,
+ "平滑肌": 6041,
+ "兴奋": 6042,
+ "促使": 6043,
+ "草药": 6044,
+ "次数": 6045,
+ "强度": 6046,
+ "盲目": 6047,
+ "吃喝": 6048,
+ "胡乱": 6049,
+ "损害": 6050,
+ "母体": 6051,
+ "八点": 6052,
+ "不多": 6053,
+ "脂肪": 6054,
+ "增强": 6055,
+ "血脂": 6056,
+ "升高": 6057,
+ "分解": 6058,
+ "酮": 6059,
+ "血症": 6060,
+ "倾向": 6061,
+ "脱水": 6062,
+ "头昏": 6063,
+ "蛋蛋": 6064,
+ "类食品": 6065,
+ "蛋白质": 6066,
+ "磷脂": 6067,
+ "营养素": 6068,
+ "蛋": 6069,
+ "胶": 6070,
+ "有害物质": 6071,
+ "腹胀": 6072,
+ "食欲": 6073,
+ "头晕": 6074,
+ "疲倦": 6075,
+ "高蛋白": 6076,
+ "孕期": 6077,
+ "补钙": 6078,
+ "出世": 6079,
+ "患儿": 6080,
+ "前倾": 6081,
+ "主动脉": 6082,
+ "窄": 6083,
+ "缩": 6084,
+ "健美": 6085,
+ "摄取": 6086,
+ "就够": 6087,
+ "食欲不振": 6088,
+ "早孕": 6089,
+ "减轻": 6090,
+ "学者": 6091,
+ "酸度": 6092,
+ "分裂": 6093,
+ "增殖": 6094,
+ "突变": 6095,
+ "畸形": 6096,
+ "过度": 6097,
+ "吸附": 6098,
+ "患有": 6099,
+ "综合症": 6100,
+ "浮肿": 6101,
+ "蛋白尿": 6102,
+ "晕眩": 6103,
+ "危及": 6104,
+ "母婴": 6105,
+ "六": 6106,
+ "高糖": 6107,
+ "血糖": 6108,
+ "偏高": 6109,
+ "生出": 6110,
+ "过重": 6111,
+ "发生率": 6112,
+ "剖腹产": 6113,
+ "偏低": 6114,
+ "七": 6115,
+ "服食": 6116,
+ "壁": 6117,
+ "扩张": 6118,
+ "充血": 6119,
+ "内分泌": 6120,
+ "水肿": 6121,
+ "再者": 6122,
+ "胃肠道": 6123,
+ "胃胀": 6124,
+ "便秘": 6125,
+ "八": 6126,
+ "不吃": 6127,
+ "着床": 6128,
+ "分化": 6129,
+ "染色体": 6130,
+ "断裂": 6131,
+ "停止": 6132,
+ "遗传性": 6133,
+ "弱智": 6134,
+ "另一方面": 6135,
+ "毒性": 6136,
+ "妇女": 6137,
+ "木材": 6138,
+ "煤炭": 6139,
+ "燃料": 6140,
+ "散发出": 6141,
+ "化合物": 6142,
+ "细胞核": 6143,
+ "核酸": 6144,
+ "油炸": 6145,
+ "高温": 6146,
+ "营养价值": 6147,
+ "常吃": 6148,
+ "摄入量": 6149,
+ "铝": 6150,
+ "胎盘": 6151,
+ "大脑": 6152,
+ "障碍": 6153,
+ "痴呆": 6154,
+ "胃肠功能": 6155,
+ "胃肠": 6156,
+ "胃液": 6157,
+ "机能": 6158,
+ "现代医学": 6159,
+ "饮料": 6160,
+ "添加剂": 6161,
+ "土豆": 6162,
+ "马铃薯": 6163,
+ "众所周知": 6164,
+ "发芽": 6165,
+ "警惕": 6166,
+ "播种": 6167,
+ "贮存": 6168,
+ "无脑": 6169,
+ "孕前": 6170,
+ "期内": 6171,
+ "热性": 6172,
+ "胡椒": 6173,
+ "调味品": 6174,
+ "大开": 6175,
+ "胃口": 6176,
+ "有利": 6177,
+ "勿": 6178,
+ "痔疮": 6179,
+ "山楂": 6180,
+ "本品": 6181,
+ "开胃": 6182,
+ "现已": 6183,
+ "菠菜": 6184,
+ "含铁": 6185,
+ "补血": 6186,
+ "草酸": 6187,
+ "锌": 6188,
+ "微量元素": 6189,
+ "防腐剂": 6190,
+ "婴儿": 6191,
+ "及其": 6192,
+ "营养成分": 6193,
+ "不高": 6194,
+ "尿": 6195,
+ "排出": 6196,
+ "缺锌": 6197,
+ "生长发育": 6198,
+ "为宜": 6199,
+ "饱腹": 6200,
+ "感": 6201,
+ "发胖": 6202,
+ "酸": 6203,
+ "动物": 6204,
+ "饲料": 6205,
+ "极大": 6206,
+ "特殊": 6207,
+ "加工": 6208,
+ "皮蛋": 6209,
+ "制品": 6210,
+ "丢失": 6211,
+ "禁忌": 6212,
+ "不良影响": 6213,
+ "海带": 6214,
+ "软坚散结": 6215,
+ "荸荠": 6216,
+ "忌": 6217,
+ "进食": 6218,
+ "胎": 6219,
+ "羊肉": 6220,
+ "狗肉": 6221,
+ "麻雀": 6222,
+ "香菜": 6223,
+ "荔枝": 6224,
+ "杏仁": 6225,
+ "●": 6226,
+ "洗头": 6227,
+ "前先": 6228,
+ "刮": 6229,
+ "大风": 6230,
+ "觉醒": 6231,
+ "必然": 6232,
+ "通顺": 6233,
+ "秘诀": 6234,
+ "疏": 6235,
+ "末端": 6236,
+ "顶部": 6237,
+ "顺着": 6238,
+ "或用": 6239,
+ "装有": 6240,
+ "绝不": 6241,
+ "头顶": 6242,
+ "挤": 6243,
+ "来自": 6244,
+ "损伤": 6245,
+ "摩擦": 6246,
+ "洗衣": 6247,
+ "泡沫": 6248,
+ "用力": 6249,
+ "搓": 6250,
+ "手指": 6251,
+ "素": 6252,
+ "湿": 6253,
+ "只用": 6254,
+ "垂直": 6255,
+ "擦干": 6256,
+ "学问": 6257,
+ "两条": 6258,
+ "第一条": 6259,
+ "第二条": 6260,
+ "极度": 6261,
+ "吹": 6262,
+ "充满活力": 6263,
+ "演": 6264,
+ "藤原": 6265,
+ "人选": 6266,
+ "人数": 6267,
+ "周杰伦": 6268,
+ "看不到": 6269,
+ "难怪": 6270,
+ "演技": 6271,
+ "吓人": 6272,
+ "演戏": 6273,
+ "简直": 6274,
+ "博文": 6275,
+ "播放器": 6276,
+ "发表文章": 6277,
+ "器": 6278,
+ "文本框": 6279,
+ "正文": 6280,
+ "勾选": 6281,
+ "源代码": 6282,
+ "换上": 6283,
+ "rc": 6284,
+ "width": 6285,
+ "height": 6286,
+ "type": 6287,
+ "true": 6288,
+ "播放": 6289,
+ "宽度": 6290,
+ "灵活": 6291,
+ "false": 6292,
+ "整数": 6293,
+ "电子邮件": 6294,
+ "自助": 6295,
+ "一系列": 6296,
+ "静态": 6297,
+ "组成": 6298,
+ "随时随地": 6299,
+ "自主": 6300,
+ "功能强大": 6301,
+ "互动性": 6302,
+ "建设": 6303,
+ "之多": 6304,
+ "恐怕": 6305,
+ "一一": 6306,
+ "传媒": 6307,
+ "高速": 6308,
+ "注意力": 6309,
+ "媒体": 6310,
+ "开拓": 6311,
+ "自由": 6312,
+ "音频": 6313,
+ "logo": 6314,
+ "模板": 6315,
+ "供": 6316,
+ "自由选择": 6317,
+ "背景音乐": 6318,
+ "喜好": 6319,
+ "访问者": 6320,
+ "九": 6321,
+ "自行": 6322,
+ "十": 6323,
+ "问卷": 6324,
+ "十一": 6325,
+ "推广": 6326,
+ "十三": 6327,
+ "十四": 6328,
+ "十五": 6329,
+ "使用率": 6330,
+ "预售": 6331,
+ "火车票": 6332,
+ "预留": 6333,
+ "车票": 6334,
+ "车站": 6335,
+ "发售": 6336,
+ "焦虑症": 6337,
+ "显著": 6338,
+ "焦虑": 6339,
+ "中医院": 6340,
+ "落户": 6341,
+ "西南": 6342,
+ "实验室": 6343,
+ "这家": 6344,
+ "公立医院": 6345,
+ "医保": 6346,
+ "定点": 6347,
+ "早点": 6348,
+ "周边": 6349,
+ "下雪": 6350,
+ "下场": 6351,
+ "大雪": 6352,
+ "第一场": 6353,
+ "迟到": 6354,
+ "工业": 6355,
+ "刻": 6356,
+ "逢": 6357,
+ "敌人": 6358,
+ "座": 6359,
+ "奥": 6360,
+ "报": 6361,
+ "解开": 6362,
+ "三次": 6363,
+ "墙壁": 6364,
+ "舞蹈": 6365,
+ "蝴蝶": 6366,
+ "误解": 6367,
+ "五个": 6368,
+ "机关": 6369,
+ "照相机": 6370,
+ "角落": 6371,
+ "墙上": 6372,
+ "谜题": 6373,
+ "升到": 6374,
+ "戒指": 6375,
+ "手镯": 6376,
+ "和平": 6377,
+ "砍": 6378,
+ "天龙": 6379,
+ "大刀": 6380,
+ "鳞": 6381,
+ "首饰": 6382,
+ "极品": 6383,
+ "魔杖": 6384,
+ "方子": 6385,
+ "砸": 6386,
+ "碎": 6387,
+ "摸": 6388,
+ "规律": 6389,
+ "摘": 6390,
+ "印度": 6391,
+ "公布": 6392,
+ "人口普查": 6393,
+ "为期": 6394,
+ "三周": 6395,
+ "1991": 6396,
+ "大规模": 6397,
+ "普查": 6398,
+ "城镇": 6399,
+ "村庄": 6400,
+ "户": 6401,
+ "截至": 6402,
+ "亿": 6403,
+ "继": 6404,
+ "总人口": 6405,
+ "1.8": 6406,
+ "参考资料": 6407,
+ "家族": 6408,
+ "护": 6409,
+ "315": 6410,
+ "猴": 6411,
+ "108": 6412,
+ "引发": 6413,
+ "阴虚": 6414,
+ "低热": 6415,
+ "全身性": 6416,
+ "防治": 6417,
+ "食性": 6418,
+ "猪肉": 6419,
+ "答复": 6420,
+ "松子": 6421,
+ "黑豆": 6422,
+ "小米": 6423,
+ "小麦": 6424,
+ "此外": 6425,
+ "戒烟": 6426,
+ "几张": 6427,
+ "正版": 6428,
+ "模": 6429,
+ "夜生活": 6430,
+ "出新": 6431,
+ "期待": 6432,
+ "翻译": 6433,
+ "嘴里": 6434,
+ "溃疡": 6435,
+ "嘴巴": 6436,
+ "刷牙": 6437,
+ "牙刷": 6438,
+ "戳": 6439,
+ "科": 6440,
+ "化疗": 6441,
+ "口腔溃疡": 6442,
+ "口腔": 6443,
+ "配": 6444,
+ "棉签": 6445,
+ "蘸": 6446,
+ "创面": 6447,
+ "温开水": 6448,
+ "副作用": 6449,
+ "复发性": 6450,
+ "人群": 6451,
+ "患病率": 6452,
+ "周期性": 6453,
+ "局限性": 6454,
+ "自愈": 6455,
+ "多见": 6456,
+ "波及": 6457,
+ "咽部": 6458,
+ "粘膜": 6459,
+ "病程": 6460,
+ "延长": 6461,
+ "数目": 6462,
+ "缩短": 6463,
+ "食": 6464,
+ "溃疡性": 6465,
+ "过敏反应": 6466,
+ "常见病": 6467,
+ "辛辣": 6468,
+ "主要症状": 6469,
+ "椭圆形": 6470,
+ "单发": 6471,
+ "自发": 6472,
+ "浅": 6473,
+ "边缘": 6474,
+ "整齐": 6475,
+ "纤维素": 6476,
+ "天后": 6477,
+ "转入": 6478,
+ "发于": 6479,
+ "青壮年": 6480,
+ "多于": 6481,
+ "发病": 6482,
+ "舌": 6483,
+ "牙龈": 6484,
+ "孤立": 6485,
+ "多处": 6486,
+ "似": 6487,
+ "样": 6488,
+ "劳累": 6489,
+ "迁延": 6490,
+ "数年": 6491,
+ "数十年": 6492,
+ "前者": 6493,
+ "舌苔": 6494,
+ "淋巴结": 6495,
+ "后者": 6496,
+ "伴有": 6497,
+ "手心": 6498,
+ "多梦": 6499,
+ "剥落": 6500,
+ "免疫": 6501,
+ "不良": 6502,
+ "起居": 6503,
+ "有节": 6504,
+ "多样化": 6505,
+ "多食": 6506,
+ "煎炸": 6507,
+ "房事": 6508,
+ "切勿": 6509,
+ "用心": 6510,
+ "操劳": 6511,
+ "失常": 6512,
+ "而致": 6513,
+ "自治": 6514,
+ "C": 6515,
+ "粒": 6516,
+ "9": 6517,
+ "毫克": 6518,
+ "金银花": 6519,
+ "饮": 6520,
+ "煎": 6521,
+ "麦冬": 6522,
+ "生地": 6523,
+ "连服": 6524,
+ "上药": 6525,
+ "细末": 6526,
+ "调匀": 6527,
+ "贴": 6528,
+ "脐": 6529,
+ "虚实": 6530,
+ "搽": 6531,
+ "本方": 6532,
+ "主治": 6533,
+ "白萝卜": 6534,
+ "喝汤": 6535,
+ "芯": 6536,
+ "绿豆": 6537,
+ "毫升": 6538,
+ "浓茶": 6539,
+ "漱口": 6540,
+ "误诊": 6541,
+ "慎用": 6542,
+ "表面": 6543,
+ "乳头": 6544,
+ "突起": 6545,
+ "菜花": 6546,
+ "底部": 6547,
+ "硬块": 6548,
+ "晒太阳": 6549,
+ "好几年": 6550,
+ "每到": 6551,
+ "滋养": 6552,
+ "胡萝卜": 6553,
+ "玫瑰": 6554,
+ "花瓣": 6555,
+ "浸入": 6556,
+ "适用": 6557,
+ "过敏性": 6558,
+ "邓": 6559,
+ "37": 6560,
+ "加盖": 6561,
+ "纱布": 6562,
+ "滋润": 6563,
+ "蛋清": 6564,
+ "果汁": 6565,
+ "桃": 6566,
+ "西瓜": 6567,
+ "香蕉": 6568,
+ "养分": 6569,
+ "芦荟": 6570,
+ "补水": 6571,
+ "60%": 6572,
+ "70%": 6573,
+ "人称": 6574,
+ "40%": 6575,
+ "年代": 6576,
+ "科学家": 6577,
+ "全球": 6578,
+ "频率": 6579,
+ "确切": 6580,
+ "暴露": 6581,
+ "化学": 6582,
+ "看上去": 6583,
+ "紧绷": 6584,
+ "条纹": 6585,
+ "脂质": 6586,
+ "积聚": 6587,
+ "诱因": 6588,
+ "当人": 6589,
+ "越高": 6590,
+ "抗过敏": 6591,
+ "绝经": 6592,
+ "若干年": 6593,
+ "发出": 6594,
+ "缺水": 6595,
+ "警报": 6596,
+ "室友": 6597,
+ "擦": 6598,
+ "跳舞": 6599,
+ "涂上": 6600,
+ "带走": 6601,
+ "生活习惯": 6602,
+ "两到": 6603,
+ "洗涤": 6604,
+ "肥皂": 6605,
+ "洗澡": 6606,
+ "蒸发": 6607,
+ "发痒": 6608,
+ "过敏原": 6609,
+ "化学品": 6610,
+ "反过来": 6611,
+ "年纪": 6612,
+ "水份": 6613,
+ "膜": 6614,
+ "寒冬": 6615,
+ "汗水": 6616,
+ "抵抗力": 6617,
+ "睡眠不足": 6618,
+ "血液循环": 6619,
+ "变差": 6620,
+ "减肥": 6621,
+ "偏食": 6622,
+ "过高": 6623,
+ "过热": 6624,
+ "具": 6625,
+ "香皂": 6626,
+ "清洁剂": 6627,
+ "雌激素": 6628,
+ "呈现出": 6629,
+ "过后": 6630,
+ "项": 6631,
+ "尽早": 6632,
+ "采取措施": 6633,
+ "瘙痒": 6634,
+ "不太": 6635,
+ "避开": 6636,
+ "空调": 6637,
+ "湿度": 6638,
+ "细小": 6639,
+ "天气晴朗": 6640,
+ "日照": 6641,
+ "厚厚的": 6642,
+ "云层": 6643,
+ "遮挡": 6644,
+ "气候变化": 6645,
+ "汗液": 6646,
+ "关键在于": 6647,
+ "真皮": 6648,
+ "外侧": 6649,
+ "一层": 6650,
+ "迟缓": 6651,
+ "温": 6652,
+ "现代人": 6653,
+ "西红柿": 6654,
+ "抗衰老": 6655,
+ "失水": 6656,
+ "出水": 6657,
+ "秋天": 6658,
+ "碱性": 6659,
+ "疗效": 6660,
+ "秘方": 6661,
+ "一盆": 6662,
+ "别忘了": 6663,
+ "抹": 6664,
+ "同居": 6665,
+ "范畴": 6666,
+ "无罪": 6667,
+ "过分": 6668,
+ "凡事": 6669,
+ "性关系": 6670,
+ "男女": 6671,
+ "分手": 6672,
+ "心爱": 6673,
+ "勉强": 6674,
+ "肉体": 6675,
+ "常常": 6676,
+ "适得其反": 6677,
+ "不愿": 6678,
+ "处女": 6679,
+ "不肯": 6680,
+ "婚后": 6681,
+ "第三项": 6682,
+ "离婚": 6683,
+ "性行为": 6684,
+ "丈夫": 6685,
+ "婚姻": 6686,
+ "两倍": 6687,
+ "嫁给": 6688,
+ "美满": 6689,
+ "回忆": 6690,
+ "往事": 6691,
+ "比不上": 6692,
+ "情人": 6693,
+ "very": 6694,
+ "level": 6695,
+ "it": 6696,
+ "right": 6697,
+ "to": 6698,
+ "work": 6699,
+ "an": 6700,
+ "康复训练": 6701,
+ "残疾人": 6702,
+ """: 6703,
+ "权力": 6704,
+ "农村": 6705,
+ "太阳能": 6706,
+ "热水器": 6707,
+ "村民": 6708,
+ "售后服务": 6709,
+ "淋浴": 6710,
+ "时能": 6711,
+ "室外": 6712,
+ "早晨": 6713,
+ "情人节": 6714,
+ "追溯到": 6715,
+ "来源于": 6716,
+ "鸟类": 6717,
+ "风俗": 6718,
+ "盒子": 6719,
+ "抽到": 6720,
+ "节日": 6721,
+ "纪念": 6722,
+ "基督教": 6723,
+ "古罗马": 6724,
+ "传教士": 6725,
+ "圣": 6726,
+ "冒险": 6727,
+ "传播": 6728,
+ "被捕": 6729,
+ "入狱": 6730,
+ "感动": 6731,
+ "封信": 6732,
+ "处死": 6733,
+ "墓": 6734,
+ "一棵": 6735,
+ "小伙子": 6736,
+ "明信片": 6737,
+ "精美": 6738,
+ "工艺品": 6739,
+ "鲜花": 6740,
+ "爱人": 6741,
+ "爱意": 6742,
+ "送给": 6743,
+ "一盒": 6744,
+ "通俗": 6745,
+ "苦涩": 6746,
+ "相互": 6747,
+ "夹杂": 6748,
+ "快感": 6749,
+ "仿佛": 6750,
+ "温暖": 6751,
+ "体能": 6752,
+ "祝愿": 6753,
+ "祝福": 6754,
+ "专利": 6755,
+ "噢": 6756,
+ "某位": 6757,
+ "表白": 6758,
+ "33": 6759,
+ "高层": 6760,
+ "景观": 6761,
+ "开阔": 6762,
+ "噪音": 6763,
+ "废气": 6764,
+ "下雨": 6765,
+ "漏水": 6766,
+ "间隔": 6767,
+ "Z": 6768,
+ "元宝": 6769,
+ "狮子": 6770,
+ "35": 6771,
+ "俩": 6772,
+ "哪儿": 6773,
+ "电话号码": 6774,
+ "语音": 6775,
+ "某某": 6776,
+ "起诉": 6777,
+ "官司": 6778,
+ "诈骗": 6779,
+ "术": 6780,
+ "香港": 6781,
+ "xxxx": 6782,
+ "位数": 6783,
+ "手机号码": 6784,
+ "编": 6785,
+ "国际足联": 6786,
+ "足球队": 6787,
+ "纳入": 6788,
+ "云南": 6789,
+ "队": 6790,
+ "赢": 6791,
+ "发觉": 6792,
+ "说不出": 6793,
+ "脑袋": 6794,
+ "清醒": 6795,
+ "灵魂": 6796,
+ "体外": 6797,
+ "胳膊": 6798,
+ "不对劲": 6799,
+ "推": 6800,
+ "那会": 6801,
+ "学医": 6802,
+ "暂停": 6803,
+ "证": 6804,
+ "受压": 6805,
+ "月初": 6806,
+ "特地": 6807,
+ "相片": 6808,
+ "印象": 6809,
+ "面对面": 6810,
+ "说些": 6811,
+ "最美": 6812,
+ "相见": 6813,
+ "该不该": 6814,
+ "嫌弃": 6815,
+ "苦恼": 6816,
+ "害怕": 6817,
+ "帮帮": 6818,
+ "刚看": 6819,
+ "背叛": 6820,
+ "比较严重": 6821,
+ "不介意": 6822,
+ "一口气": 6823,
+ "介意": 6824,
+ "正整数": 6825,
+ "平均数": 6826,
+ "17": 6827,
+ "留言": 6828,
+ "中央": 6829,
+ "泽": 6830,
+ "VS": 6831,
+ "纽伦堡": 6832,
+ "雅典": 6833,
+ "汉堡": 6834,
+ "自觉": 6835,
+ "开心": 6836,
+ "搬家": 6837,
+ "西安": 6838,
+ "搬迁": 6839,
+ "总部": 6840,
+ "设在": 6841,
+ "英国": 6842,
+ "2001": 6843,
+ "遍布": 6844,
+ "顺其自然": 6845,
+ "踩": 6846,
+ "想得到": 6847,
+ "看法": 6848,
+ "雷": 6849,
+ "凑": 6850,
+ "唯": 6851,
+ "原文中": 6852,
+ "陆": 6853,
+ "帖子": 6854,
+ "追加": 6855,
+ "变态": 6856,
+ "用到": 6857,
+ "在场": 6858,
+ "蜀山": 6859,
+ "飞鸟": 6860,
+ "月光": 6861,
+ "参考": 6862,
+ "攻略": 6863,
+ "电子书": 6864,
+ "起家": 6865,
+ "偶有": 6866,
+ "一声": 6867,
+ "听取": 6868,
+ "敏": 6869,
+ "粉红": 6870,
+ "之前": 6871,
+ "发过": 6872,
+ "帖": 6873,
+ "MB": 6874,
+ "85": 6875,
+ "永远": 6876,
+ "开玩笑": 6877,
+ "发现自己": 6878,
+ "在乎": 6879,
+ "一人": 6880,
+ "言行": 6881,
+ "小妹": 6882,
+ "不该": 6883,
+ "总想": 6884,
+ "谈不上": 6885,
+ "计较": 6886,
+ "坦然": 6887,
+ "露出": 6888,
+ "十足": 6889,
+ "明知": 6890,
+ "透露": 6891,
+ "秘密": 6892,
+ "随意": 6893,
+ "世人": 6894,
+ "88": 6895,
+ "越过": 6896,
+ "其他人": 6897,
+ "R": 6898,
+ "M": 6899,
+ "上限": 6900,
+ "楼主": 6901,
+ "老区": 6902,
+ "50%": 6903,
+ "变身": 6904,
+ "下限": 6905,
+ "改了": 6906,
+ "改用": 6907,
+ "升值": 6908,
+ "贬值": 6909,
+ "风暴": 6910,
+ "保值": 6911,
+ "总而言之": 6912,
+ "变现": 6913,
+ "成交": 6914,
+ "不远": 6915,
+ "支架": 6916,
+ "冠状动脉": 6917,
+ "粥样": 6918,
+ "缺血性": 6919,
+ "冠脉": 6920,
+ "硬化": 6921,
+ "心肌缺血": 6922,
+ "常见疾病": 6923,
+ "危险": 6924,
+ "糖尿病": 6925,
+ "吸烟": 6926,
+ "高脂血症": 6927,
+ "肥胖": 6928,
+ "沉着": 6929,
+ "管腔": 6930,
+ "心绞痛": 6931,
+ "外科手术": 6932,
+ "激光": 6933,
+ "心肌": 6934,
+ "回顾": 6935,
+ "1967": 6936,
+ "静脉": 6937,
+ "奠定": 6938,
+ "1974": 6939,
+ "郭": 6940,
+ "率先": 6941,
+ "开展": 6942,
+ "辅助": 6943,
+ "血栓": 6944,
+ "靶": 6945,
+ "住院": 6946,
+ "较长": 6947,
+ "跳动": 6948,
+ "无需": 6949,
+ "心功能": 6950,
+ "较差": 6951,
+ "此项": 6952,
+ "尚有": 6953,
+ "普及": 6954,
+ "1987": 6955,
+ "巨大": 6956,
+ "挑战": 6957,
+ "微创": 6958,
+ "显现": 6959,
+ "切口": 6960,
+ "近年来": 6961,
+ "杂交": 6962,
+ "适于": 6963,
+ "造影": 6964,
+ "主干": 6965,
+ "高位": 6966,
+ "远端": 6967,
+ "通畅": 6968,
+ "1.5": 6969,
+ "mm": 6970,
+ "穿刺": 6971,
+ "术后": 6972,
+ "心肌梗死": 6973,
+ "溶栓": 6974,
+ "动脉": 6975,
+ "起源": 6976,
+ "弥漫性": 6977,
+ "心衰": 6978,
+ "不全": 6979,
+ "低下": 6980,
+ "伴": 6981,
+ "肾功能": 6982,
+ "移植": 6983,
+ "人造": 6984,
+ "远期": 6985,
+ "缓解": 6986,
+ "90%": 6987,
+ "生存率": 6988,
+ "95%": 6989,
+ "闭塞": 6990,
+ "进展": 6991,
+ "创伤": 6992,
+ "特定": 6993,
+ "死亡率": 6994,
+ "仅": 6995,
+ "10%": 6996,
+ "不良反应": 6997,
+ "高危": 6998,
+ "导管": 6999,
+ "相近": 7000,
+ "受累": 7001,
+ "单一": 7002,
+ "局限": 7003,
+ "受损": 7004,
+ "结": 7005,
+ "各种因素": 7006,
+ "本着": 7007,
+ "内科": 7008,
+ "放置": 7009,
+ "见到": 7010,
+ "外科": 7011,
+ "制定": 7012,
+ "日后": 7013,
+ "恒定": 7014,
+ "既有": 7015,
+ "必定": 7016,
+ "血流": 7017,
+ "此种": 7018,
+ "棘手": 7019,
+ "综上所述": 7020,
+ "着想": 7021,
+ "牢记": 7022,
+ "宗旨": 7023,
+ "手脚": 7024,
+ "全套": 7025,
+ "27": 7026,
+ "直肠": 7027,
+ "脱垂": 7028,
+ "益气": 7029,
+ "黄芪": 7030,
+ "味": 7031,
+ "600": 7032,
+ "取汁": 7033,
+ "药液": 7034,
+ "3000": 7035,
+ "2500": 7036,
+ "置于": 7037,
+ "坐浴": 7038,
+ "补气": 7039,
+ "涩": 7040,
+ "BIOS": 7041,
+ "没错": 7042,
+ "字样": 7043,
+ "改成": 7044,
+ "改": 7045,
+ "方向键": 7046,
+ "First": 7047,
+ "Page": 7048,
+ "液晶": 7049,
+ "显示屏": 7050,
+ "亮点": 7051,
+ "外力": 7052,
+ "荆州": 7053,
+ "三国": 7054,
+ "襄阳": 7055,
+ "中原": 7056,
+ "洛阳": 7057,
+ "开封": 7058,
+ "直通": 7059,
+ "一是": 7060,
+ "长江": 7061,
+ "刘备": 7062,
+ "一行": 7063,
+ "这条": 7064,
+ "二是": 7065,
+ "水道": 7066,
+ "路线": 7067,
+ "当年": 7068,
+ "顶点": 7069,
+ "人类": 7070,
+ "繁华": 7071,
+ "三国演义": 7072,
+ "两处": 7073,
+ "骑": 7074,
+ "东吴": 7075,
+ "借": 7076,
+ "曹操": 7077,
+ "手中": 7078,
+ "这才": 7079,
+ "所说": 7080,
+ "落后": 7081,
+ "懂得": 7082,
+ "坐": 7083,
+ "抬头": 7084,
+ "走路": 7085,
+ "出现异常": 7086,
+ "脑部": 7087,
+ "脑电图": 7088,
+ "抗癫痫": 7089,
+ "不佳": 7090,
+ "引进": 7091,
+ "万能": 7092,
+ "饰品": 7093,
+ "断": 7094,
+ "一楼": 7095,
+ "坊": 7096,
+ "吉祥": 7097,
+ "中路": 7098,
+ "珠宝": 7099,
+ "深圳市": 7100,
+ "2006": 7101,
+ "营业时间": 7102,
+ "00": 7103,
+ "东门": 7104,
+ "步行街": 7105,
+ "有用": 7106,
+ "钟表": 7107,
+ "城里": 7108,
+ "average": 7109,
+ "people": 7110,
+ "普通人": 7111,
+ "普遍": 7112,
+ "反义词": 7113,
+ "一群": 7114,
+ "单数": 7115,
+ "复数": 7116,
+ "开车": 7117,
+ "出租车": 7118,
+ "司机": 7119,
+ "行车": 7120,
+ "英雄": 7121,
+ "行使": 7122,
+ "交通规则": 7123,
+ "边上": 7124,
+ "行人": 7125,
+ "轮胎": 7126,
+ "自检": 7127,
+ "于是": 7128,
+ "内存条": 7129,
+ "插槽": 7130,
+ "晕": 7131,
+ "各异": 7132,
+ "各式各样": 7133,
+ "时常": 7134,
+ "损坏": 7135,
+ "重启": 7136,
+ "死机": 7137,
+ "多方面": 7138,
+ "CMOS": 7139,
+ "出厂": 7140,
+ "接触不良": 7141,
+ "异物": 7142,
+ "松动": 7143,
+ "牢固": 7144,
+ "变形": 7145,
+ "失效": 7146,
+ "橡皮": 7147,
+ "擦拭": 7148,
+ "一遍": 7149,
+ "仔细观察": 7150,
+ "工具": 7151,
+ "兼容": 7152,
+ "容量": 7153,
+ "芯片": 7154,
+ "判断": 7155,
+ "怀疑": 7156,
+ "步": 7157,
+ "重症": 7158,
+ "肌无力": 7159,
+ "拖延": 7160,
+ "登入": 7161,
+ "移民": 7162,
+ "一点儿": 7163,
+ "锦标": 7164,
+ "山路": 7165,
+ "SP": 7166,
+ "这车": 7167,
+ "弯": 7168,
+ "总体": 7169,
+ "中后期": 7170,
+ "起步": 7171,
+ "一辆车": 7172,
+ "后期": 7173,
+ "抗衡": 7174,
+ "改装": 7175,
+ "照样": 7176,
+ "拿下": 7177,
+ "King": 7178,
+ "车队": 7179,
+ "开除": 7180,
+ "悬崖": 7181,
+ "实": 7182,
+ "神奇": 7183,
+ "杰克逊": 7184,
+ "电影": 7185,
+ "降价": 7186,
+ "款": 7187,
+ "售价": 7188,
+ "同一时间": 7189,
+ "刚出": 7190,
+ "价格比": 7191,
+ "6000": 7192,
+ "一分钱": 7193,
+ "玩游戏": 7194,
+ "卡卡": 7195,
+ "巴黎": 7196,
+ "外省": 7197,
+ "所学": 7198,
+ "公立": 7199,
+ "好些": 7200,
+ "文凭": 7201,
+ "大使馆": 7202,
+ "一大": 7203,
+ "产业": 7204,
+ "诺贝尔奖": 7205,
+ "尼斯": 7206,
+ "马赛": 7207,
+ "里昂": 7208,
+ "里尔": 7209,
+ "战斗": 7210,
+ "咽喉炎": 7211,
+ "吃水果": 7212,
+ "劳逸结合": 7213,
+ "急性期": 7214,
+ "卧床": 7215,
+ "粉尘": 7216,
+ "口罩": 7217,
+ "酒": 7218,
+ "口腔卫生": 7219,
+ "病菌": 7220,
+ "冬": 7221,
+ "柠檬": 7222,
+ "甘蔗": 7223,
+ "清热": 7224,
+ "室内空气": 7225,
+ "流通": 7226,
+ "长时间": 7227,
+ "中度": 7228,
+ "糜烂": 7229,
+ "会变": 7230,
+ "重度": 7231,
+ "查出": 7232,
+ "塞": 7233,
+ "脓": 7234,
+ "炎症": 7235,
+ "盒": 7236,
+ "异味": 7237,
+ "肥大": 7238,
+ "衣原体": 7239,
+ "支原体": 7240,
+ "时才": 7241,
+ "我前": 7242,
+ "刚买": 7243,
+ "鞋": 7244,
+ "涨": 7245,
+ "白酒": 7246,
+ "一团": 7247,
+ "皮革": 7248,
+ "研究员": 7249,
+ "皮鞋": 7250,
+ "定型": 7251,
+ "两块": 7252,
+ "缝合": 7253,
+ "脚跟": 7254,
+ "脚趾": 7255,
+ "朝阳": 7256,
+ "大夫": 7257,
+ "鞋子": 7258,
+ "拇指": 7259,
+ "外翻": 7260,
+ "不慎": 7261,
+ "买到": 7262,
+ "磨": 7263,
+ "业内人士": 7264,
+ "供参考": 7265,
+ "面霜": 7266,
+ "软化": 7267,
+ "捂": 7268,
+ "变软": 7269,
+ "子": 7270,
+ "物体": 7271,
+ "几遍": 7272,
+ "原理": 7273,
+ "可行性": 7274,
+ "寿命": 7275,
+ "几款": 7276,
+ "专": 7277,
+ "研制": 7278,
+ "高跟鞋": 7279,
+ "附着": 7280,
+ "脚部": 7281,
+ "酸痛": 7282,
+ "蔗糖": 7283,
+ "卵磷脂": 7284,
+ "系列": 7285,
+ "均衡": 7286,
+ "优质": 7287,
+ "脂肪酸": 7288,
+ "叶酸": 7289,
+ "矿物质": 7290,
+ "新西兰": 7291,
+ "严密": 7292,
+ "确保": 7293,
+ "三层": 7294,
+ "高科技": 7295,
+ "纯度": 7296,
+ "氮气": 7297,
+ "类别": 7298,
+ "幼儿": 7299,
+ "摘要": 7300,
+ "研究成果": 7301,
+ "婴幼儿": 7302,
+ "智力": 7303,
+ "委员会": 7304,
+ "食谱": 7305,
+ "规格": 7306,
+ "袋": 7307,
+ "表格": 7308,
+ "38.5": 7309,
+ "天津": 7310,
+ "松江": 7311,
+ "高尔夫": 7312,
+ "五月": 7313,
+ "开业": 7314,
+ "开发商": 7315,
+ "交界处": 7316,
+ "开场": 7317,
+ "暑期": 7318,
+ "放假": 7319,
+ "一到": 7320,
+ "面具": 7321,
+ "一轮": 7322,
+ "做爱": 7323,
+ "气氛": 7324,
+ "西餐": 7325,
+ "作法": 7326,
+ "那本": 7327,
+ "一本": 7328,
+ "沙拉": 7329,
+ "主菜": 7330,
+ "甜点": 7331,
+ "茶": 7332,
+ "le": 7333,
+ "main": 7334,
+ "不用说": 7335,
+ "甜品": 7336,
+ "洋葱": 7337,
+ "黄油": 7338,
+ "黑胡椒": 7339,
+ "红酒": 7340,
+ "鸡汤": 7341,
+ "加盐": 7342,
+ "菠萝": 7343,
+ "熟": 7344,
+ "沙拉酱": 7345,
+ "脊": 7346,
+ "切片": 7347,
+ "面包": 7348,
+ "馒头": 7349,
+ "代替": 7350,
+ "三明治": 7351,
+ "键盘": 7352,
+ "蘑菇": 7353,
+ "ok": 7354,
+ "烤": 7355,
+ "虾": 7356,
+ "打碎": 7357,
+ "泥": 7358,
+ "馅": 7359,
+ "填入": 7360,
+ "烤箱": 7361,
+ "配菜": 7362,
+ "丝": 7363,
+ "金黄色": 7364,
+ "搭": 7365,
+ "一刀": 7366,
+ "切断": 7367,
+ "趴在": 7368,
+ "with": 7369,
+ "整理": 7370,
+ "挑": 7371,
+ "先说": 7372,
+ "说个": 7373,
+ "无所谓": 7374,
+ "胡椒粉": 7375,
+ "白醋": 7376,
+ "罐头": 7377,
+ "蒸熟": 7378,
+ "去皮": 7379,
+ "奶油": 7380,
+ "低脂肪": 7381,
+ "茄子": 7382,
+ "努": 7383,
+ "罗勒": 7384,
+ "番茄酱": 7385,
+ "切块": 7386,
+ "小火": 7387,
+ "没听说过": 7388,
+ "南瓜": 7389,
+ "红薯": 7390,
+ "大块": 7391,
+ "粉": 7392,
+ "呦": 7393,
+ "油菜": 7394,
+ "倒入": 7395,
+ "如同": 7396,
+ "狠": 7397,
+ "绿": 7398,
+ "都行": 7399,
+ "朵": 7400,
+ "浇": 7401,
+ "低热量": 7402,
+ "醋": 7403,
+ "橙子": 7404,
+ "制冷": 7405,
+ "不爱": 7406,
+ "配料": 7407,
+ "丁": 7408,
+ "青椒": 7409,
+ "火腿": 7410,
+ "香草": 7411,
+ "棍": 7412,
+ "之中": 7413,
+ "不然": 7414,
+ "液体": 7415,
+ "勺子": 7416,
+ "凉": 7417,
+ "机": 7418,
+ "冷冻": 7419,
+ "到时候": 7420,
+ "冰淇淋": 7421,
+ "蒸": 7422,
+ "球状": 7423,
+ "大拇指": 7424,
+ "指尖": 7425,
+ "西式": 7426,
+ "炒饭": 7427,
+ "一番": 7428,
+ "排": 7429,
+ "色": 7430,
+ "透": 7431,
+ "燃烧": 7432,
+ "慌": 7433,
+ "一会儿": 7434,
+ "熄灭": 7435,
+ "剩": 7436,
+ "or": 7437,
+ "You": 7438,
+ "want": 7439,
+ "know": 7440,
+ "ome": 7441,
+ "more": 7442,
+ "for": 7443,
+ "牛排": 7444,
+ "芥末": 7445,
+ "你别": 7446,
+ "鉴别": 7447,
+ "手掌": 7448,
+ "辣椒粉": 7449,
+ "扒": 7450,
+ "咖喱": 7451,
+ "加一点": 7452,
+ "香油": 7453,
+ "一首歌": 7454,
+ "歌": 7455,
+ "唱": 7456,
+ "星光": 7457,
+ "我心": 7458,
+ "歌手": 7459,
+ "银幕": 7460,
+ "世间": 7461,
+ "重叠": 7462,
+ "面孔": 7463,
+ "默默": 7464,
+ "六岁": 7465,
+ "喜剧": 7466,
+ "奖": 7467,
+ "滴": 7468,
+ "泪": 7469,
+ "鼓掌": 7470,
+ "终于": 7471,
+ "真理": 7472,
+ "时光": 7473,
+ "光": 7474,
+ "影像": 7475,
+ "动人": 7476,
+ "情感": 7477,
+ "直至": 7478,
+ "某日": 7479,
+ "留着": 7480,
+ "迷人": 7481,
+ "片段": 7482,
+ "珍惜": 7483,
+ "眼前": 7484,
+ "两地": 7485,
+ "始终": 7486,
+ "遇上": 7487,
+ "Y": 7488,
+ "阳光": 7489,
+ "般": 7490,
+ "笑容": 7491,
+ "体贴": 7492,
+ "照顾": 7493,
+ "欺骗": 7494,
+ "做手术": 7495,
+ "隐瞒": 7496,
+ "想起": 7497,
+ "对不起": 7498,
+ "亲爱": 7499,
+ "谈恋爱": 7500,
+ "投入": 7501,
+ "难过": 7502,
+ "考虑一下": 7503,
+ "任": 7504,
+ "深深": 7505,
+ "瞒": 7506,
+ "愧疚": 7507,
+ "房贷": 7508,
+ "信用": 7509,
+ "商量": 7510,
+ "面色": 7511,
+ "气喘": 7512,
+ "虚寒": 7513,
+ "减": 7514,
+ "运算": 7515,
+ "字母": 7516,
+ "多项式": 7517,
+ "统称": 7518,
+ "x2": 7519,
+ "2a": 7520,
+ "3x": 7521,
+ "2n": 7522,
+ "公务员": 7523,
+ "报考": 7524,
+ "分辨率": 7525,
+ "篇": 7526,
+ "养": 7527,
+ "`": 7528,
+ "缺点": 7529,
+ "系": 7530,
+ "精": 7531,
+ "打人": 7532,
+ "战术": 7533,
+ "战": 7534,
+ "何不": 7535,
+ "水晶": 7536,
+ "压制": 7537,
+ "威力": 7538,
+ "主人": 7539,
+ "15000": 7540,
+ "反弹": 7541,
+ "几率": 7542,
+ "五种": 7543,
+ "4000": 7544,
+ "月工资": 7545,
+ "公章": 7546,
+ "保险公司": 7547,
+ "十字": 7548,
+ "没钱": 7549,
+ "命中": 7550,
+ "1.0": 7551,
+ "test": 7552,
+ "in": 7553,
+ "I": 7554,
+ "from": 7555,
+ "hasa": 7556,
+ "And": 7557,
+ "虚拟": 7558,
+ "驱动": 7559,
+ "装置": 7560,
+ "超导": 7561,
+ "庞大": 7562,
+ "证实": 7563,
+ "全世界": 7564,
+ "BBC": 7565,
+ "伊朗": 7566,
+ "在世界上": 7567,
+ "多人": 7568,
+ "举止": 7569,
+ "电器": 7570,
+ "欧美": 7571,
+ "年轻人": 7572,
+ "批发": 7573,
+ "灰": 7574,
+ "花纹": 7575,
+ "亚": 7576,
+ "眼": 7577,
+ "老头": 7578,
+ "离": 7579,
+ "极力": 7580,
+ "岁数": 7581,
+ "再有": 7582,
+ "军官": 7583,
+ "少将": 7584,
+ "军衔": 7585,
+ "不怎么样": 7586,
+ "开个": 7587,
+ "管": 7588,
+ "命运": 7589,
+ "原谅": 7590,
+ "后悔": 7591,
+ "欣喜": 7592,
+ "激动": 7593,
+ "思念": 7594,
+ "清晨": 7595,
+ "蜗牛": 7596,
+ "沿着": 7597,
+ "树干": 7598,
+ "爬": 7599,
+ "夜间": 7600,
+ "到达": 7601,
+ "透支": 7602,
+ "付费": 7603,
+ "工行": 7604,
+ "赋": 7605,
+ "辩证": 7606,
+ "大全": 7607,
+ "大成": 7608,
+ "∈": 7609,
+ "R": 7610,
+ "2x": 7611,
+ "≥": 7612,
+ "可知": 7613,
+ "∴": 7614,
+ "频道": 7615,
+ "收藏夹": 7616,
+ "登录": 7617,
+ "诸如": 7618,
+ "赌": 7619,
+ "星际": 7620,
+ "改写": 7621,
+ "ai": 7622,
+ "写过": 7623,
+ "想象力": 7624,
+ "杀伤力": 7625,
+ "杀手": 7626,
+ "对抗": 7627,
+ "废话": 7628,
+ "附件": 7629,
+ "备份": 7630,
+ "q": 7631,
+ "嘿嘿": 7632,
+ "109": 7633,
+ "110": 7634,
+ "炫耀": 7635,
+ "AI": 7636,
+ "dll": 7637,
+ "解压": 7638,
+ "放个": 7639,
+ "语句": 7640,
+ "台下": 7641,
+ "n": 7642,
+ "主程序": 7643,
+ "写得": 7644,
+ "总算": 7645,
+ "暴雪": 7646,
+ "编辑器": 7647,
+ "农民": 7648,
+ "改动": 7649,
+ "筋": 7650,
+ "第一段": 7651,
+ "III": 7652,
+ "name": 7653,
+ "注释": 7654,
+ "id": 7655,
+ "tart": 7656,
+ "off": 7657,
+ "造": 7658,
+ "min": 7659,
+ "0.1": 7660,
+ "秒钟": 7661,
+ "啥意思": 7662,
+ "max": 7663,
+ "high": 7664,
+ "基地": 7665,
+ "以此类推": 7666,
+ "多线程": 7667,
+ "这段": 7668,
+ "编程语言": 7669,
+ "money": 7670,
+ "往下": 7671,
+ "总的来说": 7672,
+ "两句": 7673,
+ "一下子": 7674,
+ "意愿": 7675,
+ "今后": 7676,
+ "并行": 7677,
+ "防守": 7678,
+ "train": 7679,
+ "兵": 7680,
+ "进攻": 7681,
+ "add": 7682,
+ "队伍": 7683,
+ "你家": 7684,
+ "do": 7685,
+ "一段": 7686,
+ "全过程": 7687,
+ "勾": 7688,
+ "合乎": 7689,
+ "语法": 7690,
+ "error": 7691,
+ "mesage": 7692,
+ "上级": 7693,
+ "齿轮": 7694,
+ "bug": 7695,
+ "安心": 7696,
+ "替代": 7697,
+ "烦人": 7698,
+ "好心": 7699,
+ "use": 7700,
+ "map": 7701,
+ "一幅": 7702,
+ "top": 7703,
+ "机制": 7704,
+ "建造": 7705,
+ "在内": 7706,
+ "攻": 7707,
+ "发呆": 7708,
+ "如何是好": 7709,
+ "挨打": 7710,
+ "占据": 7711,
+ "切实": 7712,
+ "前行": 7713,
+ "楚": 7714,
+ "关": 7715,
+ "精力": 7716,
+ "编译": 7717,
+ "歌曲": 7718,
+ "杭州": 7719,
+ "肝病": 7720,
+ "小三阳": 7721,
+ "同济": 7722,
+ "杭州市": 7723,
+ "旗舰": 7724,
+ "广场": 7725,
+ "魔王": 7726,
+ "岭": 7727,
+ "经验值": 7728,
+ "一倍": 7729,
+ "比较慢": 7730,
+ "百": 7731,
+ "防火墙": 7732,
+ "张杰": 7733,
+ "存档": 7734,
+ "恶魔": 7735,
+ "哪怕": 7736,
+ "各位朋友": 7737,
+ "拜年": 7738,
+ "如意": 7739,
+ "平安": 7740,
+ "富贵": 7741,
+ "有余": 7742,
+ "新年快乐": 7743,
+ "中锋": 7744,
+ "卡住": 7745,
+ "掌握": 7746,
+ "时刻": 7747,
+ "弹跳": 7748,
+ "训练": 7749,
+ "上涨": 7750,
+ "蜜蜂": 7751,
+ "个性": 7752,
+ "性价比": 7753,
+ "魅族": 7754,
+ "华为": 7755,
+ "荣耀": 7756,
+ "千元": 7757,
+ "红米": 7758,
+ "最新": 7759,
+ "配置": 7760,
+ "Galaxy": 7761,
+ "搭载": 7762,
+ "处理器": 7763,
+ "架构": 7764,
+ "主频": 7765,
+ "GPU": 7766,
+ "big": 7767,
+ "Procesing": 7768,
+ "配上": 7769,
+ "1300": 7770,
+ "像素": 7771,
+ "Android": 7772,
+ "4.2": 7773,
+ "机身": 7774,
+ "厚度": 7775,
+ "内置": 7776,
+ "RAM": 7777,
+ "寸": 7778,
+ "Super": 7779,
+ "材质": 7780,
+ "一代": 7781,
+ "抬": 7782,
+ "鼓励": 7783,
+ "动力": 7784,
+ "不贵": 7785,
+ "充电": 7786,
+ "外形": 7787,
+ "大力": 7788,
+ "很火": 7789,
+ "官网": 7790,
+ "OPPO": 7791,
+ "拍照": 7792,
+ "HTC": 7793,
+ "O": 7794,
+ "∩": 7795,
+ "索尼": 7796,
+ "摩托": 7797,
+ "三天": 7798,
+ "屁": 7799,
+ "放屁": 7800,
+ "胀气": 7801,
+ "多点": 7802,
+ "排便": 7803,
+ "掉线": 7804,
+ "巨人": 7805,
+ "靴子": 7806,
+ "一米": 7807,
+ "个子": 7808,
+ "胖": 7809,
+ "来往": 7810,
+ "不怎么": 7811,
+ "瘦": 7812,
+ "老年": 7813,
+ "交谈": 7814,
+ "家庭环境": 7815,
+ "顾及": 7816,
+ "不至于": 7817,
+ "走向": 7818,
+ "H": 7819,
+ "氢": 7820,
+ "共用": 7821,
+ "氧原子": 7822,
+ "管理人员": 7823,
+ "账户": 7824,
+ "生产成本": 7825,
+ "成本": 7826,
+ "各项": 7827,
+ "间接": 7828,
+ "计入": 7829,
+ "科目": 7830,
+ "周岁": 7831,
+ "法定": 7832,
+ "1980": 7833,
+ "总局": 7834,
+ "财政部": 7835,
+ "职工": 7836,
+ "59": 7837,
+ "67": 7838,
+ "工作日": 7839,
+ "一地": 7840,
+ "料理": 7841,
+ "配偶": 7842,
+ "子女": 7843,
+ "批准": 7844,
+ "酌情": 7845,
+ "一至": 7846,
+ "婚": 7847,
+ "远近": 7848,
+ "自理": 7849,
+ "最长": 7850,
+ "中华人民共和国": 7851,
+ "查阅": 7852,
+ "XX": 7853,
+ "市": 7854,
+ "条例": 7855,
+ "待遇": 7856,
+ "男女双方": 7857,
+ "可视": 7858,
+ "探": 7859,
+ "假期": 7860,
+ "公": 7861,
+ "休假": 7862,
+ "发票": 7863,
+ "淘宝网": 7864,
+ "老板": 7865,
+ "联": 7866,
+ "诺基亚": 7867,
+ "保修": 7868,
+ "不解": 7869,
+ "纳税人": 7870,
+ "效用": 7871,
+ "日期": 7872,
+ "出场": 7873,
+ "2009": 7874,
+ "买入": 7875,
+ "粉色": 7876,
+ "女王": 7877,
+ "PVP": 7878,
+ "同级": 7879,
+ "变白": 7880,
+ "DJ": 7881,
+ "商店": 7882,
+ "工匠": 7883,
+ "拉大": 7884,
+ "非要": 7885,
+ "蹲": 7886,
+ "拉": 7887,
+ "小节": 7888,
+ "干涉": 7889,
+ "好玩": 7890,
+ "罢了": 7891,
+ "作息": 7892,
+ "按时": 7893,
+ "早起": 7894,
+ "冻结": 7895,
+ "卖家": 7896,
+ "违规": 7897,
+ "店铺": 7898,
+ "退回": 7899,
+ "跳水": 7900,
+ "下肢": 7901,
+ "大小便": 7902,
+ "失禁": 7903,
+ "脊髓": 7904,
+ "骨折": 7905,
+ "及早": 7906,
+ "站立": 7907,
+ "体位": 7908,
+ "低血压": 7909,
+ "排泄": 7910,
+ "泌尿系": 7911,
+ "神经": 7912,
+ "存款": 7913,
+ "只求": 7914,
+ "兼": 7915,
+ "开放式": 7916,
+ "花钱": 7917,
+ "无处不在": 7918,
+ "坐车": 7919,
+ "碰": 7920,
+ "地震": 7921,
+ "概率": 7922,
+ "非常低": 7923,
+ "红利": 7924,
+ "债券": 7925,
+ "试验": 7926,
+ "赞成": 7927,
+ "进步": 7928,
+ "君子": 7929,
+ "变革": 7930,
+ "替补": 7931,
+ "主教练": 7932,
+ "美元": 7933,
+ "下跌": 7934,
+ "底线": 7935,
+ "大幅度": 7936,
+ "多天": 7937,
+ "许可证": 7938,
+ "中应": 7939,
+ "板块": 7940,
+ "词": 7941,
+ "词是": 7942,
+ "比分": 7943,
+ "∶": 7944,
+ "战胜": 7945,
+ ">": 7946,
+ "<": 7947,
+ "一队": 7948,
+ "逆境": 7949,
+ "送到": 7950,
+ "发达": 7951,
+ "排尿": 7952,
+ "血尿": 7953,
+ "消炎药": 7954,
+ "不长": 7955,
+ "粮": 7956,
+ "皇家": 7957,
+ "排石": 7958,
+ "剂量": 7959,
+ "成人": 7960,
+ "喝水": 7961,
+ "葡萄糖": 7962,
+ "早日": 7963,
+ "恢复健康": 7964,
+ "tm": 7965,
+ "GHz": 7966,
+ "显存": 7967,
+ "AMD": 7968,
+ "512": 7969,
+ "1G": 7970,
+ "混混": 7971,
+ "刚刚": 7972,
+ "合格": 7973,
+ "特": 7974,
+ "夸张": 7975,
+ "我哥": 7976,
+ "内测": 7977,
+ "2G": 7978,
+ "但会": 7979,
+ "不爽": 7980,
+ "汗": 7981,
+ "喊": 7982,
+ "鬼子": 7983,
+ "德军": 7984,
+ "军": 7985,
+ "冲锋": 7986,
+ "二战": 7987,
+ "美军": 7988,
+ "突击": 7989,
+ "袭击": 7990,
+ "喜剧片": 7991,
+ "抗日": 7992,
+ "五年": 7993,
+ "组装": 7994,
+ "忽然": 7995,
+ "用手": 7996,
+ "大声": 7997,
+ "弹簧": 7998,
+ "共振": 7999,
+ "其次": 8000,
+ "绑": 8001,
+ "噪声": 8002,
+ "迁移": 8003,
+ "派遣": 8004,
+ "迁往": 8005,
+ "接收": 8006,
+ "心仪": 8007,
+ "项目管理": 8008,
+ "必要性": 8009,
+ "实施": 8010,
+ "人力": 8011,
+ "资源管理": 8012,
+ "采购": 8013,
+ "人力资源": 8014,
+ "致力于": 8015,
+ "秉承": 8016,
+ "一贯": 8017,
+ "定位": 8018,
+ "借用": 8019,
+ "运营": 8020,
+ "运作": 8021,
+ "效率": 8022,
+ "最大化": 8023,
+ "效应": 8024,
+ "技术手段": 8025,
+ "调研": 8026,
+ "流程": 8027,
+ "编制": 8028,
+ "编程": 8029,
+ "辅导": 8030,
+ "修正": 8031,
+ "三大": 8032,
+ "领域": 8033,
+ "软件开发": 8034,
+ "一线": 8035,
+ "资讯": 8036,
+ "多家": 8037,
+ "协作": 8038,
+ "兼容性": 8039,
+ "速率": 8040,
+ "十个月": 8041,
+ "试用": 8042,
+ "小勺": 8043,
+ "喂食": 8044,
+ "信心": 8045,
+ "强迫": 8046,
+ "条件反射": 8047,
+ "嘴边": 8048,
+ "拒绝": 8049,
+ "勺": 8050,
+ "摇头": 8051,
+ "厌恶": 8052,
+ "地用": 8053,
+ "大哭": 8054,
+ "一餐": 8055,
+ "身心": 8056,
+ "饥饿": 8057,
+ "甜食": 8058,
+ "辅食": 8059,
+ "肉汤": 8060,
+ "花样": 8061,
+ "面食": 8062,
+ "调换": 8063,
+ "新奇": 8064,
+ "多种类型": 8065,
+ "饼干": 8066,
+ "蛋糕": 8067,
+ "应有": 8068,
+ "心情愉快": 8069,
+ "用餐": 8070,
+ "常会": 8071,
+ "一顿饭": 8072,
+ "专心": 8073,
+ "一口": 8074,
+ "眼中": 8075,
+ "关乎": 8076,
+ "之争": 8077,
+ "家中": 8078,
+ "乖乖": 8079,
+ "密不可分": 8080,
+ "饿": 8081,
+ "抓住": 8082,
+ "弱点": 8083,
+ "因应": 8084,
+ "察觉": 8085,
+ "避免出现": 8086,
+ "零食": 8087,
+ "吃零食": 8088,
+ "吃不下": 8089,
+ "一顿": 8090,
+ "坐下": 8091,
+ "排斥": 8092,
+ "当作": 8093,
+ "成就": 8094,
+ "饮食习惯": 8095,
+ "小孩子": 8096,
+ "模仿": 8097,
+ "极强": 8098,
+ "遵守": 8099,
+ "定时": 8100,
+ "全家人": 8101,
+ "一同": 8102,
+ "餐": 8103,
+ "定量": 8104,
+ "一味": 8105,
+ "活动量": 8106,
+ "抗拒": 8107,
+ "选购": 8108,
+ "餐具": 8109,
+ "替": 8110,
+ "欲望": 8111,
+ "如能": 8112,
+ "取代": 8113,
+ "米饭": 8114,
+ "丰盛": 8115,
+ "餐点": 8116,
+ "买菜": 8117,
+ "不但": 8118,
+ "增添": 8119,
+ "趣味性": 8120,
+ "活泼": 8121,
+ "消毒": 8122,
+ "冷却": 8123,
+ "乳酸": 8124,
+ "搅": 8125,
+ "胃肠炎": 8126,
+ "痢疾": 8127,
+ "止泻": 8128,
+ "焦": 8129,
+ "米汤": 8130,
+ "大米": 8131,
+ "过滤": 8132,
+ "再加": 8133,
+ "0.4": 8134,
+ "捣碎": 8135,
+ "熟透": 8136,
+ "700": 8137,
+ "纤维": 8138,
+ "果胶": 8139,
+ "淡": 8140,
+ "茶水": 8141,
+ "红茶": 8142,
+ "内含": 8143,
+ "咖啡因": 8144,
+ "利尿": 8145,
+ "杀菌": 8146,
+ "消炎": 8147,
+ "探讨": 8148,
+ "复": 8149,
+ "出口": 8150,
+ "未经": 8151,
+ "import": 8152,
+ "本国": 8153,
+ "商品": 8154,
+ "退货": 8155,
+ "结果表明": 8156,
+ "宝贵": 8157,
+ "不饱和": 8158,
+ "陆地": 8159,
+ "动植物": 8160,
+ "名叫": 8161,
+ "H": 8162,
+ "营养物质": 8163,
+ "鱼类": 8164,
+ "\\": 8165,
+ "贝类": 8166,
+ "迄今": 8167,
+ "淡水鱼": 8168,
+ "不免": 8169,
+ "鲑鱼": 8170,
+ "万里": 8171,
+ "南极": 8172,
+ "所含": 8173,
+ "脑细胞": 8174,
+ "脑": 8175,
+ "传导": 8176,
+ "突触": 8177,
+ "重大": 8178,
+ "细胞膜": 8179,
+ "延伸": 8180,
+ "长出": 8181,
+ "思维能力": 8182,
+ "制剂": 8183,
+ "此处": 8184,
+ "所指": 8185,
+ "所用": 8186,
+ "鱼肝油": 8187,
+ "降血脂": 8188,
+ "优异": 8189,
+ "甘油三酯": 8190,
+ "高密度": 8191,
+ "脂蛋白": 8192,
+ "壁上": 8193,
+ "沉积": 8194,
+ "血小板": 8195,
+ "延缓": 8196,
+ "活性": 8197,
+ "偏头痛": 8198,
+ "复方": 8199,
+ "降压": 8200,
+ "有益于": 8201,
+ "有意识": 8202,
+ "有利于": 8203,
+ "8%": 8204,
+ "院": 8205,
+ "私立": 8206,
+ "路上": 8207,
+ "两只": 8208,
+ "逃走": 8209,
+ "自然选择": 8210,
+ "诛仙": 8211,
+ "右下角": 8212,
+ "气血": 8213,
+ "魔力": 8214,
+ "幻想": 8215,
+ "评价": 8216,
+ "区里": 8217,
+ "小区": 8218,
+ "代理商": 8219,
+ "目光": 8220,
+ "网游": 8221,
+ "长远": 8222,
+ "不难": 8223,
+ "抖": 8224,
+ "宋朝": 8225,
+ "宋江": 8226,
+ "言": 8227,
+ "雄": 8228,
+ "无人": 8229,
+ "略": 8230,
+ "玩法": 8231,
+ "京师": 8232,
+ "之地": 8233,
+ "扁": 8234,
+ "抖动": 8235,
+ "姿势": 8236,
+ "扔": 8237,
+ "动作": 8238,
+ "器具": 8239,
+ "颇": 8240,
+ "鸡": 8241,
+ "上架": 8242,
+ "汉族": 8243,
+ "盛行": 8244,
+ "原材料": 8245,
+ "分类": 8246,
+ "轴": 8247,
+ "发声": 8248,
+ "轮": 8249,
+ "凡是": 8250,
+ "最多": 8251,
+ "贯穿": 8252,
+ "尺寸": 8253,
+ "公分": 8254,
+ "过大": 8255,
+ "腰": 8256,
+ "相": 8257,
+ "组合成": 8258,
+ "科学技术": 8259,
+ "橡胶": 8260,
+ "塑料": 8261,
+ "更长": 8262,
+ "无声": 8263,
+ "灯光": 8264,
+ "旋转": 8265,
+ "钩": 8266,
+ "通关": 8267,
+ "睡得": 8268,
+ "安稳": 8269,
+ "被子": 8270,
+ "跟上": 8271,
+ "着凉": 8272,
+ "打牌": 8273,
+ "记不住": 8274,
+ "诀窍": 8275,
+ "无穷的": 8276,
+ "午睡": 8277,
+ "一名": 8278,
+ "宿舍": 8279,
+ "中午": 8280,
+ "做作业": 8281,
+ "睡午觉": 8282,
+ "两点": 8283,
+ "做梦": 8284,
+ "醒": 8285,
+ "叫醒": 8286,
+ "梦境": 8287,
+ "同一个": 8288,
+ "睡醒": 8289,
+ "累": 8290,
+ "浑身": 8291,
+ "无力": 8292,
+ "逃": 8293,
+ "充斥": 8294,
+ "意志": 8295,
+ "中断": 8296,
+ "切换": 8297,
+ "相反": 8298,
+ "换成": 8299,
+ "学说": 8300,
+ "渴望": 8301,
+ "地说": 8302,
+ "植物": 8303,
+ "土": 8304,
+ "根系": 8305,
+ "组件": 8306,
+ "数据传输": 8307,
+ "关联": 8308,
+ "选中": 8309,
+ "按着": 8310,
+ "Shift": 8311,
+ "疼": 8312,
+ "昨天晚上": 8313,
+ "左腿": 8314,
+ "经历": 8315,
+ "测量": 8316,
+ "缺钙": 8317,
+ "两岁": 8318,
+ "钙片": 8319,
+ "胸腔": 8320,
+ "胸痛": 8321,
+ "胸部": 8322,
+ "疾患": 8323,
+ "增强体质": 8324,
+ "抗病": 8325,
+ "体育锻炼": 8326,
+ "太极拳": 8327,
+ "引流": 8328,
+ "再次出现": 8329,
+ "洁面": 8330,
+ "依次": 8331,
+ "爽肤水": 8332,
+ "乳液": 8333,
+ "防晒": 8334,
+ "自制": 8335,
+ "厚重": 8336,
+ "买卖": 8337,
+ "联合": 8338,
+ "历": 8339,
+ "删": 8340,
+ "亏了": 8341,
+ "玩玩": 8342,
+ "历史记录": 8343,
+ "证券公司": 8344,
+ "坡": 8345,
+ "委屈": 8346,
+ "旅馆": 8347,
+ "客栈": 8348,
+ "马尾": 8349,
+ "十里": 8350,
+ "海鲜": 8351,
+ "景色": 8352,
+ "沙滩": 8353,
+ "广东": 8354,
+ "日出": 8355,
+ "日落": 8356,
+ "南海": 8357,
+ "一号": 8358,
+ "大妈": 8359,
+ "大海": 8360,
+ "清明": 8361,
+ "死者": 8362,
+ "从小": 8363,
+ "误会": 8364,
+ "屁股": 8365,
+ "起初": 8366,
+ "派": 8367,
+ "老爸": 8368,
+ "难题": 8369,
+ "抽": 8370,
+ "戒": 8371,
+ "认清": 8372,
+ "下定决心": 8373,
+ "加班": 8374,
+ "烦": 8375,
+ "太累": 8376,
+ "恰到好处": 8377,
+ "导航": 8378,
+ "栏": 8379,
+ "醒目": 8380,
+ "大字": 8381,
+ "☆": 8382,
+ "这篇": 8383,
+ "音效": 8384,
+ "喇叭": 8385,
+ "听见": 8386,
+ "声卡": 8387,
+ "问号": 8388,
+ "感叹号": 8389,
+ "爱过": 8390,
+ "好感": 8391,
+ "个人资料": 8392,
+ "血统": 8393,
+ "微软公司": 8394,
+ "首席": 8395,
+ "设计师": 8396,
+ "商业": 8397,
+ "互联网": 8398,
+ "领导者": 8399,
+ "截止": 8400,
+ "亿美元": 8401,
+ "78": 8402,
+ "总数": 8403,
+ "000": 8404,
+ "1955": 8405,
+ "西雅图": 8406,
+ "长大": 8407,
+ "William": 8408,
+ "律师": 8409,
+ "继母": 8410,
+ "Mary": 8411,
+ "教师": 8412,
+ "董事": 8413,
+ "United": 8414,
+ "International": 8415,
+ "就读于": 8416,
+ "小学": 8417,
+ "1973": 8418,
+ "哈佛大学": 8419,
+ "执行官": 8420,
+ "史蒂夫": 8421,
+ "结成": 8422,
+ "哈佛": 8423,
+ "第一台": 8424,
+ "–": 8425,
+ "三年级": 8426,
+ "Paul": 8427,
+ "1975": 8428,
+ "信念": 8429,
+ "易用": 8430,
+ "省钱": 8431,
+ "富于": 8432,
+ "经费": 8433,
+ "1999": 8434,
+ "一书": 8435,
+ "计算机技术": 8436,
+ "崭新": 8437,
+ "本书": 8438,
+ "出版": 8439,
+ "赢得": 8440,
+ "赞誉": 8441,
+ "纽约时报": 8442,
+ "今日": 8443,
+ "畅销书": 8444,
+ "1995": 8445,
+ "名列": 8446,
+ "排行榜": 8447,
+ "两本书": 8448,
+ "捐献": 8449,
+ "热爱": 8450,
+ "董事会": 8451,
+ "一员": 8452,
+ "专注": 8453,
+ "分子": 8454,
+ "投资人": 8455,
+ "资源": 8456,
+ "私人": 8457,
+ "摄影": 8458,
+ "先锋": 8459,
+ "轨道": 8460,
+ "卫星": 8461,
+ "双向": 8462,
+ "慈善事业": 8463,
+ "捐赠": 8464,
+ "240": 8465,
+ "医疗": 8466,
+ "教育领域": 8467,
+ "科技进步": 8468,
+ "全人类": 8469,
+ "受益": 8470,
+ "购置": 8471,
+ "低收入": 8472,
+ "2.6": 8473,
+ "3.8": 8474,
+ "发放": 8475,
+ "French": 8476,
+ "1994": 8477,
+ "高尔夫球": 8478,
+ "皇冠": 8479,
+ "此致": 8480,
+ "敬礼": 8481,
+ "束缚": 8482,
+ "德": 8483,
+ "迎来": 8484,
+ "大型": 8485,
+ "天赋": 8486,
+ "比起": 8487,
+ "煎熬": 8488,
+ "牧师": 8489,
+ "气息": 8490,
+ "十个": 8491,
+ "背负": 8492,
+ "重物": 8493,
+ "吻": 8494,
+ "四处": 8495,
+ "嗜": 8496,
+ "烟火": 8497,
+ "趴": 8498,
+ "椒": 8499,
+ "巢穴": 8500,
+ "记载": 8501,
+ "古时": 8502,
+ "成龙": 8503,
+ "谓": 8504,
+ "大叫": 8505,
+ "环": 8506,
+ "角": 8507,
+ "兽": 8508,
+ "随之": 8509,
+ "xi": 8510,
+ "龟": 8511,
+ "形似": 8512,
+ "石碑": 8513,
+ "口": 8514,
+ "吞": 8515,
+ "遂": 8516,
+ "望": 8517,
+ "闭": 8518,
+ "求救": 8519,
+ "眼神": 8520,
+ "坐在": 8521,
+ "脱": 8522,
+ "裙子": 8523,
+ "不安": 8524,
+ "寄宿": 8525,
+ "决不": 8526,
+ "呆": 8527,
+ "悲惨": 8528,
+ "被盗": 8529,
+ "问过": 8530,
+ "试试看": 8531,
+ "一律": 8532,
+ "管用": 8533,
+ "日语": 8534,
+ "ら": 8535,
+ "ス": 8536,
+ "ク": 8537,
+ "ー": 8538,
+ "ラ": 8539,
+ "计": 8540,
+ "ル": 8541,
+ "ト": 8542,
+ "リ": 8543,
+ "ン": 8544,
+ "饭后": 8545,
+ "依靠": 8546,
+ "也罢": 8547,
+ "去查": 8548,
+ "家里人": 8549,
+ "科室": 8550,
+ "不好意思": 8551,
+ "没能": 8552,
+ "一类": 8553,
+ "圣诞节": 8554,
+ "发短信": 8555,
+ "口气": 8556,
+ "冷淡": 8557,
+ "脸色": 8558,
+ "陷入": 8559,
+ "想念": 8560,
+ "猜测": 8561,
+ "要不然": 8562,
+ "肤浅": 8563,
+ "银行业": 8564,
+ "课题": 8565,
+ "大纲": 8566,
+ "中国人民银行": 8567,
+ "金融": 8568,
+ "研究所": 8569,
+ "刊物": 8570,
+ "油箱": 8571,
+ "取出": 8572,
+ "块钱": 8573,
+ "打火机": 8574,
+ "爆炸": 8575,
+ "管子": 8576,
+ "掉落": 8577,
+ "拆卸": 8578,
+ "陶瓷": 8579,
+ "刷卡": 8580,
+ "店里": 8581,
+ "退款": 8582,
+ "拜仁": 8583,
+ "就别": 8584,
+ "指望": 8585,
+ "胜利": 8586,
+ "场面": 8587,
+ "一球": 8588,
+ "盘口": 8589,
+ "球": 8590,
+ "有点像": 8591,
+ "贝里": 8592,
+ "强奸": 8593,
+ "轻微": 8594,
+ "反抗": 8595,
+ "按住": 8596,
+ "告": 8597,
+ "双手": 8598,
+ "床上": 8599,
+ "指纹": 8600,
+ "比较复杂": 8601,
+ "男方": 8602,
+ "误认为": 8603,
+ "女方": 8604,
+ "刑法": 8605,
+ "有期徒刑": 8606,
+ "死刑": 8607,
+ "公共场所": 8608,
+ "二人": 8609,
+ "被害人": 8610,
+ "重伤": 8611,
+ "严重后果": 8612,
+ "误以为": 8613,
+ "主体": 8614,
+ "2008": 8615,
+ "劳动法": 8616,
+ "值得注意": 8617,
+ "有何": 8618,
+ "旧": 8619,
+ "代表性": 8620,
+ "到位": 8621,
+ "BLOG": 8622,
+ "JJ": 8623,
+ "不疼": 8624,
+ "一个多月": 8625,
+ "猴子": 8626,
+ "阴茎": 8627,
+ "丘疹": 8628,
+ "特效": 8629,
+ "解脱": 8630,
+ "生理功能": 8631,
+ "珍珠": 8632,
+ "翻倍": 8633,
+ "名义": 8634,
+ "抢救": 8635,
+ "透过": 8636,
+ "一堆": 8637,
+ "废墟": 8638,
+ "间隙": 8639,
+ "跪": 8640,
+ "上身": 8641,
+ "向前": 8642,
+ "扶": 8643,
+ "古人": 8644,
+ "诡异": 8645,
+ "救援": 8646,
+ "伸手": 8647,
+ "冲着": 8648,
+ "敲": 8649,
+ "几下": 8650,
+ "回应": 8651,
+ "走到": 8652,
+ "队长": 8653,
+ "尸体": 8654,
+ "把手": 8655,
+ "身子": 8656,
+ "摸索": 8657,
+ "活着": 8658,
+ "挡": 8659,
+ "庇护": 8660,
+ "一部": 8661,
+ "下意识": 8662,
+ "我爱你": 8663,
+ "一刻": 8664,
+ "落泪": 8665,
+ "伟大": 8666,
+ "无私": 8667,
+ "这位": 8668,
+ "共和国": 8669,
+ "咽喉": 8670,
+ "咽炎": 8671,
+ "犯": 8672,
+ "扁桃体": 8673,
+ "吃点": 8674,
+ "泡水": 8675,
+ "电气": 8676,
+ "土木": 8677,
+ "易学": 8678,
+ "文科": 8679,
+ "讲得": 8680,
+ "更难": 8681,
+ "同等": 8682,
+ "两款": 8683,
+ "相差": 8684,
+ "太远": 8685,
+ "7000": 8686,
+ "皮带": 8687,
+ "防水": 8688,
+ "蓝宝石": 8689,
+ "日历": 8690,
+ "纯正": 8691,
+ "售后": 8692,
+ "指针": 8693,
+ "详细描述": 8694,
+ "参数": 8695,
+ "长度": 8696,
+ "外壳": 8697,
+ "带宽": 8698,
+ "计时": 8699,
+ "佩戴": 8700,
+ "买来": 8701,
+ "虚拟内存": 8702,
+ "译": 8703,
+ "老手": 8704,
+ "翻译成": 8705,
+ "99": 8706,
+ "很难说": 8707,
+ "网通": 8708,
+ "底盘": 8709,
+ "东风": 8710,
+ "省油": 8711,
+ "铃木": 8712,
+ "车祸": 8713,
+ "病房": 8714,
+ "拍片": 8715,
+ "那次": 8716,
+ "报销": 8717,
+ "10000": 8718,
+ "8000": 8719,
+ "会计": 8720,
+ "帐": 8721,
+ "现金": 8722,
+ "收据": 8723,
+ "原先": 8724,
+ "隔天": 8725,
+ "前天": 8726,
+ "力气": 8727,
+ "感冒": 8728,
+ "一包": 8729,
+ "感冒药": 8730,
+ "笨": 8731,
+ "三角形": 8732,
+ "α": 8733,
+ "β": 8734,
+ "正弦": 8735,
+ "定理": 8736,
+ "BD": 8737,
+ "∠": 8738,
+ "化解": 8739,
+ "√": 8740,
+ "tan": 8741,
+ "元气": 8742,
+ "安神": 8743,
+ "倦怠": 8744,
+ "虚": 8745,
+ "促": 8746,
+ "健忘": 8747,
+ "阳痿": 8748,
+ "尿频": 8749,
+ "实证": 8750,
+ "神马": 8751,
+ "化妆品": 8752,
+ "水资源": 8753,
+ "纯净": 8754,
+ "全都": 8755,
+ "深层": 8756,
+ "本地": 8757,
+ "录制": 8758,
+ "传到": 8759,
+ "网易": 8760,
+ "博客": 8761,
+ "祝你成功": 8762,
+ "摆摊": 8763,
+ "爷爷": 8764,
+ "上街": 8765,
+ "咱们": 8766,
+ "缺钱": 8767,
+ "开了个": 8768,
+ "当代": 8769,
+ "天涯": 8770,
+ "搜索": 8771,
+ "消磨": 8772,
+ "新来": 8773,
+ "上司": 8774,
+ "挂牌": 8775,
+ "多多": 8776,
+ "哟": 8777,
+ "汇报": 8778,
+ "执行力": 8779,
+ "雷锋": 8780,
+ "笔记": 8781,
+ "原话": 8782,
+ "出处": 8783,
+ "日记": 8784,
+ "必": 8785,
+ "30%": 8786,
+ "忽视": 8787,
+ "冰冻": 8788,
+ "380": 8789,
+ "会员": 8790,
+ "2800": 8791,
+ "4.8": 8792,
+ "一等": 8793,
+ "四等": 8794,
+ "单元格": 8795,
+ "字数": 8796,
+ "个数": 8797,
+ "样例": 8798,
+ "战机": 8799,
+ "飞机": 8800,
+ "歼": 8801,
+ "第二代": 8802,
+ "战斗机": 8803,
+ "第三代": 8804,
+ "中等": 8805,
+ "机翼": 8806,
+ "机动": 8807,
+ "斜率": 8808,
+ "诱导": 8809,
+ "阻力": 8810,
+ "能量": 8811,
+ "损失": 8812,
+ "优于": 8813,
+ "并未": 8814,
+ "够用": 8815,
+ "略有": 8816,
+ "上将": 8817,
+ "三代": 8818,
+ "布局": 8819,
+ "作战": 8820,
+ "出于": 8821,
+ "纵向": 8822,
+ "驾驶": 8823,
+ "可靠性": 8824,
+ "操纵": 8825,
+ "不足之处": 8826,
+ "飞行员": 8827,
+ "小巧": 8828,
+ "惯性": 8829,
+ "放宽": 8830,
+ "静": 8831,
+ "安定": 8832,
+ "某种程度": 8833,
+ "米格": 8834,
+ "中有": 8835,
+ "视野": 8836,
+ "大面积": 8837,
+ "逃逸": 8838,
+ "略微": 8839,
+ "头部": 8840,
+ "充分利用": 8841,
+ "人机": 8842,
+ "模块化": 8843,
+ "总线": 8844,
+ "外挂": 8845,
+ "雷达": 8846,
+ "集成电路": 8847,
+ "远远": 8848,
+ "电子设备": 8849,
+ "一时": 8850,
+ "―": 8851,
+ "向往": 8852,
+ "自动化": 8853,
+ "公开": 8854,
+ "报道": 8855,
+ "观念": 8856,
+ "典范": 8857,
+ "与此同时": 8858,
+ "披露": 8859,
+ "传感器": 8860,
+ "航空": 8861,
+ "巴基斯坦": 8862,
+ "霹雳": 8863,
+ "除此之外": 8864,
+ "魔术": 8865,
+ "导弹": 8866,
+ "空军": 8867,
+ "向来": 8868,
+ "服役": 8869,
+ "一举": 8870,
+ "简体中文": 8871,
+ "编码": 8872,
+ "控制面板": 8873,
+ "区域": 8874,
+ "前列腺炎": 8875,
+ "交给": 8876,
+ "前列腺": 8877,
+ "生殖系统": 8878,
+ "六年级": 8879,
+ "一班": 8880,
+ "52": 8881,
+ "{": 8882,
+ "答": 8883,
+ "VIP": 8884,
+ "章节": 8885,
+ "文": 8886,
+ "白金": 8887,
+ "这份": 8888,
+ "大爷": 8889,
+ "突发": 8890,
+ "脑血栓": 8891,
+ "意外": 8892,
+ "xxx": 8893,
+ "签字": 8894,
+ "毫无意义": 8895,
+ "依法": 8896,
+ "承担责任": 8897,
+ "效力": 8898,
+ "规避": 8899,
+ "多一点": 8900,
+ "听人": 8901,
+ "矮": 8902,
+ "太紧张": 8903,
+ "多一些": 8904,
+ "吊": 8905,
+ "跳绳": 8906,
+ "取决于": 8907,
+ "睡觉时": 8908,
+ "脑垂体": 8909,
+ "生长激素": 8910,
+ "元素": 8911,
+ "氨基酸": 8912,
+ "羟基": 8913,
+ "含钙": 8914,
+ "桔子": 8915,
+ "化": 8916,
+ "应届": 8917,
+ "可不可以": 8918,
+ "考试": 8919,
+ "看清楚": 8920,
+ "职位": 8921,
+ "人士": 8922,
+ "low": 8923,
+ "舞": 8924,
+ "注明": 8925,
+ "词性": 8926,
+ "声调": 8927,
+ "ā": 8928,
+ "ì": 8929,
+ "pi": 8930,
+ "á": 8931,
+ "o": 8932,
+ "ǐ": 8933,
+ "贫穷": 8934,
+ "论语": 8935,
+ "胡须": 8936,
+ "阴毛": 8937,
+ "同龄人": 8938,
+ "手淫": 8939,
+ "自卑": 8940,
+ "胡子": 8941,
+ "性激素": 8942,
+ "生殖器官": 8943,
+ "来信": 8944,
+ "大致": 8945,
+ "特异性": 8946,
+ "高血脂": 8947,
+ "脑中风": 8948,
+ "脑梗塞": 8949,
+ "高龄": 8950,
+ "减低": 8951,
+ "俗称": 8952,
+ "肥": 8953,
+ "冲服": 8954,
+ "搭配": 8955,
+ "空腹": 8956,
+ "舒缓": 8957,
+ "晚餐": 8958,
+ "一杯": 8959,
+ "守护": 8960,
+ "轻盈": 8961,
+ "涅": 8962,
+ "骑马": 8963,
+ "捏": 8964,
+ "讲课": 8965,
+ "是非": 8966,
+ "考生": 8967,
+ "资格证": 8968,
+ "朴实": 8969,
+ "通俗易懂": 8970,
+ "风趣": 8971,
+ "力求": 8972,
+ "集中": 8973,
+ "积极性": 8974,
+ "平淡": 8975,
+ "语速": 8976,
+ "协调": 8977,
+ "叙事": 8978,
+ "情景": 8979,
+ "逼真": 8980,
+ "谈话": 8981,
+ "真挚": 8982,
+ "感人": 8983,
+ "借助": 8984,
+ "手势": 8985,
+ "穿插": 8986,
+ "事例": 8987,
+ "比喻": 8988,
+ "新颖": 8989,
+ "恰当": 8990,
+ "寓意": 8991,
+ "贴切": 8992,
+ "启发性": 8993,
+ "难点": 8994,
+ "力度": 8995,
+ "不清": 8996,
+ "听不懂": 8997,
+ "一看": 8998,
+ "任意": 8999,
+ "删减": 9000,
+ "响": 9001,
+ "课堂": 9002,
+ "举例": 9003,
+ "讲述": 9004,
+ "势必": 9005,
+ "适时": 9006,
+ "实例": 9007,
+ "生动": 9008,
+ "情趣": 9009,
+ "活跃": 9010,
+ "启发": 9011,
+ "逻辑性": 9012,
+ "系统性": 9013,
+ "深浅": 9014,
+ "三种": 9015,
+ "悬念": 9016,
+ "激发": 9017,
+ "有意": 9018,
+ "独立思考": 9019,
+ "巩固": 9020,
+ "几名": 9021,
+ "黑板": 9022,
+ "纠正": 9023,
+ "普遍存在": 9024,
+ "讨厌": 9025,
+ "舍得": 9026,
+ "默默地": 9027,
+ "深渊": 9028,
+ "买回来": 9029,
+ "零件": 9030,
+ "删掉": 9031,
+ "该是": 9032,
+ "天线": 9033,
+ "病史": 9034,
+ "鼻窦炎": 9035,
+ "嗅觉": 9036,
+ "痰": 9037,
+ "痘": 9038,
+ "耳屎": 9039,
+ "按压": 9040,
+ "碰撞": 9041,
+ "集合": 9042,
+ "左侧": 9043,
+ "神经痛": 9044,
+ "迎合": 9045,
+ "波段": 9046,
+ "即将": 9047,
+ "飙升": 9048,
+ "创立": 9049,
+ "当日": 9050,
+ "交易日": 9051,
+ "收盘价": 9052,
+ "权证": 9053,
+ "开盘": 9054,
+ "明日": 9055,
+ "出货": 9056,
+ "利润": 9057,
+ "7%": 9058,
+ "客观": 9059,
+ "创新": 9060,
+ "回落": 9061,
+ "站上": 9062,
+ "盈利": 9063,
+ "5%": 9064,
+ "LM": 9065,
+ "BL": 9066,
+ "屠杀": 9067,
+ "人多": 9068,
+ "新款": 9069,
+ "行货": 9070,
+ "水货": 9071,
+ "过年": 9072,
+ "别急": 9073,
+ "花园": 9074,
+ "名片": 9075,
+ "春节": 9076,
+ "经销商": 9077,
+ "卓越": 9078,
+ "多好": 9079,
+ "珠海": 9080,
+ "得知": 9081,
+ "曝光": 9082,
+ "you": 9083,
+ "your": 9084,
+ "life": 9085,
+ "at": 9086,
+ "数额": 9087,
+ "分会": 9088,
+ "开工": 9089,
+ "台湾": 9090,
+ "连续剧": 9091,
+ "台词": 9092,
+ "表情": 9093,
+ "电视剧": 9094,
+ "演员": 9095,
+ "情节": 9096,
+ "精彩": 9097,
+ "亲身": 9098,
+ "控油": 9099,
+ "雅虎": 9100,
+ "双眼皮": 9101,
+ "切开": 9102,
+ "三点": 9103,
+ "楼": 9104,
+ "音质": 9105,
+ "iPod": 9106,
+ "试听": 9107,
+ "信用卡": 9108,
+ "担保": 9109,
+ "招行": 9110,
+ "凭": 9111,
+ "还款": 9112,
+ "额": 9113,
+ "大堂": 9114,
+ "经理": 9115,
+ "ps": 9116,
+ "银": 9117,
+ "提现": 9118,
+ "出入": 9119,
+ "货款": 9120,
+ "结算": 9121,
+ "审查": 9122,
+ "支出": 9123,
+ "简便": 9124,
+ "工作量": 9125,
+ "次日": 9126,
+ "手续费": 9127,
+ "牛仔裤": 9128,
+ "水泡": 9129,
+ "洗涤剂": 9130,
+ "裤子": 9131,
+ "变硬": 9132,
+ "大有": 9133,
+ "照射": 9134,
+ "攒": 9135,
+ "组队": 9136,
+ "打死": 9137,
+ "单练": 9138,
+ "分流": 9139,
+ "34": 9140,
+ "括号": 9141,
+ "句子": 9142,
+ "未能": 9143,
+ "说服": 9144,
+ "my": 9145,
+ "人太多": 9146,
+ "指南": 9147,
+ "世界各地": 9148,
+ "八岁": 9149,
+ "目前为止": 9150,
+ "药都": 9151,
+ "诊治": 9152,
+ "轻度": 9153,
+ "常有": 9154,
+ "张口": 9155,
+ "流口水": 9156,
+ "无意识": 9157,
+ "尖叫": 9158,
+ "哭闹": 9159,
+ "同龄": 9160,
+ "儿": 9161,
+ "起始": 9162,
+ "采取有效": 9163,
+ "大多": 9164,
+ "眼睑": 9165,
+ "下垂": 9166,
+ "斜视": 9167,
+ "三角": 9168,
+ "前额": 9169,
+ "凸出": 9170,
+ "平坦": 9171,
+ "扁平": 9172,
+ "伸出": 9173,
+ "宽大": 9174,
+ "外貌": 9175,
+ "整天": 9176,
+ "表扬": 9177,
+ "被忽视": 9178,
+ "面容": 9179,
+ "双眼": 9180,
+ "斜": 9181,
+ "舌头": 9182,
+ "外边": 9183,
+ "神经递质": 9184,
+ "认知": 9185,
+ "k": 9186,
+ "拉长": 9187,
+ "含义": 9188,
+ "低位": 9189,
+ "求助": 9190,
+ "弟": 9191,
+ "弟弟": 9192,
+ "需不需要": 9193,
+ "继续下去": 9194,
+ "散光": 9195,
+ "眼镜": 9196,
+ "近视": 9197,
+ "视力": 9198,
+ "不正": 9199,
+ "矫正": 9200,
+ "可靠": 9201,
+ "戴": 9202,
+ "事项": 9203,
+ "近视眼": 9204,
+ "隐形": 9205,
+ "看不出来": 9206,
+ "母乳": 9207,
+ "奶": 9208,
+ "寄": 9209,
+ "润滑": 9210,
+ "吃饱": 9211,
+ "拉屎": 9212,
+ "大脑皮层": 9213,
+ "小牛": 9214,
+ "血清": 9215,
+ "银杏": 9216,
+ "心脑血管": 9217,
+ "应立即": 9218,
+ "公交": 9219,
+ "充值": 9220,
+ "大西洋": 9221,
+ "新城": 9222,
+ "南门": 9223,
+ "总站": 9224,
+ "邻居": 9225,
+ "不间断": 9226,
+ "中途": 9227,
+ "中要": 9228,
+ "习惯于": 9229,
+ "休眠": 9230,
+ "电磁辐射": 9231,
+ "妥当": 9232,
+ "开启": 9233,
+ "脑瘤": 9234,
+ "仙人掌": 9235,
+ "后要": 9236,
+ "破损": 9237,
+ "劣质": 9238,
+ "坚决": 9239,
+ "莱斯": 9240,
+ "头颅": 9241,
+ "打断": 9242,
+ "五人": 9243,
+ "验血": 9244,
+ "放心好了": 9245,
+ "初次": 9246,
+ "件": 9247,
+ "准妈妈": 9248,
+ "隐患": 9249,
+ "孕早期": 9250,
+ "生存环境": 9251,
+ "黏膜": 9252,
+ "息肉": 9253,
+ "阴道内": 9254,
+ "滴虫": 9255,
+ "微生物": 9256,
+ "上行": 9257,
+ "初级": 9258,
+ "阴道镜": 9259,
+ "活检": 9260,
+ "妇科": 9261,
+ "三合": 9262,
+ "停经": 9263,
+ "月份": 9264,
+ "肌瘤": 9265,
+ "终止": 9266,
+ "尽可能": 9267,
+ "双侧": 9268,
+ "卵巢": 9269,
+ "器质性": 9270,
+ "后会": 9271,
+ "消退": 9272,
+ "良性": 9273,
+ "超声": 9274,
+ "种植": 9275,
+ "随访": 9276,
+ "甲状腺": 9277,
+ "夫妇": 9278,
+ "flash": 9279,
+ "blog": 9280,
+ "http": 9281,
+ "复制": 9282,
+ "V": 9283,
+ "大头": 9284,
+ "认证": 9285,
+ "月底": 9286,
+ "31": 9287,
+ "税务局": 9288,
+ "扫描": 9289,
+ "BB": 9290,
+ "一月": 9291,
+ "好几": 9292,
+ "那点": 9293,
+ "不靠": 9294,
+ "母": 9295,
+ "原型": 9296,
+ "北欧": 9297,
+ "神话": 9298,
+ "诗词": 9299,
+ "分发": 9300,
+ "闪电": 9301,
+ "冰雪": 9302,
+ "作家": 9303,
+ "国度": 9304,
+ "马车": 9305,
+ "出游": 9306,
+ "坚果": 9307,
+ "诸多": 9308,
+ "挨": 9309,
+ "纷纷": 9310,
+ "听话": 9311,
+ "深深地": 9312,
+ "从那时起": 9313,
+ "四维": 9314,
+ "颗粒": 9315,
+ "前两天": 9316,
+ "肋骨": 9317,
+ "噩梦": 9318,
+ "挣": 9319,
+ "夜晚": 9320,
+ "病理": 9321,
+ "可怕": 9322,
+ "体检": 9323,
+ "妇科病": 9324,
+ "那才": 9325,
+ "支票": 9326,
+ "这笔": 9327,
+ "总有": 9328,
+ "点滴": 9329,
+ "经血": 9330,
+ "淤积": 9331,
+ "小腹": 9332,
+ "腹部": 9333,
+ "益母草": 9334,
+ "冲剂": 9335,
+ "化妆": 9336,
+ "严谨": 9337,
+ "教会": 9338,
+ "台上": 9339,
+ "这台": 9340,
+ "启用": 9341,
+ "聊天记录": 9342,
+ "查到": 9343,
+ "命名": 9344,
+ "黑屏": 9345,
+ "Photoshop": 9346,
+ "CS": 9347,
+ "重新启动": 9348,
+ "无能为力": 9349,
+ "留个": 9350,
+ "可不": 9351,
+ "传染给": 9352,
+ "传给": 9353,
+ "肝炎": 9354,
+ "两对半": 9355,
+ "转阴": 9356,
+ "肾虚": 9357,
+ "玉米": 9358,
+ "核桃": 9359,
+ "毛": 9360,
+ "仁": 9361,
+ "漂白": 9362,
+ "籽": 9363,
+ "糖水": 9364,
+ "网店": 9365,
+ "直销": 9366,
+ "档次": 9367,
+ "歌词": 9368,
+ "歌名": 9369,
+ "主题曲": 9370,
+ "蓝光": 9371,
+ "急急": 9372,
+ "自定义": 9373,
+ "第一项": 9374,
+ "背景": 9375,
+ "定制": 9376,
+ "太多": 9377,
+ "藻类": 9378,
+ "昆虫": 9379,
+ "炖": 9380,
+ "标注": 9381,
+ "出售": 9382,
+ "攻击力": 9383,
+ "太慢": 9384,
+ "澳门": 9385,
+ "900": 9386,
+ "处女座": 9387,
+ "射手座": 9388,
+ "表态": 9389,
+ "玛丽": 9390,
+ "发给": 9391,
+ "冢": 9392,
+ "不二": 9393,
+ "养颜": 9394,
+ "枚": 9395,
+ "枸杞子": 9396,
+ "红糖": 9397,
+ "30g": 9398,
+ "煮粥": 9399,
+ "补肾": 9400,
+ "缺铁性": 9401,
+ "瘦弱": 9402,
+ "奶茶": 9403,
+ "100g": 9404,
+ "兑": 9405,
+ "趁热": 9406,
+ "体虚": 9407,
+ "中老年人": 9408,
+ "陈皮": 9409,
+ "冰糖": 9410,
+ "粳米": 9411,
+ "置": 9412,
+ "砂锅": 9413,
+ "煮成": 9414,
+ "润肺": 9415,
+ "冬瓜": 9416,
+ "捣烂": 9417,
+ "药丸": 9418,
+ "保管": 9419,
+ "10g": 9420,
+ "送服": 9421,
+ "黑斑": 9422,
+ "桃花": 9423,
+ "活血化瘀": 9424,
+ "乳酪": 9425,
+ "美白": 9426,
+ "杯水": 9427,
+ "光泽": 9428,
+ "眼皮": 9429,
+ "上铺": 9430,
+ "两片": 9431,
+ "梨": 9432,
+ "好莱坞": 9433,
+ "花生酱": 9434,
+ "膝": 9435,
+ "麦片": 9436,
+ "匙": 9437,
+ "唇": 9438,
+ "光亮": 9439,
+ "牛油果": 9440,
+ "钾": 9441,
+ "指甲": 9442,
+ "拯救": 9443,
+ "毫无": 9444,
+ "皮": 9445,
+ "家用": 9446,
+ "燕麦": 9447,
+ "燕麦粥": 9448,
+ "圆圈": 9449,
+ "糊涂": 9450,
+ "颈部": 9451,
+ "牛皮癣": 9452,
+ "水龙头": 9453,
+ "茶匙": 9454,
+ "调": 9455,
+ "糊状": 9456,
+ "闭上眼睛": 9457,
+ "十分钟": 9458,
+ "名为": 9459,
+ "黑眼圈": 9460,
+ "板凳": 9461,
+ "桌上": 9462,
+ "两手": 9463,
+ "深呼吸": 9464,
+ "抗菌": 9465,
+ "极好": 9466,
+ "发光": 9467,
+ "@": 9468,
+ "p": 9469,
+ "玫瑰花": 9470,
+ "两半": 9471,
+ "调味料": 9472,
+ "健脾": 9473,
+ "泡": 9474,
+ "嚼": 9475,
+ "肝功能": 9476,
+ "衰老": 9477,
+ "UI": 9478,
+ "77": 9479,
+ "u": 9480,
+ "鲜奶": 9481,
+ "皱": 9482,
+ "苦瓜": 9483,
+ "J": 9484,
+ "数次": 9485,
+ "补中": 9486,
+ "之称": 9487,
+ "砂糖": 9488,
+ "强壮": 9489,
+ "二个": 9490,
+ "做菜": 9491,
+ "彼": 9492,
+ "一概而论": 9493,
+ "饭菜": 9494,
+ "0.9": 9495,
+ "氨水": 9496,
+ "mol": 9497,
+ "L": 9498,
+ "×": 9499,
+ "÷": 9500,
+ "≈": 9501,
+ "从没": 9502,
+ "想过": 9503,
+ "回报": 9504,
+ "另一半": 9505,
+ "内疚": 9506,
+ "哄": 9507,
+ "火车": 9508,
+ "一列": 9509,
+ "车次": 9510,
+ "用时": 9511,
+ "里程": 9512,
+ "终点站": 9513,
+ "06": 9514,
+ "163": 9515,
+ "168": 9516,
+ "射手": 9517,
+ "要学": 9518,
+ "就学": 9519,
+ "学了": 9520,
+ "第一阶段": 9521,
+ "有用吗": 9522,
+ "初期": 9523,
+ "弓手": 9524,
+ "致命": 9525,
+ "攻击速度": 9526,
+ "加法": 9527,
+ "副本": 9528,
+ "搞定": 9529,
+ "隆鼻": 9530,
+ "崩溃": 9531,
+ "鼻": 9532,
+ "理科": 9533,
+ "理解能力": 9534,
+ "做题": 9535,
+ "给你个": 9536,
+ "一小": 9537,
+ "佳": 9538,
+ "浪费时间": 9539,
+ "拍拍": 9540,
+ "机率": 9541,
+ "扭转": 9542,
+ "物理化学": 9543,
+ "教材": 9544,
+ "读过": 9545,
+ "半小时": 9546,
+ "试过": 9547,
+ "继承": 9548,
+ "考上": 9549,
+ "本科": 9550,
+ "表中": 9551,
+ "可比": 9552,
+ "验证": 9553,
+ "却说": 9554,
+ "过期": 9555,
+ "证书": 9556,
+ "用户注册": 9557,
+ "操作系统": 9558,
+ "找回": 9559,
+ "mail": 9560,
+ "输入您": 9561,
+ "输入框": 9562,
+ "写字楼": 9563,
+ "上半年": 9564,
+ "平稳": 9565,
+ "出台": 9566,
+ "住宅": 9567,
+ "凭借": 9568,
+ "整体": 9569,
+ "季度": 9570,
+ "加权": 9571,
+ "参见": 9572,
+ "图表": 9573,
+ "46": 9574,
+ "145": 9575,
+ "第一章": 9576,
+ "概述": 9577,
+ "1.1": 9578,
+ "评定": 9579,
+ "通行": 9580,
+ "叫法": 9581,
+ "乙级": 9582,
+ "恨不得": 9583,
+ "电梯": 9584,
+ "要素": 9585,
+ "房地产": 9586,
+ "地段": 9587,
+ "个个": 9588,
+ "体量": 9589,
+ "伸展": 9590,
+ "拓展": 9591,
+ "公寓": 9592,
+ "休闲": 9593,
+ "购物中心": 9594,
+ "设施": 9595,
+ "称得上": 9596,
+ "五星级": 9597,
+ "皇后": 9598,
+ "说成": 9599,
+ "摩天大楼": 9600,
+ "东方": 9601,
+ "情结": 9602,
+ "奢华": 9603,
+ "极致": 9604,
+ "豪宅": 9605,
+ "建筑设计": 9606,
+ "高效": 9607,
+ "物业管理": 9608,
+ "入住": 9609,
+ "专业化": 9610,
+ "策划": 9611,
+ "新型": 9612,
+ "节假日": 9613,
+ "基本功能": 9614,
+ "物业": 9615,
+ "伴随": 9616,
+ "改革开放": 9617,
+ "之初": 9618,
+ "引用": 9619,
+ "市场经济": 9620,
+ "综合性": 9621,
+ "智能化": 9622,
+ "投放": 9623,
+ "办事处": 9624,
+ "场地": 9625,
+ "出租": 9626,
+ "大都": 9627,
+ "建于": 9628,
+ "贸易": 9629,
+ "服务业": 9630,
+ "优越": 9631,
+ "便利": 9632,
+ "便于": 9633,
+ "往来": 9634,
+ "繁荣": 9635,
+ "都市": 9636,
+ "推动": 9637,
+ "三是": 9638,
+ "人口密度": 9639,
+ "单元": 9640,
+ "集": 9641,
+ "多功能": 9642,
+ "原始": 9643,
+ "总价": 9644,
+ "利润率": 9645,
+ "全额": 9646,
+ "投资者": 9647,
+ "漫长": 9648,
+ "局面": 9649,
+ "买家": 9650,
+ "过长": 9651,
+ "回收": 9652,
+ "困境": 9653,
+ "并存": 9654,
+ "发展趋势": 9655,
+ "迅猛": 9656,
+ "日益": 9657,
+ "自有": 9658,
+ "实力": 9659,
+ "大楼": 9660,
+ "一环": 9661,
+ "刻板": 9662,
+ "过渡": 9663,
+ "急于": 9664,
+ "规范": 9665,
+ "楼层": 9666,
+ "混乱": 9667,
+ "入驻": 9668,
+ "坤": 9669,
+ "大地": 9670,
+ "气势": 9671,
+ "增厚": 9672,
+ "万物": 9673,
+ "列车": 9674,
+ "转让": 9675,
+ "去世": 9676,
+ "双人": 9677,
+ "狂": 9678,
+ "箭": 9679,
+ "翅膀": 9680,
+ "现": 9681,
+ "118": 9682,
+ "2y": 9683,
+ "满月": 9684,
+ "打鼾": 9685,
+ "闭口": 9686,
+ "嗓子": 9687,
+ "间歇性": 9688,
+ "后背": 9689,
+ "头孢": 9690,
+ "糖浆": 9691,
+ "雾化": 9692,
+ "鸽子": 9693,
+ "叫声": 9694,
+ "喘息": 9695,
+ "发育不良": 9696,
+ "气道": 9697,
+ "吸入": 9698,
+ "防空": 9699,
+ "层面": 9700,
+ "无人机": 9701,
+ "车载": 9702,
+ "轻型": 9703,
+ "装甲": 9704,
+ "1986": 9705,
+ "厄": 9706,
+ "分公司": 9707,
+ "宇宙": 9708,
+ "有效性": 9709,
+ "前沿": 9710,
+ "前线": 9711,
+ "部队": 9712,
+ "火力": 9713,
+ "简化": 9714,
+ "后勤": 9715,
+ "支援": 9716,
+ "复杂性": 9717,
+ "双重": 9718,
+ "前方": 9719,
+ "融合": 9720,
+ "兼具": 9721,
+ "陆军": 9722,
+ "战车": 9723,
+ "指挥": 9724,
+ "配备": 9725,
+ "多达": 9726,
+ "担任": 9727,
+ "控制器": 9728,
+ "实时": 9729,
+ "识别": 9730,
+ "威胁": 9731,
+ "48": 9732,
+ "通信": 9733,
+ "无线电": 9734,
+ "无线": 9735,
+ "对峙": 9736,
+ "射程": 9737,
+ "精确度": 9738,
+ "数位": 9739,
+ "精度": 9740,
+ "推进": 9741,
+ "发射": 9742,
+ "延迟": 9743,
+ "设定": 9744,
+ "51": 9745,
+ "穿透": 9746,
+ "监视": 9747,
+ "极高": 9748,
+ "杂乱": 9749,
+ "光电": 9750,
+ "捕获": 9751,
+ "跟踪": 9752,
+ "武装": 9753,
+ "获取": 9754,
+ "天气状况": 9755,
+ "摄像": 9756,
+ "脉冲": 9757,
+ "辨识": 9758,
+ "拉克": 9759,
+ "编入": 9760,
+ "公测": 9761,
+ "玩意": 9762,
+ "解救": 9763,
+ "强行": 9764,
+ "更大": 9765,
+ "提及": 9766,
+ "延误": 9767,
+ "睡前": 9768,
+ "户外": 9769,
+ "散步": 9770,
+ "上床": 9771,
+ "洗个": 9772,
+ "具体方法": 9773,
+ "功": 9774,
+ "流传": 9775,
+ "聆听": 9776,
+ "节律": 9777,
+ "音响": 9778,
+ "磁带": 9779,
+ "催眠": 9780,
+ "有助": 9781,
+ "加糖": 9782,
+ "胰岛素": 9783,
+ "人脑": 9784,
+ "微量": 9785,
+ "样式": 9786,
+ "镇定": 9787,
+ "舒适": 9788,
+ "为佳": 9789,
+ "右手": 9790,
+ "橙": 9791,
+ "芳香": 9792,
+ "神经系统": 9793,
+ "镇静": 9794,
+ "糖分": 9795,
+ "适应环境": 9796,
+ "应先": 9797,
+ "思索": 9798,
+ "起床": 9799,
+ "充沛": 9800,
+ "恐怖主义": 9801,
+ "领土": 9802,
+ "纠纷": 9803,
+ "根源": 9804,
+ "大国": 9805,
+ "垄断": 9806,
+ "肆意": 9807,
+ "政": 9808,
+ "冷战": 9809,
+ "动荡": 9810,
+ "不合理": 9811,
+ "分工": 9812,
+ "体系": 9813,
+ "支配": 9814,
+ "发达国家": 9815,
+ "货币": 9816,
+ "阻碍": 9817,
+ "发展中国家": 9818,
+ "失衡": 9819,
+ "军事": 9820,
+ "武力": 9821,
+ "侵略": 9822,
+ "仍旧": 9823,
+ "政治": 9824,
+ "推行": 9825,
+ "核武器": 9826,
+ "处在": 9827,
+ "核": 9828,
+ "为首": 9829,
+ "这场": 9830,
+ "公正": 9831,
+ "135": 9832,
+ "卒": 9833,
+ "青云": 9834,
+ "青海": 9835,
+ "泡泡": 9836,
+ "新村": 9837,
+ "坐地铁": 9838,
+ "地铁站": 9839,
+ "节目": 9840,
+ "收视率": 9841,
+ "改版": 9842,
+ "晚会": 9843,
+ "文艺": 9844,
+ "广播": 9845,
+ "疏远": 9846,
+ "表现形式": 9847,
+ "说唱": 9848,
+ "新人": 9849,
+ "展": 9850,
+ "新作": 9851,
+ "重温": 9852,
+ "经典": 9853,
+ "领略": 9854,
+ "艺术家": 9855,
+ "老朋友": 9856,
+ "CCTV": 9857,
+ "首播": 9858,
+ "清泉": 9859,
+ "均线": 9860,
+ "上方": 9861,
+ "逐步": 9862,
+ "仓位": 9863,
+ "断奶": 9864,
+ "很久": 9865,
+ "奶瓶": 9866,
+ "小块": 9867,
+ "吵": 9868,
+ "虾仁": 9869,
+ "救命": 9870,
+ "魔兽": 9871,
+ "GT": 9872,
+ "运转": 9873,
+ "散热器": 9874,
+ "湖南": 9875,
+ "土木工程": 9876,
+ "考了": 9877,
+ "志愿": 9878,
+ "录取": 9879,
+ "分数": 9880,
+ "分数线": 9881,
+ "追": 9882,
+ "惹": 9883,
+ "放不下": 9884,
+ "干脆": 9885,
+ "不接": 9886,
+ "道歉": 9887,
+ "回音": 9888,
+ "猜想": 9889,
+ "坚定": 9890,
+ "心理准备": 9891,
+ "能为": 9892,
+ "充实": 9893,
+ "地为": 9894,
+ "个人观点": 9895,
+ "禽流感": 9896,
+ "ATM": 9897,
+ "每月": 9898,
+ "机上": 9899,
+ "笔": 9900,
+ "一进": 9901,
+ "十几岁": 9902,
+ "一岁": 9903,
+ "痛经": 9904,
+ "三到": 9905,
+ "四年": 9906,
+ "很重": 9907,
+ "用车": 9908,
+ "这辆": 9909,
+ "车主": 9910,
+ "留心": 9911,
+ "免疫力": 9912,
+ "锻炼身体": 9913,
+ "空格": 9914,
+ "预设": 9915,
+ "空白": 9916,
+ "录入": 9917,
+ "汉字": 9918,
+ "最短": 9919,
+ "选择性": 9920,
+ "过不去": 9921,
+ "顺便": 9922,
+ "点到": 9923,
+ "element": 9924,
+ "暗黑": 9925,
+ "套装": 9926,
+ "不朽": 9927,
+ "之王": 9928,
+ "塔拉": 9929,
+ "夏": 9930,
+ "暴躁": 9931,
+ "外皮": 9932,
+ "神殿": 9933,
+ "隐藏": 9934,
+ "巴尔": 9935,
+ "人品": 9936,
+ "爆发": 9937,
+ "防晒霜": 9938,
+ "见效快": 9939,
+ "悬赏": 9940,
+ "小时候": 9941,
+ "另一边": 9942,
+ "偏方": 9943,
+ "胸肌": 9944,
+ "掩饰": 9945,
+ "求证": 9946,
+ "描述性": 9947,
+ "△": 9948,
+ "管理软件": 9949,
+ "台": 9950,
+ "该软件": 9951,
+ "五代": 9952,
+ "01": 9953,
+ "推出": 9954,
+ "第一代": 9955,
+ "不断完善": 9956,
+ "稳定性": 9957,
+ "声誉": 9958,
+ "FTP": 9959,
+ "远程": 9960,
+ "腾讯": 9961,
+ "端口": 9962,
+ "关键词": 9963,
+ "流量": 9964,
+ "黑名单": 9965,
+ "绑定": 9966,
+ "MAC": 9967,
+ "库": 9968,
+ "财经": 9969,
+ "探测": 9970,
+ "截取": 9971,
+ "报表": 9972,
+ "各类": 9973,
+ "跨": 9974,
+ "传输": 9975,
+ "网卡": 9976,
+ "权限": 9977,
+ "身份验证": 9978,
+ "压缩": 9979,
+ "打印": 9980,
+ "跨平台": 9981,
+ "Linux": 9982,
+ "捆绑": 9983,
+ "可恶": 9984,
+ "围墙": 9985,
+ "民俗": 9986,
+ "一座": 9987,
+ "成都市": 9988,
+ "改造": 9989,
+ "精品": 9990,
+ "大桥": 9991,
+ "看点": 9992,
+ "同行": 9993,
+ "火锅": 9994,
+ "半夜": 9995,
+ "赴": 9996,
+ "外地人": 9997,
+ "长达": 9998,
+ "浓缩": 9999,
+ "2300": 10000,
+ "雕塑": 10001,
+ "本土": 10002,
+ "2.5": 10003,
+ "上以": 10004,
+ "再现": 10005,
+ "秦": 10006,
+ "汉": 10007,
+ "真人": 10008,
+ "小包": 10009,
+ "兔": 10010,
+ "夫": 10011,
+ "阳历": 10012,
+ "入宅": 10013,
+ "吉日": 10014,
+ "农历": 10015,
+ "十八": 10016,
+ "贵人": 10017,
+ "生肖": 10018,
+ "六合": 10019,
+ "禄": 10020,
+ "妻": 10021,
+ "时请": 10022,
+ "无助": 10023,
+ "二月": 10024,
+ "蛇": 10025,
+ "十九": 10026,
+ "四月": 10027,
+ "甲子": 10028,
+ "二十四": 10029,
+ "杂物": 10030,
+ "锅": 10031,
+ "开门": 10032,
+ "祭祖": 10033,
+ "开火": 10034,
+ "点火": 10035,
+ "放鞭炮": 10036,
+ "祭祀": 10037,
+ "祖先": 10038,
+ "烹饪": 10039,
+ "事事": 10040,
+ "大吉": 10041,
+ "那要": 10042,
+ "亲吻": 10043,
+ "难忘": 10044,
+ "家庭主妇": 10045,
+ "该死": 10046,
+ "视线": 10047,
+ "增": 10048,
+ "え": 10049,
+ "る": 10050,
+ "ん": 10051,
+ "じ": 10052,
+ "な": 10053,
+ "い": 10054,
+ "反问": 10055,
+ "尾": 10056,
+ "か": 10057,
+ "省略": 10058,
+ "5.1": 10059,
+ "音箱": 10060,
+ "环绕": 10061,
+ "DVD": 10062,
+ "0.5": 10063,
+ "126": 10064,
+ "另类": 10065,
+ "显示器": 10066,
+ "不带": 10067,
+ "会为": 10068,
+ "开朗": 10069,
+ "节奏": 10070,
+ "加快": 10071,
+ "精神压力": 10072,
+ "欠佳": 10073,
+ "调节": 10074,
+ "豁达": 10075,
+ "吼": 10076,
+ "发泄": 10077,
+ "静静地": 10078,
+ "倾诉": 10079,
+ "乐曲": 10080,
+ "疲惫": 10081,
+ "舒畅": 10082,
+ "忘掉": 10083,
+ "放慢": 10084,
+ "生活节奏": 10085,
+ "冷静": 10086,
+ "做错": 10087,
+ "勇敢": 10088,
+ "伯": 10089,
+ "友谊": 10090,
+ "心情舒畅": 10091,
+ "增进": 10092,
+ "友情": 10093,
+ "精灵": 10094,
+ "豹": 10095,
+ "司令": 10096,
+ "豹子": 10097,
+ "满": 10098,
+ "稠": 10099,
+ "数据线": 10100,
+ "USB": 10101,
+ "3D": 10102,
+ "水准": 10103,
+ "没多大": 10104,
+ "高分辨率": 10105,
+ "大屏幕": 10106,
+ "看着": 10107,
+ "FM": 10108,
+ "GPS": 10109,
+ "货源": 10110,
+ "八字": 10111,
+ "翘": 10112,
+ "娃娃": 10113,
+ "径": 10114,
+ "平均值": 10115,
+ "士": 10116,
+ "网上银行": 10117,
+ "年终": 10118,
+ "网银": 10119,
+ "小丑": 10120,
+ "其余": 10121,
+ "引擎": 10122,
+ "罩": 10123,
+ "部长": 10124,
+ "首尔": 10125,
+ "丛林": 10126,
+ "中西医": 10127,
+ "外阴": 10128,
+ "搔": 10129,
+ "酸碱度": 10130,
+ "念珠菌": 10131,
+ "pH": 10132,
+ "值为": 10133,
+ "抑制作用": 10134,
+ "4%": 10135,
+ "疗程": 10136,
+ "栓剂": 10137,
+ "每晚": 10138,
+ "天为": 10139,
+ "外用": 10140,
+ "药膏": 10141,
+ "外涂": 10142,
+ "外阴炎": 10143,
+ "类固醇": 10144,
+ "止痒": 10145,
+ "口服": 10146,
+ "晚饭": 10147,
+ "服药": 10148,
+ "中草药": 10149,
+ "熏": 10150,
+ "灼热": 10151,
+ "处方": 10152,
+ "苦参": 10153,
+ "性病": 10154,
+ "精选": 10155,
+ "丁香": 10156,
+ "藿香": 10157,
+ "大黄": 10158,
+ "真菌": 10159,
+ "淋病": 10160,
+ "亦可": 10161,
+ "洗液": 10162,
+ "已婚": 10163,
+ "备用": 10164,
+ "痊愈": 10165,
+ "化验": 10166,
+ "阴性": 10167,
+ "学姐": 10168,
+ "国米": 10169,
+ "赔率": 10170,
+ "庄家": 10171,
+ "胜": 10172,
+ "赔": 10173,
+ "墙": 10174,
+ "藏族": 10175,
+ "石": 10176,
+ "西藏": 10177,
+ "湖边": 10178,
+ "石块": 10179,
+ "堆": 10180,
+ "杰作": 10181,
+ "最初": 10182,
+ "灵气": 10183,
+ "藏语": 10184,
+ "藏传佛教": 10185,
+ "长长的": 10186,
+ "每逢": 10187,
+ "桑": 10188,
+ "口中": 10189,
+ "祈祷": 10190,
+ "丢": 10191,
+ "凝结": 10192,
+ "信徒": 10193,
+ "发自内心": 10194,
+ "石刻": 10195,
+ "凡": 10196,
+ "载体": 10197,
+ "文明": 10198,
+ "有力": 10199,
+ "见证": 10200,
+ "野兽": 10201,
+ "抵御": 10202,
+ "文物": 10203,
+ "印证": 10204,
+ "佛像": 10205,
+ "足迹": 10206,
+ "多用": 10207,
+ "化石": 10208,
+ "考古": 10209,
+ "综述": 10210,
+ "载": 10211,
+ "新石器": 10212,
+ "一带": 10213,
+ "东北": 10214,
+ "以南": 10215,
+ "另有": 10216,
+ "三块": 10217,
+ "山上": 10218,
+ "屋顶": 10219,
+ "供奉": 10220,
+ "神灵": 10221,
+ "之处": 10222,
+ "乃是": 10223,
+ "化身": 10224,
+ "高山": 10225,
+ "峡谷": 10226,
+ "走势": 10227,
+ "8.5": 10228,
+ "人民币": 10229,
+ "英镑": 10230,
+ "中日": 10231,
+ "一篇": 10232,
+ "稿子": 10233,
+ "论述": 10234,
+ "姓氏": 10235,
+ "列出来": 10236,
+ "赵": 10237,
+ "孙": 10238,
+ "姓": 10239,
+ "那儿": 10240,
+ "汉代": 10241,
+ "来历": 10242,
+ "氏族": 10243,
+ "部落": 10244,
+ "其后": 10245,
+ "姬": 10246,
+ "齐": 10247,
+ "鲁": 10248,
+ "晋": 10249,
+ "宋": 10250,
+ "郑": 10251,
+ "卫": 10252,
+ "魏": 10253,
+ "蔡": 10254,
+ "曹": 10255,
+ "胡": 10256,
+ "邑": 10257,
+ "帝王": 10258,
+ "河北省": 10259,
+ "据统计": 10260,
+ "演变": 10261,
+ "亭": 10262,
+ "欧阳": 10263,
+ "居住地": 10264,
+ "自此": 10265,
+ "传世": 10266,
+ "公子": 10267,
+ "祖父": 10268,
+ "排行": 10269,
+ "曰": 10270,
+ "叔": 10271,
+ "季": 10272,
+ "例外": 10273,
+ "司徒": 10274,
+ "丹": 10275,
+ "少数民族": 10276,
+ "谥号": 10277,
+ "避讳": 10278,
+ "全文": 10279,
+ "冯": 10280,
+ "蒋": 10281,
+ "沈": 10282,
+ "杨": 10283,
+ "朱": 10284,
+ "许": 10285,
+ "吕": 10286,
+ "施": 10287,
+ "孔": 10288,
+ "严": 10289,
+ "华": 10290,
+ "窦": 10291,
+ "云": 10292,
+ "潘": 10293,
+ "范": 10294,
+ "彭": 10295,
+ "郎": 10296,
+ "韦": 10297,
+ "俞": 10298,
+ "袁": 10299,
+ "唐": 10300,
+ "薛": 10301,
+ "罗": 10302,
+ "毕": 10303,
+ "康": 10304,
+ "余": 10305,
+ "顾": 10306,
+ "装修": 10307,
+ "新房": 10308,
+ "用过": 10309,
+ "海尔": 10310,
+ "万元": 10311,
+ "着重": 10312,
+ "油价": 10313,
+ "结实": 10314,
+ "驾照": 10315,
+ "马路": 10316,
+ "难免": 10317,
+ "奔驰": 10318,
+ "法拉利": 10319,
+ "配件": 10320,
+ "能否": 10321,
+ "国债": 10322,
+ "国有企业": 10323,
+ "佩服": 10324,
+ "哈哈哈": 10325,
+ "数组": 10326,
+ "只不过": 10327,
+ "时用": 10328,
+ "返回": 10329,
+ "number": 10330,
+ "随机数": 10331,
+ "序列": 10332,
+ "给定": 10333,
+ "数列": 10334,
+ "初始化": 10335,
+ "生成器": 10336,
+ "计时器": 10337,
+ "负": 10338,
+ "心酸": 10339,
+ "07": 10340,
+ "02": 10341,
+ "真心": 10342,
+ "可惜": 10343,
+ "圣彼得堡": 10344,
+ "冠军": 10345,
+ "曼联": 10346,
+ "曼城": 10347,
+ "几万": 10348,
+ "刻苦": 10349,
+ "成语": 10350,
+ "几条": 10351,
+ "囊": 10352,
+ "持之以恒": 10353,
+ "坚持不懈": 10354,
+ "净化": 10355,
+ "搞错": 10356,
+ "打倒": 10357,
+ "阴阳": 10358,
+ "两面": 10359,
+ "区块": 10360,
+ "魂": 10361,
+ "古老": 10362,
+ "幅度": 10363,
+ "防具": 10364,
+ "技": 10365,
+ "大招": 10366,
+ "惊人": 10367,
+ "考量": 10368,
+ "原则上": 10369,
+ "古": 10370,
+ "同步": 10371,
+ "进化": 10372,
+ "安宁": 10373,
+ "村": 10374,
+ "打败": 10375,
+ "锁": 10376,
+ "第七": 10377,
+ "王后": 10378,
+ "第八": 10379,
+ "第九": 10380,
+ "不久": 10381,
+ "捡": 10382,
+ "神兽": 10383,
+ "五行": 10384,
+ "雪": 10385,
+ "全体": 10386,
+ "风水": 10387,
+ "坠": 10388,
+ "风云": 10389,
+ "斩": 10390,
+ "返": 10391,
+ "日月": 10392,
+ "逆": 10393,
+ "乾坤": 10394,
+ "天地": 10395,
+ "心得": 10396,
+ "填满": 10397,
+ "七星": 10398,
+ "一栏": 10399,
+ "翻转": 10400,
+ "预览": 10401,
+ "看一看": 10402,
+ "上部": 10403,
+ "220": 10404,
+ "槽": 10405,
+ "快慢": 10406,
+ "排列": 10407,
+ "景天": 10408,
+ "指令": 10409,
+ "对付": 10410,
+ "累加": 10411,
+ "御": 10412,
+ "零花钱": 10413,
+ "上交": 10414,
+ "生活费": 10415,
+ "余下": 10416,
+ "亲戚朋友": 10417,
+ "从来不": 10418,
+ "很烦": 10419,
+ "有次": 10420,
+ "没想到": 10421,
+ "居然": 10422,
+ "几句话": 10423,
+ "煲": 10424,
+ "舅舅": 10425,
+ "姨妈": 10426,
+ "租": 10427,
+ "租房": 10428,
+ "一趟": 10429,
+ "嫌": 10430,
+ "收看": 10431,
+ "顶多": 10432,
+ "同情": 10433,
+ "恨": 10434,
+ "分清": 10435,
+ "小钱": 10436,
+ "活得": 10437,
+ "尽力": 10438,
+ "亲人": 10439,
+ "眼里": 10440,
+ "相提并论": 10441,
+ "己": 10442,
+ "埋怨": 10443,
+ "有句": 10444,
+ "远处": 10445,
+ "唯独": 10446,
+ "睫毛": 10447,
+ "发脾气": 10448,
+ "裁员": 10449,
+ "感想": 10450,
+ "今天下午": 10451,
+ "将要": 10452,
+ "早就": 10453,
+ "段时间": 10454,
+ "低端": 10455,
+ "岗位": 10456,
+ "推荐信": 10457,
+ "职场": 10458,
+ "生涯": 10459,
+ "睡不着": 10460,
+ "好几个": 10461,
+ "UC": 10462,
+ "榴莲": 10463,
+ "热量": 10464,
+ "中所含": 10465,
+ "卡路里": 10466,
+ "果糖": 10467,
+ "橘子": 10468,
+ "李子": 10469,
+ "高热量": 10470,
+ "龙眼": 10471,
+ "尽量少": 10472,
+ "维他命": 10473,
+ "质": 10474,
+ "代谢率": 10475,
+ "不利于": 10476,
+ "减重": 10477,
+ "白开水": 10478,
+ "吃法": 10479,
+ "柚子": 10480,
+ "绝大多数": 10481,
+ "粗纤维": 10482,
+ "节食": 10483,
+ "挑食": 10484,
+ "瘦肉": 10485,
+ "第一点": 10486,
+ "憋": 10487,
+ "心急": 10488,
+ "事后": 10489,
+ "下身": 10490,
+ "光线": 10491,
+ "柔和": 10492,
+ "裸体": 10493,
+ "喝酒": 10494,
+ "避孕": 10495,
+ "关爱": 10496,
+ "内裤": 10497,
+ "一塌糊涂": 10498,
+ "双腿": 10499,
+ "张开": 10500,
+ "地上": 10501,
+ "正面": 10502,
+ "处女膜": 10503,
+ "破裂": 10504,
+ "疼痛感": 10505,
+ "内衣": 10506,
+ "不下": 10507,
+ "胸罩": 10508,
+ "青年人": 10509,
+ "十几年": 10510,
+ "交代": 10511,
+ "学费": 10512,
+ "可悲": 10513,
+ "红包": 10514,
+ "贡献": 10515,
+ "中年": 10516,
+ "啃": 10517,
+ "应付": 10518,
+ "失业": 10519,
+ "看不起": 10520,
+ "势力": 10521,
+ "武将": 10522,
+ "出头": 10523,
+ "乱世": 10524,
+ "多名": 10525,
+ "帅": 10526,
+ "无数": 10527,
+ "预": 10528,
+ "跟随": 10529,
+ "让玩家": 10530,
+ "封印": 10531,
+ "治安": 10532,
+ "吕布": 10533,
+ "辽": 10534,
+ "袁绍": 10535,
+ "关羽": 10536,
+ "张飞": 10537,
+ "赵云": 10538,
+ "加深": 10539,
+ "犹豫": 10540,
+ "追随": 10541,
+ "脚步": 10542,
+ "梦想": 10543,
+ "1921": 10544,
+ "中国政府": 10545,
+ "两颗": 10546,
+ "1929": 10547,
+ "地质": 10548,
+ "头骨": 10549,
+ "预言": 10550,
+ "昏暗": 10551,
+ "舍不得": 10552,
+ "蜡烛": 10553,
+ "挖掘": 10554,
+ "提议": 10555,
+ "国宝": 10556,
+ "主张": 10557,
+ "天亮": 10558,
+ "挖": 10559,
+ "这项": 10560,
+ "差一点": 10561,
+ "少年": 10562,
+ "1936": 10563,
+ "考古学家": 10564,
+ "主持": 10565,
+ "发掘": 10566,
+ "当中": 10567,
+ "震惊": 10568,
+ "史上": 10569,
+ "罕见": 10570,
+ "这一": 10571,
+ "模型": 10572,
+ "复原": 10573,
+ "第三个": 10574,
+ "砖": 10575,
+ "仪": 10576,
+ "锤": 10577,
+ "落下": 10578,
+ "咔": 10579,
+ "直角": 10580,
+ "挂钩": 10581,
+ "格斗": 10582,
+ "74": 10583,
+ "84": 10584,
+ "就职": 10585,
+ "弹": 10586,
+ "崩": 10587,
+ "飞": 10588,
+ "1500": 10589,
+ "喝茶": 10590,
+ "午休": 10591,
+ "刚刚开始": 10592,
+ "一二": 10593,
+ "剧本": 10594,
+ "CC": 10595,
+ "司马懿": 10596,
+ "手枪": 10597,
+ "火药": 10598,
+ "高压": 10599,
+ "构造": 10600,
+ "平方厘米": 10601,
+ "隔离": 10602,
+ "眼角": 10603,
+ "出句": 10604,
+ "微风": 10605,
+ "对句": 10606,
+ "临近": 10607,
+ "拔": 10608,
+ "联网": 10609,
+ "太长": 10610,
+ "电容": 10611,
+ "修理": 10612,
+ "小店": 10613,
+ "修好": 10614,
+ "放电": 10615,
+ "作文": 10616,
+ "昆明": 10617,
+ "大理": 10618,
+ "古城": 10619,
+ "风情": 10620,
+ "古镇": 10621,
+ "丽江": 10622,
+ "冰川": 10623,
+ "坪": 10624,
+ "玉": 10625,
+ "博物馆": 10626,
+ "壁画": 10627,
+ "寺": 10628,
+ "观音": 10629,
+ "酒吧": 10630,
+ "草原": 10631,
+ "大宝": 10632,
+ "茨": 10633,
+ "太子": 10634,
+ "庙": 10635,
+ "孔雀": 10636,
+ "热带": 10637,
+ "瀑布": 10638,
+ "谷": 10639,
+ "山寨": 10640,
+ "植物园": 10641,
+ "缅甸": 10642,
+ "火山": 10643,
+ "北海": 10644,
+ "湿地": 10645,
+ "叠": 10646,
+ "瑞": 10647,
+ "风景区": 10648,
+ "遗址": 10649,
+ "星云": 10650,
+ "娜": 10651,
+ "自然保护区": 10652,
+ "群": 10653,
+ "温泉": 10654,
+ "珠江": 10655,
+ "九龙": 10656,
+ "发烧": 10657,
+ "无缘无故": 10658,
+ "另一只": 10659,
+ "暗示着": 10660,
+ "一瞬间": 10661,
+ "灵感": 10662,
+ "点子": 10663,
+ "流经": 10664,
+ "逛": 10665,
+ "一圈": 10666,
+ "半球": 10667,
+ "4S店": 10668,
+ "索赔": 10669,
+ "GM": 10670,
+ "准": 10671,
+ "凹": 10672,
+ "拆": 10673,
+ "热血": 10674,
+ "第二部": 10675,
+ "s": 10676,
+ "死神": 10677,
+ "大大的": 10678,
+ "尾巴": 10679,
+ "之子": 10680,
+ "现状": 10681,
+ "心意": 10682,
+ "妹": 10683,
+ "给钱": 10684,
+ "送礼": 10685,
+ "长辈": 10686,
+ "微博上": 10687,
+ "润": 10688,
+ "谁家": 10689,
+ "好用": 10690,
+ "出品": 10691,
+ "屏障": 10692,
+ "全自动": 10693,
+ "好多年": 10694,
+ "车上": 10695,
+ "油漆": 10696,
+ "搜索引擎": 10697,
+ "我练": 10698,
+ "项链": 10699,
+ "腰带": 10700,
+ "多少级": 10701,
+ "方可": 10702,
+ "T恤": 10703,
+ "先去": 10704,
+ "天空": 10705,
+ "三级": 10706,
+ "than": 10707,
+ "language": 10708,
+ "except": 10709,
+ "Chinese": 10710,
+ "is": 10711,
+ "理应": 10712,
+ "水管": 10713,
+ "呜呜": 10714,
+ "关上": 10715,
+ "楼下": 10716,
+ "求教": 10717,
+ "时有": 10718,
+ "压强": 10719,
+ "不均": 10720,
+ "冲击": 10721,
+ "枢纽": 10722,
+ "乘车": 10723,
+ "直达": 10724,
+ "火车站": 10725,
+ "票价": 10726,
+ "北路": 10727,
+ "高架": 10728,
+ "多级": 10729,
+ "换乘": 10730,
+ "乘客": 10731,
+ "北侧": 10732,
+ "南侧": 10733,
+ "直行": 10734,
+ "进场": 10735,
+ "车道": 10736,
+ "杖": 10737,
+ "1400": 10738,
+ "猛": 10739,
+ "很会": 10740,
+ "宝藏": 10741,
+ "飞龙": 10742,
+ "270": 10743,
+ "回避": 10744,
+ "好点": 10745,
+ "加血": 10746,
+ "闪": 10747,
+ "双刀": 10748,
+ "44": 10749,
+ "办学": 10750,
+ "彩虹": 10751,
+ "骑士": 10752,
+ "大厅": 10753,
+ "content": 10754,
+ "were": 10755,
+ "not": 10756,
+ "棋盘": 10757,
+ "河南省": 10758,
+ "黄河": 10759,
+ "南岸": 10760,
+ "一处": 10761,
+ "西汉": 10762,
+ "初年": 10763,
+ "刘邦": 10764,
+ "项羽": 10765,
+ "四十": 10766,
+ "乃": 10767,
+ "割": 10768,
+ "边界": 10769,
+ "两边": 10770,
+ "东边": 10771,
+ "霸王": 10772,
+ "西边": 10773,
+ "象棋": 10774,
+ "品德": 10775,
+ "棋": 10776,
+ "可信": 10777,
+ "战国": 10778,
+ "末期": 10779,
+ "棋子": 10780,
+ "兵种": 10781,
+ "国际象棋": 10782,
+ "炮": 10783,
+ "足": 10784,
+ "推翻": 10785,
+ "长期以来": 10786,
+ "起源于": 10787,
+ "一区": 10788,
+ "下棋": 10789,
+ "史料": 10790,
+ "阳": 10791,
+ "郑州": 10792,
+ "该地": 10793,
+ "出兵": 10794,
+ "攻打": 10795,
+ "楚国": 10796,
+ "被迫": 10797,
+ "两座": 10798,
+ "接头": 10799,
+ "铜": 10800,
+ "钢": 10801,
+ "复合": 10802,
+ "导体": 10803,
+ "高强度": 10804,
+ "接地": 10805,
+ "气象": 10806,
+ "轨道交通": 10807,
+ "引入": 10808,
+ "波": 10809,
+ "反射": 10810,
+ "铁路": 10811,
+ "机车": 10812,
+ "牵引": 10813,
+ "即用": 10814,
+ "低廉": 10815,
+ "腐蚀": 10816,
+ "结晶": 10817,
+ "显而易见": 10818,
+ "•": 10819,
+ "合体": 10820,
+ "扮演着": 10821,
+ "极其重要": 10822,
+ "减慢": 10823,
+ "土壤": 10824,
+ "电阻": 10825,
+ "碱": 10826,
+ "0.25": 10827,
+ "棒": 10828,
+ "推移": 10829,
+ "发生变化": 10830,
+ "免": 10831,
+ "开裂": 10832,
+ "残留物": 10833,
+ "溢出": 10834,
+ "无氧": 10835,
+ "内层": 10836,
+ "低于": 10837,
+ "遭到": 10838,
+ "等同于": 10839,
+ "节约": 10840,
+ "便捷": 10841,
+ "场合": 10842,
+ "指标": 10843,
+ "≤": 10844,
+ "可塑性": 10845,
+ "裂缝": 10846,
+ "应用领域": 10847,
+ "介质": 10848,
+ "战队": 10849,
+ "队员": 10850,
+ "王朝": 10851,
+ "俱乐部": 10852,
+ "锦标赛": 10853,
+ "阵容": 10854,
+ "简要": 10855,
+ "赎回": 10856,
+ "来讲": 10857,
+ "时机": 10858,
+ "诚恳": 10859,
+ "批评": 10860,
+ "持有人": 10861,
+ "恰恰相反": 10862,
+ "监管": 10863,
+ "完善": 10864,
+ "水泥": 10865,
+ "潜力": 10866,
+ "密切": 10867,
+ "观注": 10868,
+ "把握": 10869,
+ "祝您": 10870,
+ "颈": 10871,
+ "股骨": 10872,
+ "克服困难": 10873,
+ "过失": 10874,
+ "故意": 10875,
+ "司法": 10876,
+ "先前": 10877,
+ "不应": 10878,
+ "定性": 10879,
+ "刑事责任": 10880,
+ "义务": 10881,
+ "心理因素": 10882,
+ "点评": 10883,
+ "前段时间": 10884,
+ "辛辛苦苦": 10885,
+ "大半年": 10886,
+ "一夜": 10887,
+ "理赔": 10888,
+ "何时": 10889,
+ "返还": 10890,
+ "赔付": 10891,
+ "抵押": 10892,
+ "赔偿": 10893,
+ "社会化": 10894,
+ "全球化": 10895,
+ "现代化": 10896,
+ "必要条件": 10897,
+ "直播": 10898,
+ "电视台": 10899,
+ "平板": 10900,
+ "湖南卫视": 10901,
+ "枯燥": 10902,
+ "相对来说": 10903,
+ "执法": 10904,
+ "危险性": 10905,
+ "片面": 10906,
+ "一心": 10907,
+ "工作效率": 10908,
+ "定为": 10909,
+ "蒋介石": 10910,
+ "抵抗": 10911,
+ "沦陷": 10912,
+ "故而": 10913,
+ "异地": 10914,
+ "恋情": 10915,
+ "济南": 10916,
+ "打过": 10917,
+ "遇见": 10918,
+ "贱": 10919,
+ "嫁": 10920,
+ "空洞": 10921,
+ "说出": 10922,
+ "有太多": 10923,
+ "几分": 10924,
+ "最有": 10925,
+ "最爱": 10926,
+ "心动": 10927,
+ "果断": 10928,
+ "断开": 10929,
+ "主见": 10930,
+ "排气": 10931,
+ "暴击": 10932,
+ "FB": 10933,
+ "不大": 10934,
+ "物理攻击": 10935,
+ "斧": 10936,
+ "耗费": 10937,
+ "学长": 10938,
+ "工作室": 10939,
+ "友好": 10940,
+ "第三方": 10941,
+ "通讯": 10942,
+ "不知情": 10943,
+ "个人隐私": 10944,
+ "之用": 10945,
+ "发帖": 10946,
+ "打不开": 10947,
+ "ip": 10948,
+ "漏洞": 10949,
+ "封": 10950,
+ "拔掉": 10951,
+ "麦克风": 10952,
+ "氟": 10953,
+ "星": 10954,
+ "注射液": 10955,
+ "邮票": 10956,
+ "我点": 10957,
+ "稍后": 10958,
+ "如有": 10959,
+ "客服热线": 10960,
+ "洋": 10961,
+ "多年生": 10962,
+ "草本": 10963,
+ "花期": 10964,
+ "叶子": 10965,
+ "连同": 10966,
+ "凉爽": 10967,
+ "开花": 10968,
+ "栽培": 10969,
+ "肥沃": 10970,
+ "疏松": 10971,
+ "栽": 10972,
+ "盆栽": 10973,
+ "下旬": 10974,
+ "而定": 10975,
+ "防寒": 10976,
+ "过早": 10977,
+ "选取": 10978,
+ "肩部": 10979,
+ "抽出": 10980,
+ "尖": 10981,
+ "腐烂": 10982,
+ "粘液": 10983,
+ "植株": 10984,
+ "花色": 10985,
+ "春季": 10986,
+ "草坪": 10987,
+ "右眼": 10988,
+ "大四": 10989,
+ "穴": 10990,
+ "药方": 10991,
+ "2014": 10992,
+ "患上": 10993,
+ "讲讲": 10994,
+ "头疼": 10995,
+ "香水": 10996,
+ "帽子": 10997,
+ "大会": 10998,
+ "双臂": 10999,
+ "肌肉": 11000,
+ "过低": 11001,
+ "椅子": 11002,
+ "接电话": 11003,
+ "肩膀": 11004,
+ "奶酪": 11005,
+ "会先": 11006,
+ "碳水化合物": 11007,
+ "喝咖啡": 11008,
+ "不论": 11009,
+ "人用": 11010,
+ "发麻": 11011,
+ "翻身": 11012,
+ "脊椎": 11013,
+ "依托": 11014,
+ "喉咙": 11015,
+ "吐": 11016,
+ "无须": 11017,
+ "固态": 11018,
+ "液态": 11019,
+ "地壳": 11020,
+ "向下": 11021,
+ "相当于": 11022,
+ "查查": 11023,
+ "不缺": 11024,
+ "止": 11025,
+ "消化道": 11026,
+ "胃炎": 11027,
+ "十二指肠": 11028,
+ "肌注": 11029,
+ "顽固性": 11030,
+ "磷": 11031,
+ "少食": 11032,
+ "生冷": 11033,
+ "麻将": 11034,
+ "之情": 11035,
+ "迷": 11036,
+ "更深": 11037,
+ "丑陋": 11038,
+ "毛发": 11039,
+ "雄性激素": 11040,
+ "雄激素": 11041,
+ "躯干": 11042,
+ "腋窝": 11043,
+ "可使": 11044,
+ "重生": 11045,
+ "产后": 11046,
+ "妊娠期": 11047,
+ "见于": 11048,
+ "更年期": 11049,
+ "临床表现": 11050,
+ "肾上腺": 11051,
+ "皮质": 11052,
+ "始于": 11053,
+ "进行性": 11054,
+ "性欲": 11055,
+ "乳腺": 11056,
+ "对称性": 11057,
+ "前往": 11058,
+ "查明": 11059,
+ "根本原因": 11060,
+ "切不可": 11061,
+ "擅自": 11062,
+ "耽误": 11063,
+ "浓密": 11064,
+ "变色": 11065,
+ "放进": 11066,
+ "脉络": 11067,
+ "本子": 11068,
+ "这本": 11069,
+ "楼盘": 11070,
+ "营销": 11071,
+ "始终保持": 11072,
+ "时间段": 11073,
+ "经济效益": 11074,
+ "业内": 11075,
+ "分期": 11076,
+ "得出": 11077,
+ "涨价": 11078,
+ "收盘": 11079,
+ "中山": 11080,
+ "pdf": 11081,
+ "提取": 11082,
+ "PDF": 11083,
+ "坐火车": 11084,
+ "打折": 11085,
+ "机票": 11086,
+ "几十": 11087,
+ "欧": 11088,
+ "机场": 11089,
+ "订": 11090,
+ "相比之下": 11091,
+ "浮动": 11092,
+ "余地": 11093,
+ "说起": 11094,
+ "顾名思义": 11095,
+ "普": 11096,
+ "诺尔": 11097,
+ "饭前": 11098,
+ "坚持下去": 11099,
+ "产于": 11100,
+ "湖北": 11101,
+ "广西": 11102,
+ "吉姆": 11103,
+ "绰号": 11104,
+ "叶": 11105,
+ "转化成": 11106,
+ "荷花": 11107,
+ "果实": 11108,
+ "迹象": 11109,
+ "喝完": 11110,
+ "畅通": 11111,
+ "爱好": 11112,
+ "杜仲": 11113,
+ "喝一杯": 11114,
+ "野猪": 11115,
+ "49": 11116,
+ "诅咒": 11117,
+ "老实": 11118,
+ "翻滚": 11119,
+ "腿": 11120,
+ "审": 11121,
+ "后续": 11122,
+ "注销": 11123,
+ "火炮": 11124,
+ "不符": 11125,
+ "111": 11126,
+ "金币": 11127,
+ "眼药水": 11128,
+ "据我所知": 11129,
+ "写作能力": 11130,
+ "写文章": 11131,
+ "自知": 11132,
+ "流行音乐": 11133,
+ "轻柔": 11134,
+ "预计": 11135,
+ "低音": 11136,
+ "标配": 11137,
+ "电源线": 11138,
+ "建设性": 11139,
+ "搞好": 11140,
+ "前景": 11141,
+ "微小": 11142,
+ "谎言": 11143,
+ "给人以": 11144,
+ "踏实": 11145,
+ "大方": 11146,
+ "事半功倍": 11147,
+ "眼前一亮": 11148,
+ "长沙": 11149,
+ "研究生": 11150,
+ "在职": 11151,
+ "硕士": 11152,
+ "雪梨": 11153,
+ "锅里": 11154,
+ "放水": 11155,
+ "三四天": 11156,
+ "下巴": 11157,
+ "玻": 11158,
+ "尿酸": 11159,
+ "填充": 11160,
+ "假体": 11161,
+ "争吵": 11162,
+ "N": 11163,
+ "敷衍": 11164,
+ "那天": 11165,
+ "缺陷": 11166,
+ "忘不了": 11167,
+ "放开": 11168,
+ "长城": 11169,
+ "试探": 11170,
+ "就让": 11171,
+ "质疑": 11172,
+ "复制到": 11173,
+ "网络连接": 11174,
+ "弹出": 11175,
+ "ADSL": 11176,
+ "预警": 11177,
+ "魔鬼": 11178,
+ "变种": 11179,
+ "详细信息": 11180,
+ "刻录": 11181,
+ "首歌": 11182,
+ "D盘": 11183,
+ "存有": 11184,
+ "S": 11185,
+ "行程": 11186,
+ "二手车": 11187,
+ "排量": 11188,
+ "行情": 11189,
+ "ML": 11190,
+ "性交": 11191,
+ "立": 11192,
+ "两腿": 11193,
+ "腰部": 11194,
+ "便是": 11195,
+ "谁能给": 11196,
+ "手绘": 11197,
+ "技法": 11198,
+ "效果图": 11199,
+ "师生": 11200,
+ "作品集": 11201,
+ "书籍": 11202,
+ "傲慢": 11203,
+ "城墙": 11204,
+ "ī": 11205,
+ "ē": 11206,
+ "婚纱": 11207,
+ "咋样": 11208,
+ "情侣": 11209,
+ "被套": 11210,
+ "抛": 11211,
+ "38": 11212,
+ "暂": 11213,
+ "懦弱": 11214,
+ "弱": 11215,
+ "所见": 11216,
+ "方针": 11217,
+ "疑虑": 11218,
+ "拉拉": 11219,
+ "打拼": 11220,
+ "见过": 11221,
+ "抛弃": 11222,
+ "投靠": 11223,
+ "捷径": 11224,
+ "尽全力": 11225,
+ "狼": 11226,
+ "鼠": 11227,
+ "总动员": 11228,
+ "小鱼": 11229,
+ "天猫": 11230,
+ "冲浪": 11231,
+ "用户名": 11232,
+ "Science": 11233,
+ "英语单词": 11234,
+ "首字母": 11235,
+ "缩写": 11236,
+ "联合国教科文组织": 11237,
+ "切记": 11238,
+ "肾衰竭": 11239,
+ "痉挛": 11240,
+ "瘫痪": 11241,
+ "肾结石": 11242,
+ "尽量避免": 11243,
+ "蓝莓": 11244,
+ "豌豆": 11245,
+ "心碎": 11246,
+ "吃苦": 11247,
+ "珍贵": 11248,
+ "一分": 11249,
+ "机箱": 11250,
+ "读音": 11251,
+ "乐器": 11252,
+ "泛指": 11253,
+ "记": 11254,
+ "ch": 11255,
+ "í": 11256,
+ "竹子": 11257,
+ "〈": 11258,
+ "〉": 11259,
+ "HTML": 11260,
+ "汉中": 11261,
+ "哇": 11262,
+ "百货": 11263,
+ "二楼": 11264,
+ "东东": 11265,
+ "臭": 11266,
+ "薇": 11267,
+ "省事": 11268,
+ "两三天": 11269,
+ "化学成分": 11270,
+ "淘宝": 11271,
+ "社保": 11272,
+ "户籍": 11273,
+ "四川省": 11274,
+ "缴费": 11275,
+ "医疗保险": 11276,
+ "养老": 11277,
+ "铂金": 11278,
+ "搜狗": 11279,
+ "输入法": 11280,
+ "合肥": 11281,
+ "框架": 11282,
+ "隐形眼镜": 11283,
+ "眼科": 11284,
+ "眼部": 11285,
+ "三分之二": 11286,
+ "知名": 11287,
+ "安徽省": 11288,
+ "晶体": 11289,
+ "角膜": 11290,
+ "困扰": 11291,
+ "惊悚": 11292,
+ "信条": 11293,
+ "太平洋": 11294,
+ "喔": 11295,
+ "包皮": 11296,
+ "龟头炎": 11297,
+ "两类": 11298,
+ "单纯性": 11299,
+ "或非": 11300,
+ "传染性": 11301,
+ "包茎": 11302,
+ "垢": 11303,
+ "龟头": 11304,
+ "病原": 11305,
+ "主导": 11306,
+ "细菌性": 11307,
+ "病原菌": 11308,
+ "致病": 11309,
+ "致病菌": 11310,
+ "中以": 11311,
+ "患": 11312,
+ "多为": 11313,
+ "冲血": 11314,
+ "产物": 11315,
+ "日渐": 11316,
+ "极易": 11317,
+ "痒痒": 11318,
+ "红血丝": 11319,
+ "初二": 11320,
+ "钢筋": 11321,
+ "两根": 11322,
+ "题意": 11323,
+ "知": 11324,
+ "纠结": 11325,
+ "万左右": 11326,
+ "前卫": 11327,
+ "取向": 11328,
+ "生小孩": 11329,
+ "恋": 11330,
+ "听觉": 11331,
+ "走走": 11332,
+ "忠告": 11333,
+ "母乳喂养": 11334,
+ "旺": 11335,
+ "健康成长": 11336,
+ "阴部": 11337,
+ "整洁": 11338,
+ "三人": 11339,
+ "说谎": 11340,
+ "星期一": 11341,
+ "星期二": 11342,
+ "星期三": 11343,
+ "真话": 11344,
+ "星期四": 11345,
+ "星期五": 11346,
+ "星期六": 11347,
+ "星期天": 11348,
+ "净资产": 11349,
+ "亏损": 11350,
+ "缩水": 11351,
+ "券商": 11352,
+ "熊市": 11353,
+ "熊": 11354,
+ "匕首": 11355,
+ "合金": 11356,
+ "手里": 11357,
+ "紧身": 11358,
+ "十万": 11359,
+ "出个": 11360,
+ "哪来": 11361,
+ "绝望": 11362,
+ "打法": 11363,
+ "抵消": 11364,
+ "骨头": 11365,
+ "碎片": 11366,
+ "多万": 11367,
+ "小号": 11368,
+ "骷髅": 11369,
+ "臂": 11370,
+ "膳食": 11371,
+ "较长时间": 11372,
+ "有氧": 11373,
+ "长距离": 11374,
+ "慢跑": 11375,
+ "决心": 11376,
+ "仰卧起坐": 11377,
+ "仰卧": 11378,
+ "撑": 11379,
+ "哑铃": 11380,
+ "爆发力": 11381,
+ "106": 11382,
+ "公交车": 11383,
+ "周末": 11384,
+ "打打": 11385,
+ "羽毛球": 11386,
+ "承包": 11387,
+ "一体化": 11388,
+ "神探": 11389,
+ "à": 11390,
+ "é": 11391,
+ "ng": 11392,
+ "房产证": 11393,
+ "分割": 11394,
+ "买房子": 11395,
+ "这部分": 11396,
+ "无权": 11397,
+ "收听": 11398,
+ "应交": 11399,
+ "补贴": 11400,
+ "定额": 11401,
+ "票据": 11402,
+ "日用品": 11403,
+ "并入": 11404,
+ "征": 11405,
+ "合法": 11406,
+ "大神": 11407,
+ "害羞": 11408,
+ "解码器": 11409,
+ "解码": 11410,
+ "几块": 11411,
+ "指头": 11412,
+ "奶水": 11413,
+ "归": 11414,
+ "老抽": 11415,
+ "焖": 11416,
+ "火候": 11417,
+ "付款": 11418,
+ "签订": 11419,
+ "购房": 11420,
+ "偿还": 11421,
+ "不动产": 11422,
+ "设立": 11423,
+ "变更": 11424,
+ "生效": 11425,
+ "还给": 11426,
+ "拿出": 11427,
+ "证据": 11428,
+ "之战": 11429,
+ "上马": 11430,
+ "剧情": 11431,
+ "贵重": 11432,
+ "必杀": 11433,
+ "连击": 11434,
+ "我觉": 11435,
+ "强力": 11436,
+ "优缺点": 11437,
+ "谈一谈": 11438,
+ "车里": 11439,
+ "竟然": 11440,
+ "不值": 11441,
+ "浇水": 11442,
+ "发黄": 11443,
+ "诚心": 11444,
+ "随手": 11445,
+ "河南": 11446,
+ "理工大学": 11447,
+ "工程学院": 11448,
+ "资本": 11449,
+ "考研": 11450,
+ "复习": 11451,
+ "好久": 11452,
+ "惨": 11453,
+ "南京": 11454,
+ "潮流": 11455,
+ "小型": 11456,
+ "不在意": 11457,
+ "操": 11458,
+ "慢性病": 11459,
+ "资产": 11460,
+ "证券": 11461,
+ "总和": 11462,
+ "履行": 11463,
+ "回购": 11464,
+ "余额": 11465,
+ "职员": 11466,
+ "玩儿": 11467,
+ "懒": 11468,
+ "有点儿": 11469,
+ "糖尿病人": 11470,
+ "胰岛": 11471,
+ "蜂胶": 11472,
+ "下半身": 11473,
+ "穿衣": 11474,
+ "很瘦": 11475,
+ "穿衣服": 11476,
+ "短裙": 11477,
+ "诱惑": 11478,
+ "包包": 11479,
+ "开出": 11480,
+ "白银": 11481,
+ "太极": 11482,
+ "鸳鸯": 11483,
+ "怒": 11484,
+ "黄帝": 11485,
+ "顶尖": 11486,
+ "精炼": 11487,
+ "加倍": 11488,
+ "士兵": 11489,
+ "金牌": 11490,
+ "千里": 11491,
+ "青龙": 11492,
+ "所知": 11493,
+ "乌龟": 11494,
+ "往前走": 11495,
+ "对面": 11496,
+ "打造": 11497,
+ "小刀": 11498,
+ "菜鸟": 11499,
+ "来个": 11500,
+ "惊喜": 11501,
+ "不在乎": 11502,
+ "高峰": 11503,
+ "几位": 11504,
+ "暑假": 11505,
+ "八年": 11506,
+ "书店": 11507,
+ "有的是": 11508,
+ "哪天": 11509,
+ "二十": 11510,
+ "九月": 11511,
+ "宅": 11512,
+ "创业": 11513,
+ "多长": 11514,
+ "艰难": 11515,
+ "做过": 11516,
+ "提倡": 11517,
+ "拼": 11518,
+ "中年人": 11519,
+ "资历": 11520,
+ "指引": 11521,
+ "深思熟虑": 11522,
+ "无比": 11523,
+ "爬起来": 11524,
+ "鸿": 11525,
+ "服务中心": 11526,
+ "广大": 11527,
+ "繁忙": 11528,
+ "贵族": 11529,
+ "结交": 11530,
+ "多项": 11531,
+ "假日": 11532,
+ "海上": 11533,
+ "观": 11534,
+ "卡拉": 11535,
+ "真情": 11536,
+ "告白": 11537,
+ "畅": 11538,
+ "游": 11539,
+ "交友": 11540,
+ "详情": 11541,
+ "致电": 11542,
+ "响应": 11543,
+ "切除术": 11544,
+ "自费": 11545,
+ "修养": 11546,
+ "很着急": 11547,
+ "发病率": 11548,
+ "子宫腔": 11549,
+ "对称": 11550,
+ "原发性": 11551,
+ "不育症": 11552,
+ "切除": 11553,
+ "早产": 11554,
+ "剖宫产": 11555,
+ "人工流产": 11556,
+ "刮宫": 11557,
+ "盆腔": 11558,
+ "宫内": 11559,
+ "内膜": 11560,
+ "文献": 11561,
+ "核磁共振": 11562,
+ "宫腔镜": 11563,
+ "宫腔": 11564,
+ "习惯性": 11565,
+ "问世": 11566,
+ "修剪": 11567,
+ "重建": 11568,
+ "腹壁": 11569,
+ "留有": 11570,
+ "瘢痕": 11571,
+ "粘连": 11572,
+ "分娩": 11573,
+ "完整性": 11574,
+ "正宗": 11575,
+ "商场": 11576,
+ "114": 11577,
+ "市区": 11578,
+ "交大": 11579,
+ "南路": 11580,
+ "亚洲": 11581,
+ "厅": 11582,
+ "美洲": 11583,
+ "首届": 11584,
+ "世界遗产": 11585,
+ "进来": 11586,
+ "早泄": 11587,
+ "二十岁": 11588,
+ "念书": 11589,
+ "自责": 11590,
+ "能治好": 11591,
+ "勃起": 11592,
+ "微波": 11593,
+ "背部": 11594,
+ "阻断": 11595,
+ "年龄段": 11596,
+ "丁丁": 11597,
+ "均值": 11598,
+ "太重": 11599,
+ "包袱": 11600,
+ "挣钱": 11601,
+ "死去": 11602,
+ "崇高": 11603,
+ "平民": 11604,
+ "吃亏": 11605,
+ "碰上": 11606,
+ "一招": 11607,
+ "人物形象": 11608,
+ "营养师": 11609,
+ "星星": 11610,
+ "刘亦菲": 11611,
+ "量身": 11612,
+ "拍摄": 11613,
+ "功夫": 11614,
+ "轮廓": 11615,
+ "身材": 11616,
+ "眼球": 11617,
+ "羡慕": 11618,
+ "采访": 11619,
+ "体形": 11620,
+ "归功于": 11621,
+ "早餐": 11622,
+ "中餐": 11623,
+ "七点": 11624,
+ "九点": 11625,
+ "两杯": 11626,
+ "外衣": 11627,
+ "一瓶": 11628,
+ "译文": 11629,
+ "风吹": 11630,
+ "香气": 11631,
+ "tree": 11632,
+ "苦苦": 11633,
+ "海面": 11634,
+ "著": 11635,
+ "流浪": 11636,
+ "税率": 11637,
+ "就是说": 11638,
+ "一级": 11639,
+ "125": 11640,
+ "375": 11641,
+ "纳税": 11642,
+ "依照": 11643,
+ "1600": 11644,
+ "下单": 11645,
+ "疑问": 11646,
+ "任务栏": 11647,
+ "插头": 11648,
+ "专业人士": 11649,
+ "元件": 11650,
+ "理直气壮": 11651,
+ "不感兴趣": 11652,
+ "大三": 11653,
+ "来得及": 11654,
+ "很早": 11655,
+ "float": 11656,
+ "整型": 11657,
+ "表达式": 11658,
+ "int": 11659,
+ "具体步骤": 11660,
+ "占有": 11661,
+ "存储": 11662,
+ "字节": 11663,
+ "宏": 11664,
+ "占用": 11665,
+ "result": 11666,
+ "入门": 11667,
+ "这会": 11668,
+ "淤血": 11669,
+ "∫": 11670,
+ "好办": 11671,
+ "θ": 11672,
+ "π": 11673,
+ "cos": 11674,
+ "dx": 11675,
+ "常数": 11676,
+ "450": 11677,
+ "先到": 11678,
+ "我选": 11679,
+ "戒酒": 11680,
+ "不看": 11681,
+ "月经不调": 11682,
+ "胃镜": 11683,
+ "浅表性": 11684,
+ "医学界": 11685,
+ "丁啉": 11686,
+ "克拉": 11687,
+ "霉素": 11688,
+ "阿莫西林": 11689,
+ "青霉素": 11690,
+ "里边": 11691,
+ "声波": 11692,
+ "心跳": 11693,
+ "咖啡色": 11694,
+ "超声波": 11695,
+ "发送到": 11696,
+ "发送": 11697,
+ "/": 11698,
+ "04": 11699,
+ "信件": 11700,
+ "发到": 11701,
+ "否": 11702,
+ "打个比方": 11703,
+ "这样一来": 11704,
+ "刚来": 11705,
+ "摆": 11706,
+ "截图": 11707,
+ "截": 11708,
+ "框": 11709,
+ "白羊座": 11710,
+ "金牛座": 11711,
+ "双子座": 11712,
+ "狮子座": 11713,
+ "天秤座": 11714,
+ "天蝎座": 11715,
+ "水瓶座": 11716,
+ "双鱼座": 11717,
+ "浪": 11718,
+ "强国": 11719,
+ "我军": 11720,
+ "三者": 11721,
+ "换算": 11722,
+ "特种": 11723,
+ "口径": 11724,
+ "650": 11725,
+ "各国": 11726,
+ "炮弹": 11727,
+ "弹药": 11728,
+ "单车": 11729,
+ "3500": 11730,
+ "主宰": 11731,
+ "体型": 11732,
+ "探测器": 11733,
+ "9000": 11734,
+ "灵敏度": 11735,
+ "造价": 11736,
+ "高达": 11737,
+ "恶劣": 11738,
+ "近几年": 11739,
+ "关键技术": 11740,
+ "突破性": 11741,
+ "合一": 11742,
+ "射击": 11743,
+ "校正": 11744,
+ "独一无二": 11745,
+ "据称": 11746,
+ "命中率": 11747,
+ "令人满意": 11748,
+ "炮塔": 11749,
+ "后部": 11750,
+ "瞄": 11751,
+ "这套": 11752,
+ "成像": 11753,
+ "遥控": 11754,
+ "瞄准": 11755,
+ "全方位": 11756,
+ "按下": 11757,
+ "兆": 11758,
+ "剥夺": 11759,
+ "权": 11760,
+ "落入": 11761,
+ "第二项": 11762,
+ "军队": 11763,
+ "吨": 11764,
+ "车体": 11765,
+ "台阶": 11766,
+ "层次": 11767,
+ "马力": 11768,
+ "柴油机": 11769,
+ "传动": 11770,
+ "大幅提高": 11771,
+ "超越": 11772,
+ "自学": 11773,
+ "房": 11774,
+ "3G": 11775,
+ "开发区": 11776,
+ "门票": 11777,
+ "过夜": 11778,
+ "美金": 11779,
+ "工商": 11780,
+ "法宝": 11781,
+ "练练": 11782,
+ "我见": 11783,
+ "199": 11784,
+ "矮人": 11785,
+ "铁匠": 11786,
+ "肚子疼": 11787,
+ "肠胃": 11788,
+ "健全": 11789,
+ "顿": 11790,
+ "倒下": 11791,
+ "纹": 11792,
+ "荨麻疹": 11793,
+ "股指": 11794,
+ "期货": 11795,
+ "地产": 11796,
+ "汇率": 11797,
+ "制度": 11798,
+ "收益率": 11799,
+ "境内": 11800,
+ "在短期内": 11801,
+ "外汇": 11802,
+ "国际化": 11803,
+ "房价": 11804,
+ "亿元": 11805,
+ "金融机构": 11806,
+ "新加坡": 11807,
+ "东南亚": 11808,
+ "子公司": 11809,
+ "外资": 11810,
+ "房产": 11811,
+ "波动": 11812,
+ "境外": 11813,
+ "奥运会": 11814,
+ "海外": 11815,
+ "大幅": 11816,
+ "近两年": 11817,
+ "外企": 11818,
+ "租赁": 11819,
+ "商铺": 11820,
+ "高价": 11821,
+ "一股": 11822,
+ "为例": 11823,
+ "进驻": 11824,
+ "年底": 11825,
+ "别墅": 11826,
+ "商品房": 11827,
+ "销售量": 11828,
+ "销售额": 11829,
+ "产": 11830,
+ "潜在": 11831,
+ "信贷": 11832,
+ "严格控制": 11833,
+ "外来": 11834,
+ "比重": 11835,
+ "不断扩大": 11836,
+ "疲软": 11837,
+ "会因": 11838,
+ "供给": 11839,
+ "总量": 11840,
+ "外交": 11841,
+ "获利": 11842,
+ "需求量": 11843,
+ "短期内": 11844,
+ "RT": 11845,
+ "竞技场": 11846,
+ "莫过于": 11847,
+ "周期表": 11848,
+ "化学式": 11849,
+ "方程式": 11850,
+ "书上": 11851,
+ "吻合": 11852,
+ "钻研": 11853,
+ "挡住": 11854,
+ "自然科学": 11855,
+ "归纳": 11856,
+ "之母": 11857,
+ "熟知": 11858,
+ "题型": 11859,
+ "见识": 11860,
+ "仅为": 11861,
+ "丢掉": 11862,
+ "团购": 11863,
+ "年限": 11864,
+ "本期": 11865,
+ "沃尔夫": 11866,
+ "取胜": 11867,
+ "主场": 11868,
+ "不败": 11869,
+ "格局": 11870,
+ "球形": 11871,
+ "质数": 11872,
+ "整除": 11873,
+ "问道": 11874,
+ "不必要": 11875,
+ "效益": 11876,
+ "考个": 11877,
+ "下半年": 11878,
+ "咋": 11879,
+ "回事": 11880,
+ "我开": 11881,
+ "不卡": 11882,
+ "排队": 11883,
+ "多吃点": 11884,
+ "梨子": 11885,
+ "柿子": 11886,
+ "转弯": 11887,
+ "时时": 11888,
+ "原地": 11889,
+ "专辑": 11890,
+ "al": 11891,
+ "一笑": 11892,
+ "红颜": 11893,
+ "bos": 11894,
+ "超大": 11895,
+ "house": 11896,
+ "恰恰": 11897,
+ "借口": 11898,
+ "just": 11899,
+ "早已": 11900,
+ "小学生": 11901,
+ "英语水平": 11902,
+ "没用过": 11903,
+ "玩过": 11904,
+ "看电视": 11905,
+ "中学生": 11906,
+ "词汇量": 11907,
+ "奉行": 11908,
+ "招商": 11909,
+ "债": 11910,
+ "格式化": 11911,
+ "好不容易": 11912,
+ "一键": 11913,
+ "还原": 11914,
+ "C盘": 11915,
+ "office": 11916,
+ "应用软件": 11917,
+ "大胆": 11918,
+ "Flash": 11919,
+ "2004": 11920,
+ "深夜": 11921,
+ "闯": 11922,
+ "红灯": 11923,
+ "坏习惯": 11924,
+ "交税": 11925,
+ "刻意": 11926,
+ "65": 11927,
+ "127": 11928,
+ "107": 11929,
+ "吃个": 11930,
+ "精准": 11931,
+ "104": 11932,
+ "背后": 11933,
+ "卡利亚": 11934,
+ "桑普多": 11935,
+ "卡塔": 11936,
+ "尼": 11937,
+ "03": 11938,
+ "热那亚": 11939,
+ "巴勒莫": 11940,
+ "05": 11941,
+ "乌迪内": 11942,
+ "锡耶纳": 11943,
+ "尤文": 11944,
+ "09": 11945,
+ "维尔": 11946,
+ "瓦": 11947,
+ "莱": 11948,
+ "艾": 11949,
+ "命题": 11950,
+ "等价": 11951,
+ "口令": 11952,
+ "繁琐": 11953,
+ "破解": 11954,
+ "文件系统": 11955,
+ "F8": 11956,
+ "命令行": 11957,
+ "列出": 11958,
+ "本例": 11959,
+ "回车": 11960,
+ "键入": 11961,
+ "net": 11962,
+ "user": 11963,
+ "1234": 11964,
+ "通电": 11965,
+ "试一试": 11966,
+ "Ctrl": 11967,
+ "Alt": 11968,
+ "为空": 11969,
+ "女士": 11970,
+ "小红点": 11971,
+ "褪色": 11972,
+ "血丝": 11973,
+ "蜘蛛": 11974,
+ "痔": 11975,
+ "搏动": 11976,
+ "压迫": 11977,
+ "减压": 11978,
+ "肝硬化": 11979,
+ "数月": 11980,
+ "看作": 11981,
+ "正常人": 11982,
+ "颜": 11983,
+ "彩": 11984,
+ "景象": 11985,
+ "洗澡时": 11986,
+ "按规定": 11987,
+ "德州": 11988,
+ "咆哮": 11989,
+ "散射": 11990,
+ "闪耀": 11991,
+ "唯美": 11992,
+ "归来": 11993,
+ "帽": 11994,
+ "光明": 11995,
+ "木板": 11996,
+ "静止": 11997,
+ "面上": 11998,
+ "射入": 11999,
+ "动能": 12000,
+ "动量": 12001,
+ "mo": 12002,
+ "代入": 12003,
+ "合剂": 12004,
+ "药水": 12005,
+ "圈里": 12006,
+ "BS": 12007,
+ "交接": 12008,
+ "现阶段": 12009,
+ "黑暗": 12010,
+ "碾压": 12011,
+ "报复": 12012,
+ "力士": 12013,
+ "山洞": 12014,
+ "师父": 12015,
+ "慈悲": 12016,
+ "感恩": 12017,
+ "灵性": 12018,
+ "绳子": 12019,
+ "串": 12020,
+ "长跑": 12021,
+ "行进": 12022,
+ "程": 12023,
+ "电影院": 12024,
+ "170": 12025,
+ "考试成绩": 12026,
+ "县": 12027,
+ "海关": 12028,
+ "1988": 12029,
+ "日至": 12030,
+ "海军": 12031,
+ "舰队": 12032,
+ "南端": 12033,
+ "北端": 12034,
+ "军舰": 12035,
+ "保卫": 12036,
+ "建交": 12037,
+ "乌拉圭": 12038,
+ "南美洲": 12039,
+ "东南部": 12040,
+ "海战": 12041,
+ "历时": 12042,
+ "舰": 12043,
+ "奉命": 12044,
+ "解放军": 12045,
+ "战舰": 12046,
+ "艘": 12047,
+ "国旗": 12048,
+ "俘虏": 12049,
+ "伤亡": 12050,
+ "失踪": 12051,
+ "代价": 12052,
+ "沉重": 12053,
+ "当局": 12054,
+ "企图": 12055,
+ "卡塔尔": 12056,
+ "会见": 12057,
+ "捷克斯洛伐克": 12058,
+ "总统": 12059,
+ "时说": 12060,
+ "宣布": 12061,
+ "总理": 12062,
+ "准则": 12063,
+ "甲醛": 12064,
+ "叫好": 12065,
+ "灭绝": 12066,
+ "战神": 12067,
+ "天神": 12068,
+ "师": 12069,
+ "召唤": 12070,
+ "之神": 12071,
+ "天使": 12072,
+ "堕落": 12073,
+ "争议": 12074,
+ "奶爸": 12075,
+ "一有": 12076,
+ "飞快": 12077,
+ "弓箭": 12078,
+ "专职": 12079,
+ "存活": 12080,
+ "挖矿": 12081,
+ "最少": 12082,
+ "喽": 12083,
+ "自体": 12084,
+ "丰胸": 12085,
+ "爱美": 12086,
+ "罩杯": 12087,
+ "理所当然": 12088,
+ "经验丰富": 12089,
+ "调料": 12090,
+ "跳楼": 12091,
+ "俄": 12092,
+ "克罗": 12093,
+ "保": 12094,
+ "沙": 12095,
+ "巴": 12096,
+ "林": 12097,
+ "兰": 12098,
+ "巴拉圭": 12099,
+ "阿根廷": 12100,
+ "镜子": 12101,
+ "预示": 12102,
+ "内心世界": 12103,
+ "爱护": 12104,
+ "拥抱": 12105,
+ "NO": 12106,
+ "麻": 12107,
+ "沿海": 12108,
+ "淡水": 12109,
+ "海水": 12110,
+ "足见": 12111,
+ "可致": 12112,
+ "养殖": 12113,
+ "野生": 12114,
+ "2.2": 12115,
+ "谓之": 12116,
+ "■": 12117,
+ "mg": 12118,
+ "致死": 12119,
+ "脾": 12120,
+ "睾丸": 12121,
+ "明确规定": 12122,
+ "潜伏期": 12123,
+ "舌尖": 12124,
+ "刺痛": 12125,
+ "摇摆": 12126,
+ "麻痹": 12127,
+ "送往": 12128,
+ "零售": 12129,
+ "内脏": 12130,
+ "碳酸氢钠": 12131,
+ "鉴定": 12132,
+ "后方": 12133,
+ "废弃物": 12134,
+ "销毁": 12135,
+ "贪": 12136,
+ "南京市": 12137,
+ "监督": 12138,
+ "螺": 12139,
+ "晒干": 12140,
+ "无毒": 12141,
+ "解读": 12142,
+ "小巴": 12143,
+ "培育": 12144,
+ "得当": 12145,
+ "食品安全": 12146,
+ "禁食": 12147,
+ "陈旧": 12148,
+ "现代科技": 12149,
+ "步伐": 12150,
+ "江苏": 12151,
+ "悄悄": 12152,
+ "沃尔玛": 12153,
+ "促销": 12154,
+ "抵制": 12155,
+ "跟不上": 12156,
+ "失误": 12157,
+ "吃晚饭": 12158,
+ "1964": 12159,
+ "便利店": 12160,
+ "收取": 12161,
+ "电费": 12162,
+ "改名": 12163,
+ "总裁": 12164,
+ "纽约": 12165,
+ "铃声": 12166,
+ "宣告": 12167,
+ "晋升": 12168,
+ "竞争力": 12169,
+ "源于": 12170,
+ "1946": 12171,
+ "营业": 12172,
+ "里程碑": 12173,
+ "北美": 12174,
+ "州": 12175,
+ "个别": 12176,
+ "汇款": 12177,
+ "复印": 12178,
+ "传真": 12179,
+ "加盟": 12180,
+ "菲律宾": 12181,
+ "马来西亚": 12182,
+ "购入": 12183,
+ "大部份": 12184,
+ "股权": 12185,
+ "至此": 12186,
+ "股东": 12187,
+ "「": 12188,
+ "」": 12189,
+ "拨款": 12190,
+ "资助": 12191,
+ "团体": 12192,
+ "小朋友": 12193,
+ "全美": 12194,
+ "磅": 12195,
+ "一斤": 12196,
+ "一两": 12197,
+ "这题": 12198,
+ "枪械": 12199,
+ "AR": 12200,
+ "量产": 12201,
+ "耐久": 12202,
+ "one": 12203,
+ "last": 12204,
+ "男主角": 12205,
+ "相识": 12206,
+ "怀里": 12207,
+ "一個": 12208,
+ "旅程": 12209,
+ "旅途": 12210,
+ "金钱": 12211,
+ "修行": 12212,
+ "算不算": 12213,
+ "癌症": 12214,
+ "腺瘤": 12215,
+ "伤口": 12216,
+ "免除": 12217,
+ "奥林匹克运动会": 12218,
+ "运动员": 12219,
+ "代表团": 12220,
+ "抽血": 12221,
+ "周一": 12222,
+ "尽量减少": 12223,
+ "追问": 12224,
+ "好孕": 12225,
+ "协和": 12226,
+ "嗨": 12227,
+ "战乱": 12228,
+ "身处": 12229,
+ "自动识别": 12230,
+ "第一步": 12231,
+ "顶端": 12232,
+ "排序": 12233,
+ "高到": 12234,
+ "第二步": 12235,
+ "饱和": 12236,
+ "第三步": 12237,
+ "筛选": 12238,
+ "编号": 12239,
+ "贾": 12240,
+ "赛": 12241,
+ "福建": 12242,
+ "山东": 12243,
+ "芙": 12244,
+ "里奇": 12245,
+ "引领": 12246,
+ "四点": 12247,
+ "服务商": 12248,
+ "三组": 12249,
+ "新增": 12250,
+ "牙": 12251,
+ "增设": 12252,
+ "航线": 12253,
+ "海峡": 12254,
+ "两岸": 12255,
+ "享有": 12256,
+ "海里": 12257,
+ "领": 12258,
+ "水域": 12259,
+ "主权": 12260,
+ "中东": 12261,
+ "洲": 12262,
+ "途经": 12263,
+ "1996": 12264,
+ "石油": 12265,
+ "净": 12266,
+ "兰德": 12267,
+ "结论": 12268,
+ "依赖于": 12269,
+ "台湾省": 12270,
+ "4.5": 12271,
+ "巴西": 12272,
+ "煤": 12273,
+ "东亚": 12274,
+ "通往": 12275,
+ "印度洋": 12276,
+ "运输": 12277,
+ "船只": 12278,
+ "冲动": 12279,
+ "制造商": 12280,
+ "动词": 12281,
+ "L": 12282,
+ "排卵期": 12283,
+ "受孕": 12284,
+ "完好": 12285,
+ "弧度": 12286,
+ "粪便": 12287,
+ "性状": 12288,
+ "妇产科": 12289,
+ "骗": 12290,
+ "氢气": 12291,
+ "硫": 12292,
+ "OH": 12293,
+ "↑": 12294,
+ "阵型": 12295,
+ "控球": 12296,
+ "疫苗": 12297,
+ "接种": 12298,
+ "金字塔": 12299,
+ "比值": 12300,
+ "口碑": 12301,
+ "百姓": 12302,
+ "情": 12303,
+ "处处": 12304,
+ "折旧": 12305,
+ "记账": 12306,
+ "凭证": 12307,
+ "登": 12308,
+ "相符": 12309,
+ "固定资产": 12310,
+ "计提": 12311,
+ "明细": 12312,
+ "标签": 12313,
+ "汇总": 12314,
+ "得来": 12315,
+ "表哥": 12316,
+ "解析": 12317,
+ "手法": 12318,
+ "初衷": 12319,
+ "不为": 12320,
+ "迎接": 12321,
+ "海盗": 12322,
+ "称谓": 12323,
+ "接吻": 12324,
+ "揉": 12325,
+ "起降": 12326,
+ "替换": 12327,
+ "海军陆战队": 12328,
+ "AV": 12329,
+ "原件": 12330,
+ "中会": 12331,
+ "构想": 12332,
+ "马克": 12333,
+ "投掷": 12334,
+ "控制中心": 12335,
+ "起飞": 12336,
+ "着陆": 12337,
+ "低速": 12338,
+ "航母": 12339,
+ "生产线": 12340,
+ "明明": 12341,
+ "麻麻": 12342,
+ "针刺": 12343,
+ "三线": 12344,
+ "插座": 12345,
+ "廉价": 12346,
+ "°": 12347,
+ "电缆": 12348,
+ "铺设": 12349,
+ "加装": 12350,
+ "收不到": 12351,
+ "山坡": 12352,
+ "树林": 12353,
+ "铁塔": 12354,
+ "阻挡": 12355,
+ "视界": 12356,
+ "视角": 12357,
+ "障碍物": 12358,
+ "夹角": 12359,
+ "怀着": 12360,
+ "哪款": 12361,
+ "双核": 12362,
+ "欠": 12363,
+ "瞎": 12364,
+ "实体店": 12365,
+ "翻新": 12366,
+ "瓷器": 12367,
+ "上门": 12368,
+ "买下": 12369,
+ "随后": 12370,
+ "此事": 12371,
+ "法院": 12372,
+ "提起": 12373,
+ "撤销": 12374,
+ "欺诈": 12375,
+ "达成": 12376,
+ "予以": 12377,
+ "中央电视台": 12378,
+ "一期": 12379,
+ "金子": 12380,
+ "肠子": 12381,
+ "届": 12382,
+ "一万": 12383,
+ "外贸": 12384,
+ "老外": 12385,
+ "信赖": 12386,
+ "收款": 12387,
+ "1.6": 12388,
+ "晓得": 12389,
+ "帅哥": 12390,
+ "天才": 12391,
+ "本名": 12392,
+ "宗": 12393,
+ "次郎": 12394,
+ "出身": 12395,
+ "藩": 12396,
+ "江户": 12397,
+ "肩": 12398,
+ "★": 12399,
+ "三段": 12400,
+ "突": 12401,
+ "组长": 12402,
+ "师范": 12403,
+ "简史": 12404,
+ "首度": 12405,
+ "闻名于世": 12406,
+ "指挥官": 12407,
+ "闻名": 12408,
+ "宛如": 12409,
+ "兄长": 12410,
+ "般的": 12411,
+ "罹患": 12412,
+ "肺结核": 12413,
+ "元年": 12414,
+ "编成": 12415,
+ "击杀": 12416,
+ "小路": 12417,
+ "会战": 12418,
+ "幕府": 12419,
+ "医学院": 12420,
+ "入院": 12421,
+ "敌军": 12422,
+ "探望": 12423,
+ "暗影": 12424,
+ "MS": 12425,
+ "震": 12426,
+ "专精": 12427,
+ "冥想": 12428,
+ "MT": 12429,
+ "身影": 12430,
+ "静脉曲张": 12431,
+ "柴胡": 12432,
+ "加减": 12433,
+ "药用": 12434,
+ "白芍": 12435,
+ "扭曲": 12436,
+ "患肢": 12437,
+ "畏寒": 12438,
+ "桂枝": 12439,
+ "合用": 12440,
+ "不合": 12441,
+ "不起": 12442,
+ "救": 12443,
+ "学着": 12444,
+ "大不了": 12445,
+ "所得税": 12446,
+ "分录": 12447,
+ "税金": 12448,
+ "月末": 12449,
+ "结转": 12450,
+ "门口": 12451,
+ "U": 12452,
+ "脸红": 12453,
+ "毛细血管": 12454,
+ "持续性": 12455,
+ "找出": 12456,
+ "加强锻炼": 12457,
+ "耐受": 12458,
+ "意见建议": 12459,
+ "交替": 12460,
+ "一路上": 12461,
+ "印尼": 12462,
+ "语文": 12463,
+ "马来": 12464,
+ "米尔": 12465,
+ "披风": 12466,
+ "疯": 12467,
+ "招收": 12468,
+ "天生": 12469,
+ "美容院": 12470,
+ "生态系统": 12471,
+ "废物": 12472,
+ "出动": 12473,
+ "周围环境": 12474,
+ "分散": 12475,
+ "讨论一下": 12476,
+ "刺客": 12477,
+ "速度慢": 12478,
+ "第四个": 12479,
+ "char": 12480,
+ "while": 12481,
+ "日来": 12482,
+ "没来": 12483,
+ "做人流": 12484,
+ "药流": 12485,
+ "时段": 12486,
+ "清宫": 12487,
+ "后遗症": 12488,
+ "吊顶": 12489,
+ "龙骨": 12490,
+ "只想": 12491,
+ "四周": 12492,
+ "差价": 12493,
+ "大约": 12494,
+ "防火": 12495,
+ "异形": 12496,
+ "一栋": 12497,
+ "混凝土": 12498,
+ "验收": 12499,
+ "墙体": 12500,
+ "采": 12501,
+ "工地": 12502,
+ "一项": 12503,
+ "租用": 12504,
+ "该项": 12505,
+ "下部": 12506,
+ "损耗": 12507,
+ "就是指": 12508,
+ "多边形": 12509,
+ "相邻": 12510,
+ "63": 12511,
+ "边长": 12512,
+ "CM": 12513,
+ "菱形": 12514,
+ "对角线": 12515,
+ "矩形": 12516,
+ "4x": 12517,
+ "依": 12518,
+ "解得": 12519,
+ "93": 12520,
+ "四边形": 12521,
+ "签证": 12522,
+ "旅行社": 12523,
+ "公民": 12524,
+ "一路": 12525,
+ "三楼": 12526,
+ "申请表": 12527,
+ "签名": 12528,
+ "申请者": 12529,
+ "信": 12530,
+ "停留": 12531,
+ "附有": 12532,
+ "负责人": 12533,
+ "出示": 12534,
+ "递交": 12535,
+ "复印件": 12536,
+ "护照": 12537,
+ "申请人": 12538,
+ "邀请": 12539,
+ "营业执照": 12540,
+ "驻": 12541,
+ "总领事馆": 12542,
+ "目的地": 12543,
+ "每人": 12544,
+ "三张": 12545,
+ "该国": 12546,
+ "飞往": 12547,
+ "途径": 12548,
+ "银行存款": 12549,
+ "备注": 12550,
+ "曼": 12551,
+ "西汉姆": 12552,
+ "米德尔": 12553,
+ "朴茨": 12554,
+ "茅": 12555,
+ "博尔顿": 12556,
+ "桑德兰": 12557,
+ "维": 12558,
+ "冈": 12559,
+ "伯明翰": 12560,
+ "布莱克": 12561,
+ "托": 12562,
+ "沙尔克": 12563,
+ "汉诺威": 12564,
+ "不来梅": 12565,
+ "科特": 12566,
+ "赫": 12567,
+ "斯": 12568,
+ "昂": 12569,
+ "财务": 12570,
+ "这块": 12571,
+ "财务报表": 12572,
+ "负债表": 12573,
+ "现金流量": 12574,
+ "所有者": 12575,
+ "权益": 12576,
+ "税务": 12577,
+ "国税": 12578,
+ "名次": 12579,
+ "模块": 12580,
+ "标记": 12581,
+ "转发": 12582,
+ "此书": 12583,
+ "酒杯": 12584,
+ "桌子": 12585,
+ "青蛙": 12586,
+ "脚下": 12587,
+ "奔腾": 12588,
+ "河北": 12589,
+ "610": 12590,
+ "妹妹": 12591,
+ "辽宁省": 12592,
+ "保送": 12593,
+ "名额": 12594,
+ "人大": 12595,
+ "白癜风": 12596,
+ "更何况": 12597,
+ "个体": 12598,
+ "差异性": 12599,
+ "根治": 12600,
+ "预后": 12601,
+ "该病": 12602,
+ "规范化": 12603,
+ "祝您健康": 12604,
+ "脑海": 12605,
+ "歌声": 12606,
+ "多餐": 12607,
+ "三分": 12608,
+ "少见": 12609,
+ "神秘": 12610,
+ "支线": 12611,
+ "很久以前": 12612,
+ "首位": 12613,
+ "同志": 12614,
+ "1800": 12615,
+ "股价": 12616,
+ "1700": 12617,
+ "稀释": 12618,
+ "进度": 12619,
+ "公会": 12620,
+ "不成": 12621,
+ "绒毛": 12622,
+ "促性腺激": 12623,
+ "聊天室": 12624,
+ "设计者": 12625,
+ "中级": 12626,
+ "时事": 12627,
+ "与众不同": 12628,
+ "": 12629,
+ "on": 12630,
+ "短篇": 12631,
+ "演讲": 12632,
+ "进阶": 12633,
+ "专题": 12634,
+ "短文": 12635,
+ "小溪": 12636,
+ "一年级": 12637,
+ "戴上": 12638,
+ "耳机": 12639,
+ "GRE": 12640,
+ "试题": 12641,
+ "样本": 12642,
+ "出国": 12643,
+ "沙龙": 12644,
+ "爱好者": 12645,
+ "必选": 12646,
+ "趣味": 12647,
+ "数个": 12648,
+ "学习者": 12649,
+ "开口": 12650,
+ "背": 12651,
+ "背单词": 12652,
+ "生词": 12653,
+ "书本": 12654,
+ "doing": 12655,
+ "四级": 12656,
+ "了不起": 12657,
+ "层层": 12658,
+ "背诵": 12659,
+ "作业": 12660,
+ "学完": 12661,
+ "课文": 12662,
+ "颇为": 12663,
+ "阶级": 12664,
+ "宝": 12665,
+ "漫游": 12666,
+ "学习外语": 12667,
+ "倘若": 12668,
+ "翻翻": 12669,
+ "脱离": 12670,
+ "上下文": 12671,
+ "地去": 12672,
+ "记下": 12673,
+ "话语": 12674,
+ "看多": 12675,
+ "纯属": 12676,
+ "无误": 12677,
+ "第一人称": 12678,
+ "am": 12679,
+ "only": 12680,
+ "leg": 12681,
+ "围攻": 12682,
+ "攻读": 12683,
+ "尤为重要": 12684,
+ "坚信": 12685,
+ "非凡": 12686,
+ "here": 12687,
+ "think": 12688,
+ "there": 12689,
+ "English": 12690,
+ "let": 12691,
+ "learning": 12692,
+ "now": 12693,
+ "but": 12694,
+ "are": 12695,
+ "Good": 12696,
+ "tudy": 12697,
+ "day": 12698,
+ "up": 12699,
+ "中英文": 12700,
+ "对照": 12701,
+ "课后": 12702,
+ "中文翻译": 12703,
+ "拼写": 12704,
+ "不来": 12705,
+ "音标": 12706,
+ "拼音": 12707,
+ "同理": 12708,
+ "主语": 12709,
+ "谓语": 12710,
+ "宾语": 12711,
+ "艰苦": 12712,
+ "乏味": 12713,
+ "越大": 12714,
+ "Happy": 12715,
+ "New": 12716,
+ "对人": 12717,
+ "硬度": 12718,
+ "宣泄": 12719,
+ "性兴奋": 12720,
+ "渠道": 12721,
+ "害处": 12722,
+ "射精": 12723,
+ "精液": 12724,
+ "以致": 12725,
+ "心理障碍": 12726,
+ "泌尿": 12727,
+ "神经衰弱": 12728,
+ "中枢神经": 12729,
+ "心悸": 12730,
+ "下腹": 12731,
+ "会阴部": 12732,
+ "腰酸": 12733,
+ "表妹": 12734,
+ "融洽": 12735,
+ "公主": 12736,
+ "就此": 12737,
+ "婆婆": 12738,
+ "公婆": 12739,
+ "娘家": 12740,
+ "一度": 12741,
+ "买过": 12742,
+ "调和": 12743,
+ "高调": 12744,
+ "矛盾": 12745,
+ "受理": 12746,
+ "三岁": 12747,
+ "说一说": 12748,
+ "非常感谢": 12749,
+ "交易所": 12750,
+ "总额": 12751,
+ "A股": 12752,
+ "佣金": 12753,
+ "印花税": 12754,
+ "高点": 12755,
+ "吉利": 12756,
+ "家园": 12757,
+ "other": 12758,
+ "死活": 12759,
+ "数学公式": 12760,
+ "中文版": 12761,
+ "转换成": 12762,
+ "文稿": 12763,
+ "DOS": 12764,
+ "字符": 12765,
+ "打字": 12766,
+ "前提条件": 12767,
+ "对话框": 12768,
+ "文本": 12769,
+ "多出": 12770,
+ "间距": 12771,
+ "怀上": 12772,
+ "不准": 12773,
+ "调经": 12774,
+ "优": 12775,
+ "准时": 12776,
+ "监测": 12777,
+ "卵泡": 12778,
+ "同房": 12779,
+ "排出来": 12780,
+ "黄体酮": 12781,
+ "乳房": 12782,
+ "体温": 12783,
+ "止损": 12784,
+ "出局": 12785,
+ "收复": 12786,
+ "K": 12787,
+ "划": 12788,
+ "横线": 12789,
+ "1%": 12790,
+ "决策": 12791,
+ "最具": 12792,
+ "一条线": 12793,
+ "抬高": 12794,
+ "坑": 12795,
+ "博弈": 12796,
+ "画出": 12797,
+ "线图": 12798,
+ "不乏": 12799,
+ "买进": 12800,
+ "打压": 12801,
+ "隐蔽": 12802,
+ "股市": 12803,
+ "放大": 12804,
+ "压根": 12805,
+ "漫漫": 12806,
+ "路途": 12807,
+ "不买": 12808,
+ "无偿": 12809,
+ "设法": 12810,
+ "何谓": 12811,
+ "前一天": 12812,
+ "比前": 12813,
+ "个股": 12814,
+ "跟进": 12815,
+ "可取": 12816,
+ "真实性": 12817,
+ "樱花": 12818,
+ "预告": 12819,
+ "十一月": 12820,
+ "貌似": 12821,
+ "反响": 12822,
+ "不出": 12823,
+ "史密斯": 12824,
+ "大容量": 12825,
+ "美式": 12826,
+ "境界": 12827,
+ "炎热": 12828,
+ "享用": 12829,
+ "容积": 12830,
+ "人性": 12831,
+ "两套": 12832,
+ "使用量": 12833,
+ "水量": 12834,
+ "感应": 12835,
+ "回路": 12836,
+ "瞬间": 12837,
+ "功率": 12838,
+ "尿检": 12839,
+ "透明度": 12840,
+ "给与": 12841,
+ "支付宝": 12842,
+ "发货": 12843,
+ "初恋": 12844,
+ "暧昧": 12845,
+ "一女": 12846,
+ "港澳": 12847,
+ "通行证": 12848,
+ "公安局": 12849,
+ "带上": 12850,
+ "景点": 12851,
+ "斑": 12852,
+ "科学院": 12853,
+ "祛斑": 12854,
+ "色斑": 12855,
+ "路由器": 12856,
+ "台式机": 12857,
+ "变慢": 12858,
+ "家装": 12859,
+ "迅雷": 12860,
+ "台式": 12861,
+ "缓冲": 12862,
+ "HKEY": 12863,
+ "LOCAL": 12864,
+ "MACHINE": 12865,
+ "其值": 12866,
+ "键值": 12867,
+ "十进制": 12868,
+ "此刻": 12869,
+ "什": 12870,
+ "没想": 12871,
+ "卫视": 12872,
+ "秀": 12873,
+ "大小写": 12874,
+ "长得": 12875,
+ "过得": 12876,
+ "呗": 12877,
+ "蚊子": 12878,
+ "背上": 12879,
+ "象是": 12880,
+ "就会": 12881,
+ "百合": 12882,
+ "软骨": 12883,
+ "椎间盘": 12884,
+ "韧带": 12885,
+ "变性": 12886,
+ "肥厚": 12887,
+ "继发性": 12888,
+ "劳动者": 12889,
+ "常为": 12890,
+ "针灸": 12891,
+ "理疗": 12892,
+ "在生活中": 12893,
+ "膏药": 12894,
+ "效能": 12895,
+ "率领": 12896,
+ "开窍": 12897,
+ "体表": 12898,
+ "渗透": 12899,
+ "石家庄": 12900,
+ "货运": 12901,
+ "东莞": 12902,
+ "公路": 12903,
+ "遗忘": 12904,
+ "限定": 12905,
+ "封闭式": 12906,
+ "计算出来": 12907,
+ "初学": 12908,
+ "差额": 12909,
+ "除以": 12910,
+ "转为": 12911,
+ "马自达": 12912,
+ "一辆": 12913,
+ "万公里": 12914,
+ "赶到": 12915,
+ "第三次": 12916,
+ "特意": 12917,
+ "吵架": 12918,
+ "没说": 12919,
+ "克制": 12920,
+ "我怕": 12921,
+ "长途": 12922,
+ "那句话": 12923,
+ "没人": 12924,
+ "靠近": 12925,
+ "不住": 12926,
+ "这天": 12927,
+ "毫不犹豫": 12928,
+ "共度": 12929,
+ "此生": 12930,
+ "寝室": 12931,
+ "二等": 12932,
+ "双子": 12933,
+ "金牛": 12934,
+ "前不久": 12935,
+ "大体上": 12936,
+ "埃塞俄比亚": 12937,
+ "地理位置": 12938,
+ "人文": 12939,
+ "联邦": 12940,
+ "民主": 12941,
+ "纪念日": 12942,
+ "革命": 12943,
+ "执政": 12944,
+ "新年": 12945,
+ "长方形": 12946,
+ "横": 12947,
+ "相继": 12948,
+ "被称作": 12949,
+ "泛": 12950,
+ "这片": 12951,
+ "渊源": 12952,
+ "科普": 12953,
+ "崇尚": 12954,
+ "忠诚": 12955,
+ "仁慈": 12956,
+ "绿色": 12957,
+ "放射": 12958,
+ "光芒": 12959,
+ "多样": 12960,
+ "连任": 12961,
+ "红海": 12962,
+ "高原": 12963,
+ "苏丹": 12964,
+ "交界": 12965,
+ "肯尼亚": 12966,
+ "海岸线": 12967,
+ "山地": 12968,
+ "中西部": 12969,
+ "全境": 12970,
+ "平均温度": 12971,
+ "尼罗河": 12972,
+ "族人": 12973,
+ "语": 12974,
+ "伊斯兰教": 12975,
+ "新教": 12976,
+ "行政区划": 12977,
+ "一世": 12978,
+ "兴起": 12979,
+ "姆": 12980,
+ "侵入": 12981,
+ "沦为": 12982,
+ "殖民地": 12983,
+ "奥斯曼帝国": 12984,
+ "击败": 12985,
+ "同年": 12986,
+ "埃": 12987,
+ "第二次世界大战": 12988,
+ "赶走": 12989,
+ "登基": 12990,
+ "古希腊": 12991,
+ "中意": 12992,
+ "接管": 12993,
+ "政权": 12994,
+ "内战": 12995,
+ "宪法": 12996,
+ "议会": 12997,
+ "内阁": 12998,
+ "分离": 12999,
+ "任期": 13000,
+ "六年": 13001,
+ "院系": 13002,
+ "立法": 13003,
+ "选民": 13004,
+ "议员": 13005,
+ "席": 13006,
+ "裁决": 13007,
+ "各州": 13008,
+ "国民经济": 13009,
+ "支柱": 13010,
+ "天然气": 13011,
+ "发源": 13012,
+ "利用率": 13013,
+ "砍伐": 13014,
+ "零部件": 13015,
+ "纺织": 13016,
+ "香烟": 13017,
+ "农业": 13018,
+ "苔": 13019,
+ "产量": 13020,
+ "居": 13021,
+ "第三位": 13022,
+ "总收入": 13023,
+ "浆果": 13024,
+ "谁知": 13025,
+ "采集": 13026,
+ "故乡": 13027,
+ "国土": 13028,
+ "草地": 13029,
+ "生产总值": 13030,
+ "野生动物": 13031,
+ "接待": 13032,
+ "万美元": 13033,
+ "现有": 13034,
+ "报刊": 13035,
+ "日报": 13036,
+ "部下": 13037,
+ "广播电台": 13038,
+ "对外": 13039,
+ "开播": 13040,
+ "积极参与": 13041,
+ "事务": 13042,
+ "海湾": 13043,
+ "周恩来": 13044,
+ "曾多次": 13045,
+ "实况": 13046,
+ "前锋": 13047,
+ "无关紧要": 13048,
+ "离合器": 13049,
+ "超时": 13050,
+ "收件人": 13051,
+ "3.0": 13052,
+ "一阵": 13053,
+ "丝毫": 13054,
+ "交互": 13055,
+ "黑客": 13056,
+ "地带": 13057,
+ "面板": 13058,
+ "文本文件": 13059,
+ "一个个": 13060,
+ "临时文件": 13061,
+ "燃油": 13062,
+ "意想不到": 13063,
+ "暂时性": 13064,
+ "url": 13065,
+ "不上": 13066,
+ "信箱": 13067,
+ "发邮件": 13068,
+ "一切顺利": 13069,
+ "前男友": 13070,
+ "搭档": 13071,
+ "从前": 13072,
+ "活在": 13073,
+ "病是": 13074,
+ "份额": 13075,
+ "中止": 13076,
+ "一次性": 13077,
+ "大枣": 13078,
+ "蛋类": 13079,
+ "烧钱": 13080,
+ "进出": 13081,
+ "美术": 13082,
+ "功底": 13083,
+ "想不通": 13084,
+ "这张": 13085,
+ "三面": 13086,
+ "比较简单": 13087,
+ "变态反应": 13088,
+ "性疾病": 13089,
+ "打喷嚏": 13090,
+ "常年": 13091,
+ "流鼻涕": 13092,
+ "花粉": 13093,
+ "无线网络": 13094,
+ "over": 13095,
+ "重要性": 13096,
+ "业务流程": 13097,
+ "戏剧性": 13098,
+ "no": 13099,
+ "脱脂": 13100,
+ "眼袋": 13101,
+ "缘故": 13102,
+ "面子": 13103,
+ "切割": 13104,
+ "五星": 13105,
+ "毛主席": 13106,
+ "1947": 13107,
+ "山西": 13108,
+ "刊登": 13109,
+ "华北": 13110,
+ "毛泽东": 13111,
+ "光辉": 13112,
+ "烈士": 13113,
+ "牺牲": 13114,
+ "奖杯": 13115,
+ "烫伤": 13116,
+ "除掉": 13117,
+ "烧伤": 13118,
+ "期盼": 13119,
+ "青春痘": 13120,
+ "批": 13121,
+ "批发市场": 13122,
+ "年收入": 13123,
+ "终身": 13124,
+ "国有": 13125,
+ "储蓄": 13126,
+ "住房": 13127,
+ "建行": 13128,
+ "家庭成员": 13129,
+ "设计方案": 13130,
+ "定期检查": 13131,
+ "做事": 13132,
+ "有钱人": 13133,
+ "#": 13134,
+ "include": 13135,
+ "td": 13136,
+ "void": 13137,
+ "printf": 13138,
+ "if": 13139,
+ "else": 13140,
+ "乘法": 13141,
+ "写成": 13142,
+ "ab": 13143,
+ "专升本": 13144,
+ "会计专业": 13145,
+ "两样": 13146,
+ "应试": 13147,
+ "图象": 13148,
+ "撤消": 13149,
+ "盗号": 13150,
+ "经常性": 13151,
+ "个人信息": 13152,
+ "时空": 13153,
+ "矩阵": 13154,
+ "密保": 13155,
+ "密码保护": 13156,
+ "陌生": 13157,
+ "好奇心": 13158,
+ "木马": 13159,
+ "随之而来": 13160,
+ "后门": 13161,
+ "弱者": 13162,
+ "邪恶": 13163,
+ "毁灭": 13164,
+ "元朝": 13165,
+ "寺院": 13166,
+ "烹调": 13167,
+ "卤": 13168,
+ "烤肉": 13169,
+ "侦探": 13170,
+ "背包": 13171,
+ "T2": 13172,
+ "随身": 13173,
+ "英寸": 13174,
+ "尼龙": 13175,
+ "笔记本电脑": 13176,
+ "人性化": 13177,
+ "Air": 13178,
+ "透气": 13179,
+ "舒适度": 13180,
+ "业界": 13181,
+ "风雨": 13182,
+ "写作": 13183,
+ "五笔": 13184,
+ "真诚": 13185,
+ "规律性": 13186,
+ "阈值": 13187,
+ "高潮": 13188,
+ "地被": 13189,
+ "唤起": 13190,
+ "戏": 13191,
+ "阴蒂": 13192,
+ "毫无疑问": 13193,
+ "胜任": 13194,
+ "尽情": 13195,
+ "开到": 13196,
+ "un": 13197,
+ "cpu": 13198,
+ "水流": 13199,
+ "区有": 13200,
+ "哥们": 13201,
+ "阶层": 13202,
+ "骗子": 13203,
+ "SB": 13204,
+ "物价": 13205,
+ "ystem": 13206,
+ "di": 13207,
+ "key": 13208,
+ "when": 13209,
+ "系统盘": 13210,
+ "好后": 13211,
+ "上场": 13212,
+ "OL": 13213,
+ "茯苓": 13214,
+ "胶囊": 13215,
+ "小便": 13216,
+ "增生": 13217,
+ "瘀": 13218,
+ "膀胱": 13219,
+ "好心人": 13220,
+ "耳鸣": 13221,
+ "耳": 13222,
+ "莫名": 13223,
+ "带动": 13224,
+ "烦躁": 13225,
+ "中耳炎": 13226,
+ "挠": 13227,
+ "氧": 13228,
+ "冻疮": 13229,
+ "前兆": 13230,
+ "栓塞": 13231,
+ "看得见": 13232,
+ "内侧": 13233,
+ "检": 13234,
+ "尽头": 13235,
+ "耳膜": 13236,
+ "掏": 13237,
+ "腺体": 13238,
+ "黏": 13239,
+ "保温": 13240,
+ "并不需要": 13241,
+ "掏出": 13242,
+ "棉花": 13243,
+ "耳痛": 13244,
+ "当场": 13245,
+ "复诊": 13246,
+ "短暂": 13247,
+ "要点": 13248,
+ "趁": 13249,
+ "恶性循环": 13250,
+ "不痛": 13251,
+ "流脓": 13252,
+ "加用": 13253,
+ "抗生素": 13254,
+ "两周": 13255,
+ "抠": 13256,
+ "洗手": 13257,
+ "不幸": 13258,
+ "公用": 13259,
+ "器械": 13260,
+ "剥离": 13261,
+ "根部": 13262,
+ "蔓延": 13263,
+ "重复使用": 13264,
+ "脚气": 13265,
+ "船员": 13266,
+ "此病": 13267,
+ "消化系统": 13268,
+ "循环系统": 13269,
+ "心动过速": 13270,
+ "疲乏": 13271,
+ "中枢": 13272,
+ "神经炎": 13273,
+ "足部": 13274,
+ "粗粮": 13275,
+ "豆类": 13276,
+ "搓洗": 13277,
+ "静脉注射": 13278,
+ "皮质激素": 13279,
+ "心力衰竭": 13280,
+ "9.0": 13281,
+ "长相": 13282,
+ "称呼": 13283,
+ "闹": 13284,
+ "背着": 13285,
+ "毁": 13286,
+ "或者说": 13287,
+ "爱是": 13288,
+ "自私": 13289,
+ "外遇": 13290,
+ "七年": 13291,
+ "第三者": 13292,
+ "屋里": 13293,
+ "离不开": 13294,
+ "不离": 13295,
+ "心思": 13296,
+ "旅": 13297,
+ "无辜": 13298,
+ "爸爸妈妈": 13299,
+ "行李箱": 13300,
+ "520": 13301,
+ "喷射": 13302,
+ "前置": 13303,
+ "4500": 13304,
+ "变速箱": 13305,
+ "悬挂": 13306,
+ "横向": 13307,
+ "制动": 13308,
+ "205": 13309,
+ "km": 13310,
+ "座椅": 13311,
+ "电动": 13312,
+ "武侠": 13313,
+ "终极": 13314,
+ "打怪": 13315,
+ "配制": 13316,
+ "外敷": 13317,
+ "包扎": 13318,
+ "换药": 13319,
+ "堂": 13320,
+ "膏": 13321,
+ "妈咪": 13322,
+ "菌群": 13323,
+ "自考": 13324,
+ "考得": 13325,
+ "大专": 13326,
+ "中专": 13327,
+ "工程学": 13328,
+ "猎人": 13329,
+ "瑟": 13330,
+ "值钱": 13331,
+ "这部": 13332,
+ "围绕": 13333,
+ "感慨": 13334,
+ "点个": 13335,
+ "郭敬明": 13336,
+ "改编": 13337,
+ "编剧": 13338,
+ "导演": 13339,
+ "被誉为": 13340,
+ "偶像剧": 13341,
+ "监制": 13342,
+ "制片": 13343,
+ "杨幂": 13344,
+ "领衔主演": 13345,
+ "该片": 13346,
+ "飞速发展": 13347,
+ "萧": 13348,
+ "深厚": 13349,
+ "亲情": 13350,
+ "定名": 13351,
+ "2013": 13352,
+ "上映": 13353,
+ "实习": 13354,
+ "抉择": 13355,
+ "当下": 13356,
+ "时而": 13357,
+ "佳能": 13358,
+ "燕子": 13359,
+ "耐": 13360,
+ "福州": 13361,
+ "避孕措施": 13362,
+ "无痛": 13363,
+ "私自": 13364,
+ "诊所": 13365,
+ "无形": 13366,
+ "生命安全": 13367,
+ "降": 13368,
+ "米粉": 13369,
+ "倒闭": 13370,
+ "再也": 13371,
+ "射门": 13372,
+ "螳螂": 13373,
+ "一笔": 13374,
+ "四条": 13375,
+ "点燃": 13376,
+ "一端": 13377,
+ "另一端": 13378,
+ "占地面积": 13379,
+ "し": 13380,
+ "き": 13381,
+ "こ": 13382,
+ "う": 13383,
+ "た": 13384,
+ "て": 13385,
+ "が": 13386,
+ "地表": 13387,
+ "を": 13388,
+ "っ": 13389,
+ "や": 13390,
+ "は": 13391,
+ "平方": 13392,
+ "平方米": 13393,
+ "立方": 13394,
+ "り": 13395,
+ "衡量": 13396,
+ "立方米": 13397,
+ "这要": 13398,
+ "方方面面": 13399,
+ "根基": 13400,
+ "自信": 13401,
+ "大连": 13402,
+ "有如": 13403,
+ "普吉岛": 13404,
+ "马尔代夫": 13405,
+ "天鹅": 13406,
+ "度假胜地": 13407,
+ "海滩": 13408,
+ "曼谷": 13409,
+ "岛上": 13410,
+ "宁静": 13411,
+ "壮观": 13412,
+ "洞穴": 13413,
+ "风貌": 13414,
+ "度假": 13415,
+ "宽广": 13416,
+ "海域": 13417,
+ "上帝": 13418,
+ "一串": 13419,
+ "游客": 13420,
+ "水上": 13421,
+ "屋": 13422,
+ "中小": 13423,
+ "吖": 13424,
+ "NP": 13425,
+ "钢琴": 13426,
+ "踏板": 13427,
+ "功用": 13428,
+ "音": 13429,
+ "杠杆": 13430,
+ "作用力": 13431,
+ "振动": 13432,
+ "音量": 13433,
+ "音色": 13434,
+ "击": 13435,
+ "弦": 13436,
+ "视为": 13437,
+ "演奏": 13438,
+ "小李": 13439,
+ "91": 13440,
+ "叠加": 13441,
+ "晚点": 13442,
+ "初创": 13443,
+ "东汉": 13444,
+ "十一年": 13445,
+ "一千": 13446,
+ "西域": 13447,
+ "佛法": 13448,
+ "阿富汗": 13449,
+ "佛经": 13450,
+ "白马": 13451,
+ "翌年": 13452,
+ "为名": 13453,
+ "宏伟": 13454,
+ "嘉靖": 13455,
+ "三十四年": 13456,
+ "重修": 13457,
+ "万平方米": 13458,
+ "殿": 13459,
+ "清凉": 13460,
+ "元代": 13461,
+ "古迹": 13462,
+ "八大": 13463,
+ "每当": 13464,
+ "之夜": 13465,
+ "僧人": 13466,
+ "奇妙": 13467,
+ "钟楼": 13468,
+ "元旦": 13469,
+ "右上角": 13470,
+ "点积": 13471,
+ "职业道德": 13472,
+ "高水平": 13473,
+ "高超": 13474,
+ "仪表": 13475,
+ "服装": 13476,
+ "服务态度": 13477,
+ "相关联": 13478,
+ "熟练掌握": 13479,
+ "心理健康": 13480,
+ "卫生习惯": 13481,
+ "简练": 13482,
+ "学好": 13483,
+ "端正": 13484,
+ "试卷": 13485,
+ "考核": 13486,
+ "词汇表": 13487,
+ "一段话": 13488,
+ "推测": 13489,
+ "六级": 13490,
+ "该词": 13491,
+ "准确率": 13492,
+ "效率高": 13493,
+ "考场": 13494,
+ "可想而知": 13495,
+ "先看": 13496,
+ "复读": 13497,
+ "错题": 13498,
+ "词组": 13499,
+ "教室": 13500,
+ "细节": 13501,
+ "多读": 13502,
+ "模糊": 13503,
+ "逐一": 13504,
+ "参看": 13505,
+ "示例": 13506,
+ "短句": 13507,
+ "谚语": 13508,
+ "应多": 13509,
+ "强弱": 13510,
+ "专项": 13511,
+ "揣测": 13512,
+ "每篇": 13513,
+ "单项": 13514,
+ "在读": 13515,
+ "看不懂": 13516,
+ "带入": 13517,
+ "第一印象": 13518,
+ "中心思想": 13519,
+ "连贯": 13520,
+ "看一遍": 13521,
+ "大体": 13522,
+ "答题": 13523,
+ "语法错误": 13524,
+ "付钱": 13525,
+ "买房": 13526,
+ "消": 13527,
+ "牵": 13528,
+ "牵扯": 13529,
+ "违法": 13530,
+ "诚信": 13531,
+ "两把": 13532,
+ "阿曼": 13533,
+ "限时": 13534,
+ "箱子": 13535,
+ "托尔": 13536,
+ "洛斯": 13537,
+ "末日": 13538,
+ "启示": 13539,
+ "每秒": 13540,
+ "耐力": 13541,
+ "94": 13542,
+ "掉头发": 13543,
+ "多见于": 13544,
+ "辨证": 13545,
+ "心烦": 13546,
+ "腰膝": 13547,
+ "酸软": 13548,
+ "舌质": 13549,
+ "食疗": 13550,
+ "黑芝麻": 13551,
+ "血瘀": 13552,
+ "脉": 13553,
+ "丹皮": 13554,
+ "核桃仁": 13555,
+ "泽泻": 13556,
+ "天麻": 13557,
+ "当归": 13558,
+ "沸水": 13559,
+ "氪": 13560,
+ "罚": 13561,
+ "铀": 13562,
+ "乌": 13563,
+ "肝肾": 13564,
+ "血虚": 13565,
+ "浸润": 13566,
+ "养血": 13567,
+ "枸杞": 13568,
+ "腥味": 13569,
+ "各方": 13570,
+ "补益": 13571,
+ "肾气": 13572,
+ "摘自": 13573,
+ "何首乌": 13574,
+ "衣": 13575,
+ "加入适量": 13576,
+ "美颜": 13577,
+ "悬赏分": 13578,
+ "荆棘": 13579,
+ "鲤鱼": 13580,
+ "岩石": 13581,
+ "蟹": 13582,
+ "气流": 13583,
+ "物理现象": 13584,
+ "自动控制": 13585,
+ "成本低": 13586,
+ "电磁波": 13587,
+ "迟钝": 13588,
+ "化工": 13589,
+ "船舶": 13590,
+ "国防": 13591,
+ "安利": 13592,
+ "玛": 13593,
+ "抽筋": 13594,
+ "赛车": 13595,
+ "参": 13596,
+ "参赛": 13597,
+ "跑车": 13598,
+ "大赛": 13599,
+ "一站": 13600,
+ "赛道": 13601,
+ "传闻": 13602,
+ "赛事": 13603,
+ "影响力": 13604,
+ "举办": 13605,
+ "年初": 13606,
+ "相隔": 13607,
+ "六个": 13608,
+ "筹备": 13609,
+ "冠名": 13610,
+ "商": 13611,
+ "赞助商": 13612,
+ "谈判": 13613,
+ "有望": 13614,
+ "诺": 13615,
+ "保时捷": 13616,
+ "科尔": 13617,
+ "维特": 13618,
+ "这有": 13619,
+ "不太可能": 13620,
+ "专一": 13621,
+ "法学": 13622,
+ "方块": 13623,
+ "东海": 13624,
+ "用钱": 13625,
+ "带个": 13626,
+ "小兵": 13627,
+ "53": 13628,
+ "能带": 13629,
+ "保质期": 13630,
+ "酿酒": 13631,
+ "黄酒": 13632,
+ "葡萄酒": 13633,
+ "密封": 13634,
+ "变质": 13635,
+ "红葡萄酒": 13636,
+ "酒精": 13637,
+ "断层": 13638,
+ "近战": 13639,
+ "形": 13640,
+ "除外": 13641,
+ "185": 13642,
+ "盾牌": 13643,
+ "140": 13644,
+ "室内设计": 13645,
+ "三口": 13646,
+ "表达出来": 13647,
+ "天上": 13648,
+ "浆": 13649,
+ "收购": 13650,
+ "斯特": 13651,
+ "具体分析": 13652,
+ "教主": 13653,
+ "个字符": 13654,
+ "标点符号": 13655,
+ "简写": 13656,
+ "卷轴": 13657,
+ "要塞": 13658,
+ "说来": 13659,
+ "容": 13660,
+ "胀痛": 13661,
+ "boy": 13662,
+ "that": 13663,
+ "way": 13664,
+ "球员": 13665,
+ "治愈率": 13666,
+ "散布": 13667,
+ "网球": 13668,
+ "乒乓球": 13669,
+ "登山": 13670,
+ "电子游戏": 13671,
+ "大脑神经": 13672,
+ "兴奋性": 13673,
+ "无法控制": 13674,
+ "特发性": 13675,
+ "网络安全": 13676,
+ "视频教程": 13677,
+ "书名": 13678,
+ "出版社": 13679,
+ "大同小异": 13680,
+ "抄袭": 13681,
+ "插图": 13682,
+ "算不上": 13683,
+ "裤": 13684,
+ "电线": 13685,
+ "墙面": 13686,
+ "浴室": 13687,
+ "内有": 13688,
+ "引出": 13689,
+ "导线": 13690,
+ "连线": 13691,
+ "留出": 13692,
+ "接口": 13693,
+ "厨房": 13694,
+ "各处": 13695,
+ "保护措施": 13696,
+ "检修": 13697,
+ "报废": 13698,
+ "疏忽": 13699,
+ "安全隐患": 13700,
+ "比方说": 13701,
+ "电机": 13702,
+ "失灵": 13703,
+ "有理": 13704,
+ "国情": 13705,
+ "正向": 13706,
+ "灵敏": 13707,
+ "外向": 13708,
+ "商家": 13709,
+ "沈阳": 13710,
+ "伤人": 13711,
+ "逆向": 13712,
+ "相连": 13713,
+ "两步": 13714,
+ "立马": 13715,
+ "卫生间": 13716,
+ "地板": 13717,
+ "com": 13718,
+ "cn": 13719,
+ "徒弟": 13720,
+ "强队": 13721,
+ "玩得": 13722,
+ "爱玩": 13723,
+ "深爱": 13724,
+ "不舍": 13725,
+ "搞不懂": 13726,
+ "霸道": 13727,
+ "本性": 13728,
+ "热闹": 13729,
+ "天真": 13730,
+ "不负责任": 13731,
+ "系统还原": 13732,
+ "查杀": 13733,
+ "间谍": 13734,
+ "恶意软件": 13735,
+ "助手": 13736,
+ "下载安装": 13737,
+ "简介": 13738,
+ "恶意": 13739,
+ "民国": 13740,
+ "开国": 13741,
+ "孙中山": 13742,
+ "面值": 13743,
+ "赐教": 13744,
+ "磷酸": 13745,
+ "没得": 13746,
+ "染料": 13747,
+ "酸味": 13748,
+ "酵母": 13749,
+ "重金属": 13750,
+ "脸型": 13751,
+ "责任感": 13752,
+ "稳固": 13753,
+ "移位": 13754,
+ "傍晚": 13755,
+ "黄昏": 13756,
+ "二级": 13757,
+ "古诗": 13758,
+ "描写": 13759,
+ "相思": 13760,
+ "不堪": 13761,
+ "赠": 13762,
+ "明月": 13763,
+ "高楼": 13764,
+ "叹息": 13765,
+ "夜": 13766,
+ "明朝": 13767,
+ "枫叶": 13768,
+ "思": 13769,
+ "相亲": 13770,
+ "邀": 13771,
+ "影": 13772,
+ "徘徊": 13773,
+ "无情": 13774,
+ "恐": 13775,
+ "弄清": 13776,
+ "大三阳": 13777,
+ "抄": 13778,
+ "肝功": 13779,
+ "乙肝": 13780,
+ "干扰素": 13781,
+ "生活用品": 13782,
+ "不见得": 13783,
+ "时不时": 13784,
+ "开导": 13785,
+ "下会": 13786,
+ "预测": 13787,
+ "对立": 13788,
+ "因其": 13789,
+ "而来": 13790,
+ "混淆": 13791,
+ "闲置": 13792,
+ "线性": 13793,
+ "易经": 13794,
+ "方位": 13795,
+ "亲密": 13796,
+ "张三": 13797,
+ "李四": 13798,
+ "傻瓜": 13799,
+ "刚出生": 13800,
+ "出院": 13801,
+ "牙膏": 13802,
+ "衣物": 13803,
+ "洗漱": 13804,
+ "行经": 13805,
+ "经期": 13806,
+ "狭小": 13807,
+ "血块": 13808,
+ "肚子痛": 13809,
+ "异位": 13810,
+ "盆腔炎": 13811,
+ "不畅": 13812,
+ "气滞": 13813,
+ "湿热": 13814,
+ "下注": 13815,
+ "来潮": 13816,
+ "过饱": 13817,
+ "食醋": 13818,
+ "多吃些": 13819,
+ "乙醇": 13820,
+ "情志": 13821,
+ "抑郁": 13822,
+ "蔬菜水果": 13823,
+ "身体虚弱": 13824,
+ "峰会": 13825,
+ "年会": 13826,
+ "高端": 13827,
+ "受众": 13828,
+ "模样": 13829,
+ "CEO": 13830,
+ "时髦": 13831,
+ "学术": 13832,
+ "召开": 13833,
+ "山峰": 13834,
+ "不定期": 13835,
+ "聚会": 13836,
+ "共识": 13837,
+ "转氨酶": 13838,
+ "ALT": 13839,
+ "正常值": 13840,
+ "食堂": 13841,
+ "乙肝疫苗": 13842,
+ "饭馆": 13843,
+ "病毒性": 13844,
+ "丙": 13845,
+ "戊": 13846,
+ "体征": 13847,
+ "低烧": 13848,
+ "抗体": 13849,
+ "乙肝病毒": 13850,
+ "表面抗原": 13851,
+ "抗原": 13852,
+ "阳性": 13853,
+ "剧烈运动": 13854,
+ "夜班": 13855,
+ "生食": 13856,
+ "就餐": 13857,
+ "电灯": 13858,
+ "扶手": 13859,
+ "新生儿": 13860,
+ "拔牙": 13861,
+ "输血": 13862,
+ "透析": 13863,
+ "文身": 13864,
+ "剥皮": 13865,
+ "剥": 13866,
+ "我花": 13867,
+ "没到": 13868,
+ "全靠": 13869,
+ "拍卖": 13870,
+ "ROM": 13871,
+ "三项": 13872,
+ "几项": 13873,
+ "移到": 13874,
+ "达拉": 13875,
+ "双开": 13876,
+ "百分比": 13877,
+ "山河": 13878,
+ "排水": 13879,
+ "尿道炎": 13880,
+ "并发": 13881,
+ "睾丸炎": 13882,
+ "附睾炎": 13883,
+ "精囊": 13884,
+ "附睾": 13885,
+ "结节": 13886,
+ "精子": 13887,
+ "功能障碍": 13888,
+ "上皮": 13889,
+ "情况严重": 13890,
+ "不小": 13891,
+ "不明": 13892,
+ "病原体": 13893,
+ "凡人": 13894,
+ "无菌": 13895,
+ "基因": 13896,
+ "宫颈炎": 13897,
+ "301": 13898,
+ "大姐": 13899,
+ "第一件": 13900,
+ "藏": 13901,
+ "抽屉": 13902,
+ "订单": 13903,
+ "接手": 13904,
+ "交易员": 13905,
+ "锤子": 13906,
+ "地狱": 13907,
+ "小队": 13908,
+ "留守": 13909,
+ "DNA": 13910,
+ "RNA": 13911,
+ "单个": 13912,
+ "核苷酸": 13913,
+ "配对": 13914,
+ "漂移": 13915,
+ "第二批": 13916,
+ "试点": 13917,
+ "握": 13918,
+ "崩盘": 13919,
+ "涨停": 13920,
+ "无数个": 13921,
+ "世界级": 13922,
+ "中将": 13923,
+ "每股": 13924,
+ "看透": 13925,
+ "165": 13926,
+ "转速": 13927,
+ "油耗": 13928,
+ "丰田": 13929,
+ "总监": 13930,
+ "粉丝": 13931,
+ "初三": 13932,
+ "方程组": 13933,
+ "心血管": 13934,
+ "请来": 13935,
+ "我来": 13936,
+ "浙江省": 13937,
+ "甘肃": 13938,
+ "佛罗伦": 13939,
+ "帕尔马": 13940,
+ "灵": 13941,
+ "戈": 13942,
+ "皇": 13943,
+ "参考值": 13944,
+ "3.6": 13945,
+ "点多": 13946,
+ "造血": 13947,
+ "饮食结构": 13948,
+ "阿胶": 13949,
+ "食补": 13950,
+ "猪肝": 13951,
+ "绘画": 13952,
+ "戴尔": 13953,
+ "行不行": 13954,
+ "向量": 13955,
+ "平方和": 13956,
+ "勾股定理": 13957,
+ "重合": 13958,
+ "农民工": 13959,
+ "统筹": 13960,
+ "序列号": 13961,
+ "保姆": 13962,
+ "西服": 13963,
+ "178": 13964,
+ "上能": 13965,
+ "衬衫": 13966,
+ "领带": 13967,
+ "臀部": 13968,
+ "无忧": 13969,
+ "中国移动": 13970,
+ "Age": 13971,
+ "百科": 13972,
+ "词条": 13973,
+ "异位症": 13974,
+ "摘除": 13975,
+ "囊肿": 13976,
+ "月经周期": 13977,
+ "最受": 13978,
+ "两大类": 13979,
+ "轻重": 13980,
+ "病灶": 13981,
+ "复发率": 13982,
+ "顽固": 13983,
+ "停药": 13984,
+ "宜": 13985,
+ "保肝": 13986,
+ "孕激素": 13987,
+ "唑": 13988,
+ "需注意": 13989,
+ "骨质": 13990,
+ "遵": 13991,
+ "医嘱": 13992,
+ "月经期": 13993,
+ "精神紧张": 13994,
+ "家族史": 13995,
+ "及时发现": 13996,
+ "体育运动": 13997,
+ "腹膜": 13998,
+ "肿块": 13999,
+ "褐色": 14000,
+ "恶变": 14001,
+ "通气": 14002,
+ "包块": 14003,
+ "黑客攻击": 14004,
+ "终结者": 14005,
+ "根本无法": 14006,
+ "盘符": 14007,
+ "U盘": 14008,
+ "初始": 14009,
+ "游玩": 14010,
+ "预定": 14011,
+ "要考": 14012,
+ "军校": 14013,
+ "团结": 14014,
+ "魔法师": 14015,
+ "偏向": 14016,
+ "场上": 14017,
+ "动手": 14018,
+ "中国银行": 14019,
+ "额度": 14020,
+ "一试": 14021,
+ "Do": 14022,
+ "file": 14023,
+ "等式": 14024,
+ "David": 14025,
+ "张爱玲": 14026,
+ "Li": 14027,
+ "May": 14028,
+ "欢笑": 14029,
+ "四六级": 14030,
+ "改革": 14031,
+ "光标": 14032,
+ "左键": 14033,
+ "弱小": 14034,
+ "强者": 14035,
+ "磨练": 14036,
+ "总长": 14037,
+ "间断": 14038,
+ "一年四季": 14039,
+ "氮": 14040,
+ "宁夏": 14041,
+ "东南": 14042,
+ "新疆": 14043,
+ "地中海": 14044,
+ "一季": 14045,
+ "春秋": 14046,
+ "过时": 14047,
+ "域名": 14048,
+ "交钱": 14049,
+ "告别": 14050,
+ "学弟": 14051,
+ "智者": 14052,
+ "圣人": 14053,
+ "先知": 14054,
+ "后卫": 14055,
+ "中场": 14056,
+ "内斯": 14057,
+ "佩尔": 14058,
+ "尔": 14059,
+ "利": 14060,
+ "后腰": 14061,
+ "撒": 14062,
+ "兑现": 14063,
+ "股民": 14064,
+ "写写": 14065,
+ "看书": 14066,
+ "文体": 14067,
+ "万多": 14068,
+ "340": 14069,
+ "有种": 14070,
+ "忒": 14071,
+ "上前": 14072,
+ "敬业": 14073,
+ "南宁": 14074,
+ "东站": 14075,
+ "北站": 14076,
+ "常见于": 14077,
+ "成因": 14078,
+ "荷尔蒙": 14079,
+ "科幻片": 14080,
+ "苍蝇": 14081,
+ "妓女": 14082,
+ "下落": 14083,
+ "片子": 14084,
+ "大学毕业": 14085,
+ "原籍": 14086,
+ "派出所": 14087,
+ "纸": 14088,
+ "落实": 14089,
+ "几场": 14090,
+ "中奖": 14091,
+ "邦": 14092,
+ "奔跑": 14093,
+ "750": 14094,
+ "解除": 14095,
+ "更正": 14096,
+ "光绪": 14097,
+ "十三年": 14098,
+ "1887": 14099,
+ "孤儿": 14100,
+ "督促": 14101,
+ "考入": 14102,
+ "1912": 14103,
+ "后任": 14104,
+ "保定": 14105,
+ "参谋": 14106,
+ "参谋长": 14107,
+ "改任": 14108,
+ "团长": 14109,
+ "1924": 14110,
+ "师长": 14111,
+ "军长": 14112,
+ "年任": 14113,
+ "1928": 14114,
+ "调任": 14115,
+ "1930": 14116,
+ "委任": 14117,
+ "山西省": 14118,
+ "抗日战争": 14119,
+ "国民党": 14120,
+ "办公厅": 14121,
+ "继任": 14122,
+ "1945": 14123,
+ "中华民国政府": 14124,
+ "抗战": 14125,
+ "校长": 14126,
+ "前夕": 14127,
+ "1959": 14128,
+ "台北市": 14129,
+ "投降": 14130,
+ "中国国民党": 14131,
+ "会场": 14132,
+ "甲板": 14133,
+ "回想": 14134,
+ "过错": 14135,
+ "没吃过": 14136,
+ "一回": 14137,
+ "俄国": 14138,
+ "服务质量": 14139,
+ "快餐": 14140,
+ "左手": 14141,
+ "一两次": 14142,
+ "管家": 14143,
+ "TT": 14144,
+ "白痴": 14145,
+ "一则": 14146,
+ "紧接着": 14147,
+ "钱财": 14148,
+ "五分钟": 14149,
+ "想不到": 14150,
+ "三本": 14151,
+ "您们": 14152,
+ "多钱": 14153,
+ "一手": 14154,
+ "日元": 14155,
+ "一百": 14156,
+ "基准": 14157,
+ "画图": 14158,
+ "图像处理": 14159,
+ "图文": 14160,
+ "该类": 14161,
+ "抓取": 14162,
+ "影视": 14163,
+ "捕捉": 14164,
+ "1.3": 14165,
+ "萨": 14166,
+ "迪": 14167,
+ "摩": 14168,
+ "阿森纳": 14169,
+ "标": 14170,
+ "莫": 14171,
+ "波尔多": 14172,
+ "米兰": 14173,
+ "切尔西": 14174,
+ "竞": 14175,
+ "口译": 14176,
+ "青岛": 14177,
+ "考证": 14178,
+ "甚": 14179,
+ "口才": 14180,
+ "稳重": 14181,
+ "干活": 14182,
+ "微笑": 14183,
+ "更会": 14184,
+ "使劲": 14185,
+ "head": 14186,
+ "next": 14187,
+ "数据结构": 14188,
+ "data": 14189,
+ "return": 14190,
+ "这能": 14191,
+ "北极": 14192,
+ "宜人": 14193,
+ "about": 14194,
+ "It": 14195,
+ "many": 14196,
+ "travel": 14197,
+ "isthe": 14198,
+ "best": 14199,
+ "choice": 14200,
+ "who": 14201,
+ "like": 14202,
+ "教育部": 14203,
+ "审批": 14204,
+ "公正性": 14205,
+ "岂": 14206,
+ "偷懒": 14207,
+ "可言": 14208,
+ "备案": 14209,
+ "伪造": 14210,
+ "上报": 14211,
+ "挫折": 14212,
+ "低谷": 14213,
+ "独自": 14214,
+ "强直性": 14215,
+ "脊柱炎": 14216,
+ "胃粘膜": 14217,
+ "毒副作用": 14218,
+ "委婉": 14219,
+ "虚伪": 14220,
+ "权衡": 14221,
+ "罢": 14222,
+ "不动": 14223,
+ "彩超": 14224,
+ "安全期": 14225,
+ "算算": 14226,
+ "做做": 14227,
+ "排卵日": 14228,
+ "加在一起": 14229,
+ "日为": 14230,
+ "屏蔽": 14231,
+ "jpg": 14232,
+ "相机": 14233,
+ "480": 14234,
+ "栏中": 14235,
+ "册": 14236,
+ "配图": 14237,
+ "延时": 14238,
+ "天数": 14239,
+ "姑姑": 14240,
+ "陌生人": 14241,
+ "How": 14242,
+ "Hello": 14243,
+ "单元测试": 14244,
+ "这道题": 14245,
+ "本题": 14246,
+ "Hi": 14247,
+ "Jane": 14248,
+ "中关村": 14249,
+ "关门": 14250,
+ "折": 14251,
+ "硫酸": 14252,
+ "硝酸": 14253,
+ "H2O": 14254,
+ "CO2": 14255,
+ "弥补": 14256,
+ "立体": 14257,
+ "习题": 14258,
+ "蹬": 14259,
+ "一切正常": 14260,
+ "状况良好": 14261,
+ "选项卡": 14262,
+ "直觉": 14263,
+ "投保": 14264,
+ "不尽相同": 14265,
+ "高明": 14266,
+ "交付": 14267,
+ "健康状况": 14268,
+ "养胃": 14269,
+ "早饭": 14270,
+ "咀嚼": 14271,
+ "饮茶": 14272,
+ "八成": 14273,
+ "止咳": 14274,
+ "干咳": 14275,
+ "盗汗": 14276,
+ "烘干": 14277,
+ "阴": 14278,
+ "姊妹": 14279,
+ "车门": 14280,
+ "犬": 14281,
+ "宠物狗": 14282,
+ "迷你": 14283,
+ "猎犬": 14284,
+ "12.5": 14285,
+ "牧羊犬": 14286,
+ "金毛": 14287,
+ "边境": 14288,
+ "伯恩": 14289,
+ "7.0": 14290,
+ "想像": 14291,
+ "出血量": 14292,
+ "转转": 14293,
+ "112": 14294,
+ "三场": 14295,
+ "²": 14296,
+ "火焰": 14297,
+ "炎": 14298,
+ "新星": 14299,
+ "TP": 14300,
+ "涡轮": 14301,
+ "四位": 14302,
+ "亮": 14303,
+ "井": 14304,
+ "极少": 14305,
+ "十几天": 14306,
+ "量少": 14307,
+ "恢复正常": 14308,
+ "个体差异": 14309,
+ "少部分": 14310,
+ "逾期": 14311,
+ "激素水平": 14312,
+ "撤退": 14313,
+ "连锁": 14314,
+ "立场": 14315,
+ "传送": 14316,
+ "更少": 14317,
+ "只能靠": 14318,
+ "互补": 14319,
+ "聊得": 14320,
+ "闷": 14321,
+ "顾虑": 14322,
+ "肠炎": 14323,
+ "不胜感激": 14324,
+ "person": 14325,
+ "通风": 14326,
+ "冷藏": 14327,
+ "异样": 14328,
+ "感官": 14329,
+ "炒菜": 14330,
+ "装在": 14331,
+ "改制": 14332,
+ "一般而言": 14333,
+ "常态": 14334,
+ "在此之前": 14335,
+ "周后": 14336,
+ "新手机": 14337,
+ "智能手机": 14338,
+ "随心所欲": 14339,
+ "1900": 14340,
+ "三餐": 14341,
+ "进餐": 14342,
+ "菲利普": 14343,
+ "经受": 14344,
+ "奔": 14345,
+ "汀": 14346,
+ "瑜伽": 14347,
+ "爆米花": 14348,
+ "一小块": 14349,
+ "心率": 14350,
+ "急救": 14351,
+ "怕冷": 14352,
+ "280": 14353,
+ "礼仪": 14354,
+ "座位": 14355,
+ "宴会": 14356,
+ "预算": 14357,
+ "礼貌": 14358,
+ "穿着": 14359,
+ "得体": 14360,
+ "常识": 14361,
+ "上衣": 14362,
+ "拳头": 14363,
+ "交叉": 14364,
+ "坐姿": 14365,
+ "最想": 14366,
+ "内行": 14367,
+ "挑选": 14368,
+ "酒类": 14369,
+ "香槟": 14370,
+ "送来": 14371,
+ "三分之一": 14372,
+ "服务员": 14373,
+ "客人": 14374,
+ "有误": 14375,
+ "握住": 14376,
+ "猛烈": 14377,
+ "口红": 14378,
+ "印": 14379,
+ "汤匙": 14380,
+ "往前": 14381,
+ "送入": 14382,
+ "撕": 14383,
+ "满地": 14384,
+ "上半身": 14385,
+ "从头开始": 14386,
+ "一角": 14387,
+ "若有": 14388,
+ "柄": 14389,
+ "刀子": 14390,
+ "摆在": 14391,
+ "叉": 14392,
+ "聚餐": 14393,
+ "需用": 14394,
+ "中为": 14395,
+ "轻松愉快": 14396,
+ "小龙虾": 14397,
+ "微微": 14398,
+ "果肉": 14399,
+ "绿色蔬菜": 14400,
+ "豪华": 14401,
+ "鹅": 14402,
+ "餐后": 14403,
+ "蒸气": 14404,
+ "提早": 14405,
+ "外套": 14406,
+ "旁": 14407,
+ "别处": 14408,
+ "至关重要": 14409,
+ "酱料": 14410,
+ "毫不": 14411,
+ "牙签": 14412,
+ "打嗝": 14413,
+ "难免会": 14414,
+ "同伴": 14415,
+ "不良习惯": 14416,
+ "扫": 14417,
+ "输液": 14418,
+ "迁就": 14419,
+ "任性": 14420,
+ "过日子": 14421,
+ "隔壁": 14422,
+ "窗户": 14423,
+ "不懂事": 14424,
+ "碰见": 14425,
+ "省内": 14426,
+ "转账": 14427,
+ "柜台": 14428,
+ "打印机": 14429,
+ "安装盘": 14430,
+ "PE": 14431,
+ "FC": 14432,
+ "花心": 14433,
+ "不善": 14434,
+ "口臭": 14435,
+ "排空": 14436,
+ "节制": 14437,
+ "润肠": 14438,
+ "通便": 14439,
+ "火热": 14440,
+ "口渴": 14441,
+ "石膏": 14442,
+ "停滞": 14443,
+ "嗳气": 14444,
+ "神庙": 14445,
+ "巡逻": 14446,
+ "无限": 14447,
+ "重置": 14448,
+ "好找": 14449,
+ "好歹": 14450,
+ "T3": 14451,
+ "man": 14452,
+ "isnot": 14453,
+ "old": 14454,
+ "巴里": 14455,
+ "摩尔": 14456,
+ "武学": 14457,
+ "66": 14458,
+ "捞": 14459,
+ "精盐": 14460,
+ "中老年": 14461,
+ "相克": 14462,
+ "洗发水": 14463,
+ "瓶子": 14464,
+ "模具": 14465,
+ "缝": 14466,
+ "∵": 14467,
+ "接上": 14468,
+ "分段": 14469,
+ "γ": 14470,
+ "放射性": 14471,
+ "操心": 14472,
+ "心理压力": 14473,
+ "适度": 14474,
+ "精神分裂症": 14475,
+ "忧心": 14476,
+ "重重": 14477,
+ "出路": 14478,
+ "如需": 14479,
+ "六味地黄": 14480,
+ "男宝": 14481,
+ "身体素质": 14482,
+ "二年级": 14483,
+ "可谓": 14484,
+ "健壮": 14485,
+ "孝顺": 14486,
+ "他家": 14487,
+ "留给": 14488,
+ "审视": 14489,
+ "一晚": 14490,
+ "渡过": 14491,
+ "真爱": 14492,
+ "走出": 14493,
+ "求婚": 14494,
+ "流向": 14495,
+ "资料片": 14496,
+ "板": 14497,
+ "碑": 14498,
+ "感悟": 14499,
+ "跑跑": 14500,
+ "未满": 14501,
+ "越小": 14502,
+ "有权": 14503,
+ "以供": 14504,
+ "快捷": 14505,
+ "各种类型": 14506,
+ "左上角": 14507,
+ "框中": 14508,
+ "pasword": 14509,
+ "营救": 14510,
+ "坐标": 14511,
+ "府": 14512,
+ "守卫": 14513,
+ "狐狸": 14514,
+ "两场": 14515,
+ "小数点": 14516,
+ "两位": 14517,
+ "小数": 14518,
+ "四舍五入": 14519,
+ "批量": 14520,
+ "免费邮箱": 14521,
+ "疑惑": 14522,
+ "婚礼": 14523,
+ "通通": 14524,
+ "正直": 14525,
+ "摩根": 14526,
+ "玻璃杯": 14527,
+ "并用": 14528,
+ "溶剂": 14529,
+ "尺度": 14530,
+ "时所": 14531,
+ "内服": 14532,
+ "0.3": 14533,
+ "0.6": 14534,
+ "以防": 14535,
+ "15g": 14536,
+ "议论": 14537,
+ "斗争": 14538,
+ "冲刺": 14539,
+ "跳跃": 14540,
+ "夺冠": 14541,
+ "获奖": 14542,
+ "颁奖": 14543,
+ "欢喜": 14544,
+ "淘汰": 14545,
+ "世事": 14546,
+ "抗争": 14547,
+ "成败": 14548,
+ "裁判": 14549,
+ "赛场": 14550,
+ "终点": 14551,
+ "小小": 14552,
+ "棒棒": 14553,
+ "弯道": 14554,
+ "不禁": 14555,
+ "有多强": 14556,
+ "迈出": 14557,
+ "长征": 14558,
+ "田径": 14559,
+ "消逝": 14560,
+ "运动场": 14561,
+ "打车": 14562,
+ "一事": 14563,
+ "哎呀": 14564,
+ "XXXX": 14565,
+ "如若": 14566,
+ "附属": 14567,
+ "盛开": 14568,
+ "欢呼": 14569,
+ "耳边": 14570,
+ "赞叹": 14571,
+ "惊": 14572,
+ "志": 14573,
+ "立志": 14574,
+ "校": 14575,
+ "奥运": 14576,
+ "征途": 14577,
+ "勇士": 14578,
+ "畏惧": 14579,
+ "泪水": 14580,
+ "秋风": 14581,
+ "掌声": 14582,
+ "响起": 14583,
+ "钻": 14584,
+ "泥土": 14585,
+ "笑脸": 14586,
+ "坚韧": 14587,
+ "闪光": 14588,
+ "沉稳": 14589,
+ "辉煌": 14590,
+ "拼搏": 14591,
+ "遥远": 14592,
+ "寂寞": 14593,
+ "溶于": 14594,
+ "传来": 14595,
+ "三七": 14596,
+ "四人": 14597,
+ "流出": 14598,
+ "夺取": 14599,
+ "喜悦": 14600,
+ "之手": 14601,
+ "涌现": 14602,
+ "走来": 14603,
+ "感激": 14604,
+ "唯有": 14605,
+ "祝贺": 14606,
+ "灿烂": 14607,
+ "明媚": 14608,
+ "丰收": 14609,
+ "开幕": 14610,
+ "昔日": 14611,
+ "正义": 14612,
+ "公证": 14613,
+ "使者": 14614,
+ "地道": 14615,
+ "速": 14616,
+ "小小的": 14617,
+ "升起": 14618,
+ "勇于": 14619,
+ "骄傲": 14620,
+ "金色": 14621,
+ "薄薄的": 14622,
+ "走上": 14623,
+ "羞涩": 14624,
+ "歌唱": 14625,
+ "金黄": 14626,
+ "一分钟": 14627,
+ "看重": 14628,
+ "显": 14629,
+ "本领": 14630,
+ "自豪": 14631,
+ "飞翔": 14632,
+ "滴滴": 14633,
+ "亲切": 14634,
+ "问候": 14635,
+ "洒": 14636,
+ "花朵": 14637,
+ "广阔": 14638,
+ "追赶": 14639,
+ "一旁": 14640,
+ "滋味": 14641,
+ "抬起": 14642,
+ "较量": 14643,
+ "金星": 14644,
+ "闪烁": 14645,
+ "一匹": 14646,
+ "猎豹": 14647,
+ "一艘": 14648,
+ "摘取": 14649,
+ "攀登": 14650,
+ "坎坷": 14651,
+ "跌倒": 14652,
+ "流泪": 14653,
+ "失落": 14654,
+ "退缩": 14655,
+ "江山": 14656,
+ "雷霆": 14657,
+ "流过": 14658,
+ "铸造": 14659,
+ "王者": 14660,
+ "敢": 14661,
+ "霸气": 14662,
+ "误差": 14663,
+ "滨海": 14664,
+ "之声": 14665,
+ "嘲笑": 14666,
+ "万万": 14667,
+ "发黑": 14668,
+ "大笑": 14669,
+ "算法": 14670,
+ "素数": 14671,
+ "倍数": 14672,
+ "遗漏": 14673,
+ "退烧": 14674,
+ "咳": 14675,
+ "上呼吸道": 14676,
+ "非常容易": 14677,
+ "响亮": 14678,
+ "咳痰": 14679,
+ "肾阴虚": 14680,
+ "列强": 14681,
+ "从未": 14682,
+ "二分": 14683,
+ "入选": 14684,
+ "儒家": 14685,
+ "之作": 14686,
+ "视作": 14687,
+ "155": 14688,
+ "无机": 14689,
+ "很久没": 14690,
+ "虽说": 14691,
+ "稀缺": 14692,
+ "先来": 14693,
+ "携手": 14694,
+ "内外": 14695,
+ "引爆": 14696,
+ "宝箱": 14697,
+ "英文字母": 14698,
+ "大使": 14699,
+ "数码": 14700,
+ "晕倒": 14701,
+ "all": 14702,
+ "long": 14703,
+ "某事": 14704,
+ "界限": 14705,
+ "山水": 14706,
+ "坐飞机": 14707,
+ "厦门": 14708,
+ "出去玩": 14709,
+ "桂林": 14710,
+ "餐饮": 14711,
+ "游览": 14712,
+ "转乘": 14713,
+ "成品": 14714,
+ "中期": 14715,
+ "业主": 14716,
+ "文件名": 14717,
+ "潜水": 14718,
+ "共鸣": 14719,
+ "搞清楚": 14720,
+ "不平": 14721,
+ "疼爱": 14722,
+ "节省": 14723,
+ "办事": 14724,
+ "此人": 14725,
+ "身为": 14726,
+ "快捷方式": 14727,
+ "利弊": 14728,
+ "短期": 14729,
+ "抛出": 14730,
+ "卖掉": 14731,
+ "刷刷": 14732,
+ "搏击": 14733,
+ "拳击": 14734,
+ "外行": 14735,
+ "抱住": 14736,
+ "歇息": 14737,
+ "不许": 14738,
+ "首推": 14739,
+ "客房": 14740,
+ "会议室": 14741,
+ "一间": 14742,
+ "无症状": 14743,
+ "水源": 14744,
+ "牡蛎": 14745,
+ "肝区": 14746,
+ "起病": 14747,
+ "变黄": 14748,
+ "嗜睡": 14749,
+ "豆制品": 14750,
+ "不需": 14751,
+ "预防措施": 14752,
+ "饮食卫生": 14753,
+ "擦洗": 14754,
+ "日光": 14755,
+ "曝晒": 14756,
+ "交叉感染": 14757,
+ "艺名": 14758,
+ "台北": 14759,
+ "1969": 14760,
+ "湖南省": 14761,
+ "血型": 14762,
+ "A型": 14763,
+ "加州": 14764,
+ "州立大学": 14765,
+ "主修": 14766,
+ "声乐": 14767,
+ "嗜好": 14768,
+ "失恋": 14769,
+ "愿望": 14770,
+ "KTV": 14771,
+ "下楼": 14772,
+ "所属": 14773,
+ "唱片": 14774,
+ "经纪": 14775,
+ "red": 14776,
+ "经纪人": 14777,
+ "匿名": 14778,
+ "『": 14779,
+ "』": 14780,
+ "1998": 14781,
+ "Love": 14782,
+ "City": 14783,
+ "演唱会": 14784,
+ "6.1": 14785,
+ "体育馆": 14786,
+ "单身": 14787,
+ "无锡": 14788,
+ "南昌": 14789,
+ "慈善": 14790,
+ "参演": 14791,
+ "展望": 14792,
+ "之心": 14793,
+ "执导": 14794,
+ "1937": 14795,
+ "客串": 14796,
+ "今夜": 14797,
+ "服饰": 14798,
+ "代言人": 14799,
+ "1997": 14800,
+ "飞天": 14801,
+ "东京": 14802,
+ "舞台剧": 14803,
+ "得奖": 14804,
+ "第一届": 14805,
+ "电影节": 14806,
+ "年度": 14807,
+ "影展": 14808,
+ "十字架": 14809,
+ "跨越": 14810,
+ "迎": 14811,
+ "受邀": 14812,
+ "一并": 14813,
+ "饰演": 14814,
+ "女主角": 14815,
+ "华语": 14816,
+ "大奖": 14817,
+ "夺得": 14818,
+ "入围": 14819,
+ "香港电影": 14820,
+ "创作": 14821,
+ "纠缠": 14822,
+ "1992": 14823,
+ "曲": 14824,
+ "爱不爱": 14825,
+ "钥匙": 14826,
+ "蒲公英": 14827,
+ "背影": 14828,
+ "墨镜": 14829,
+ "坦白": 14830,
+ "配音": 14831,
+ "缘": 14832,
+ "距": 14833,
+ "光学": 14834,
+ "烟雾": 14835,
+ "偏离": 14836,
+ "靠着": 14837,
+ "骨骼": 14838,
+ "下边": 14839,
+ "歪": 14840,
+ "中风": 14841,
+ "家务": 14842,
+ "坐月子": 14843,
+ "上来": 14844,
+ "嫉妒": 14845,
+ "聊聊": 14846,
+ "高风险": 14847,
+ "保持一致": 14848,
+ "外部环境": 14849,
+ "债务": 14850,
+ "限量": 14851,
+ "轻便": 14852,
+ "胸口": 14853,
+ "平躺": 14854,
+ "个头": 14855,
+ "百分百": 14856,
+ "生个": 14857,
+ "悲伤": 14858,
+ "硅": 14859,
+ "结肠": 14860,
+ "化脓": 14861,
+ "平面设计": 14862,
+ "起点": 14863,
+ "编排": 14864,
+ "哪部": 14865,
+ "听歌": 14866,
+ "无语": 14867,
+ "极了": 14868,
+ "乱说": 14869,
+ "领先": 14870,
+ "飞利浦": 14871,
+ "器材": 14872,
+ "视听": 14873,
+ "表现力": 14874,
+ "清晰度": 14875,
+ "实话": 14876,
+ "枪手": 14877,
+ "午饭": 14878,
+ "脑供": 14879,
+ "某一": 14880,
+ "动脉硬化": 14881,
+ "脑病": 14882,
+ "脑血管": 14883,
+ "缺血": 14884,
+ "抗氧化": 14885,
+ "一对一": 14886,
+ "媒介": 14887,
+ " ": 14888,
+ "仪器": 14889,
+ "五大": 14890,
+ "南非": 14891,
+ "尼日利亚": 14892,
+ "旧称": 14893,
+ "阿尔及利亚": 14894,
+ "利比亚": 14895,
+ "前列": 14896,
+ "国民": 14897,
+ "年来": 14898,
+ "锰": 14899,
+ "一批": 14900,
+ "矿业": 14901,
+ "矿": 14902,
+ "埃及": 14903,
+ "1956": 14904,
+ "摩洛哥": 14905,
+ "等国": 14906,
+ "沿岸": 14907,
+ "海底": 14908,
+ "安哥拉": 14909,
+ "东北部": 14910,
+ "万吨": 14911,
+ "开采": 14912,
+ "锡": 14913,
+ "瓦特": 14914,
+ "杂": 14915,
+ "很棒": 14916,
+ "针": 14917,
+ "开学": 14918,
+ "军训": 14919,
+ "请假": 14920,
+ "尿液": 14921,
+ "测出": 14922,
+ "96": 14923,
+ "牛顿": 14924,
+ "f1": 14925,
+ "位移": 14926,
+ "买票": 14927,
+ "旗下": 14928,
+ "实践经验": 14929,
+ "中介": 14930,
+ "借贷": 14931,
+ "从业者": 14932,
+ "标准化": 14933,
+ "防控": 14934,
+ "海量": 14935,
+ "无障碍": 14936,
+ "瓶颈": 14937,
+ "商业银行": 14938,
+ "联盟": 14939,
+ "携带者": 14940,
+ "乙肝患者": 14941,
+ "肿大": 14942,
+ "并不知道": 14943,
+ "毁坏": 14944,
+ "汉语": 14945,
+ "疯狂": 14946,
+ "影迷": 14947,
+ "movie": 14948,
+ "him": 14949,
+ "指正": 14950,
+ "entence": 14951,
+ "每一": 14952,
+ "要加": 14953,
+ "惠州": 14954,
+ "漂流": 14955,
+ "南山": 14956,
+ "孕囊": 14957,
+ "聘请": 14958,
+ "入账": 14959,
+ "管理费用": 14960,
+ "预订": 14961,
+ "细化": 14962,
+ "小姐": 14963,
+ "录像": 14964,
+ "省心": 14965,
+ "注定": 14966,
+ "通液": 14967,
+ "尚可": 14968,
+ "回流": 14969,
+ "大豆": 14970,
+ "B6": 14971,
+ "B12": 14972,
+ "\": 14973,
+ "两组": 14974,
+ "曲张": 14975,
+ "内痔": 14976,
+ "外痔": 14977,
+ "便血": 14978,
+ "鲜红": 14979,
+ "脱出": 14980,
+ "果蔬": 14981,
+ "梗": 14982,
+ "无花果": 14983,
+ "连用": 14984,
+ "肛管": 14985,
+ "丛": 14986,
+ "曲线": 14987,
+ "团": 14988,
+ "大蒜": 14989,
+ "热敷": 14990,
+ "薰": 14991,
+ "意念": 14992,
+ "烟酒": 14993,
+ "久坐": 14994,
+ "发送给": 14995,
+ "先上": 14996,
+ "上下班": 14997,
+ "鬼王": 14998,
+ "警觉": 14999,
+ "天书": 15000,
+ "咒": 15001,
+ "光影": 15002,
+ "主流": 15003,
+ "无常": 15004,
+ "减免": 15005,
+ "推算": 15006,
+ "虚空": 15007,
+ "47": 15008,
+ "标识": 15009,
+ "门派": 15010,
+ "额外": 15011,
+ "合欢": 15012,
+ "分支": 15013,
+ "35%": 15014,
+ "戾": 15015,
+ "一击": 15016,
+ "触发": 15017,
+ "6%": 15018,
+ "不低": 15019,
+ "大大提高": 15020,
+ "门前": 15021,
+ "停车场": 15022,
+ "前来": 15023,
+ "粉末": 15024,
+ "O2": 15025,
+ "特殊性": 15026,
+ "韩信": 15027,
+ "造反": 15028,
+ "沉思": 15029,
+ "调皮": 15030,
+ "道教": 15031,
+ "教区": 15032,
+ "建成": 15033,
+ "始建": 15034,
+ "奉": 15035,
+ "圣母": 15036,
+ "哥特式": 15037,
+ "修缮": 15038,
+ "年内": 15039,
+ "宗教信仰": 15040,
+ "建有": 15041,
+ "文化大革命": 15042,
+ "拆除": 15043,
+ "不起眼": 15044,
+ "高大": 15045,
+ "柱": 15046,
+ "华丽": 15047,
+ "堂区": 15048,
+ "司铎": 15049,
+ "神父": 15050,
+ "大姨妈": 15051,
+ "卵子": 15052,
+ "受精卵": 15053,
+ "动物性": 15054,
+ "植物性": 15055,
+ "海参": 15056,
+ "章鱼": 15057,
+ "木": 15058,
+ "多方": 15059,
+ "偏执": 15060,
+ "疏导": 15061,
+ "智商": 15062,
+ "喝牛奶": 15063,
+ "受凉": 15064,
+ "胃部": 15065,
+ "颅内": 15066,
+ "吃奶": 15067,
+ "吐出来": 15068,
+ "中暑": 15069,
+ "灵力": 15070,
+ "测": 15071,
+ "很多年": 15072,
+ "显微镜": 15073,
+ "这儿": 15074,
+ "黑白": 15075,
+ "锐利": 15076,
+ "210": 15077,
+ "国服": 15078,
+ "阵子": 15079,
+ "汉化": 15080,
+ "太差": 15081,
+ "安全感": 15082,
+ "赶快": 15083,
+ "说完": 15084,
+ "持": 15085,
+ "主演": 15086,
+ "发财": 15087,
+ "林中": 15088,
+ "五岁": 15089,
+ "投注": 15090,
+ "承诺": 15091,
+ "十五年": 15092,
+ "後": 15093,
+ "旧址": 15094,
+ "改建": 15095,
+ "前去": 15096,
+ "几部": 15097,
+ "凶": 15098,
+ "周刊": 15099,
+ "耍": 15100,
+ "拍出": 15101,
+ "仔": 15102,
+ "宣言": 15103,
+ "十六": 15104,
+ "十七": 15105,
+ "续集": 15106,
+ "记事本": 15107,
+ "幸好": 15108,
+ "漳州": 15109,
+ "巴士": 15110,
+ "搭乘": 15111,
+ "鞠躬": 15112,
+ "客": 15113,
+ "市值": 15114,
+ "多半": 15115,
+ "F1": 15116,
+ "电池": 15117,
+ "逍遥": 15118,
+ "搬": 15119,
+ "开刀": 15120,
+ "黄体": 15121,
+ "气泡": 15122,
+ "十几": 15123,
+ "造假": 15124,
+ "托福": 15125,
+ "能看懂": 15126,
+ "献血": 15127,
+ "农夫": 15128,
+ "放纵": 15129,
+ "相距": 15130,
+ "实数": 15131,
+ "正数": 15132,
+ "±": 15133,
+ "z": 15134,
+ "ax": 15135,
+ "森": 15136,
+ "一点一点": 15137,
+ "大树": 15138,
+ "茂密": 15139,
+ "传承": 15140,
+ "定语": 15141,
+ "从句": 15142,
+ "罗马": 15143,
+ "make": 15144,
+ "th": 15145,
+ "out": 15146,
+ "介词": 15147,
+ "代词": 15148,
+ "韦德": 15149,
+ "选秀": 15150,
+ "顺位": 15151,
+ "NBA": 15152,
+ "首轮": 15153,
+ "迈阿密": 15154,
+ "哺乳": 15155,
+ "招聘": 15156,
+ "集中精力": 15157,
+ "那不勒斯": 15158,
+ "马德里": 15159,
+ "勒": 15160,
+ "阿尔": 15161,
+ "穆": 15162,
+ "西亚": 15163,
+ "西班牙人": 15164,
+ "离谱": 15165,
+ "底层": 15166,
+ "变薄": 15167,
+ "快递": 15168,
+ "乡镇": 15169,
+ "货": 15170,
+ "保证金": 15171,
+ "隔离霜": 15172,
+ "强烈推荐": 15173,
+ "发来": 15174,
+ "没收": 15175,
+ "给我发": 15176,
+ "血迹": 15177,
+ "先兆": 15178,
+ "宫外孕": 15179,
+ "结膜炎": 15180,
+ "祝好": 15181,
+ "用点": 15182,
+ "红霉素": 15183,
+ "氧氟沙星": 15184,
+ "事前": 15185,
+ "倒霉": 15186,
+ "供应商": 15187,
+ "呐": 15188,
+ "剑桥": 15189,
+ "弄清楚": 15190,
+ "原版": 15191,
+ "牛津": 15192,
+ "偏差": 15193,
+ "语感": 15194,
+ "初学者": 15195,
+ "高阶": 15196,
+ "读者": 15197,
+ "人能": 15198,
+ "从业": 15199,
+ "考过": 15200,
+ "助理": 15201,
+ "第二年": 15202,
+ "眼看": 15203,
+ "分析师": 15204,
+ "肺癌": 15205,
+ "真是太": 15206,
+ "丝袜": 15207,
+ "没人会": 15208,
+ "根除": 15209,
+ "64": 15210,
+ "癌": 15211,
+ "5cm": 15212,
+ "尚": 15213,
+ "清扫": 15214,
+ "靶向": 15215,
+ "晚期": 15216,
+ "高清": 15217,
+ "惊讶": 15218,
+ "暨": 15219,
+ "古文": 15220,
+ "并列": 15221,
+ "部首": 15222,
+ "董事长": 15223,
+ "热点": 15224,
+ "股份": 15225,
+ "龙卷风": 15226,
+ "What": 15227,
+ "into": 15228,
+ "een": 15229,
+ "time": 15230,
+ "好久没": 15231,
+ "me": 15232,
+ "隆起": 15233,
+ "扩": 15234,
+ "乳晕": 15235,
+ "调戏": 15236,
+ "勾引": 15237,
+ "湿疹": 15238,
+ "赌场": 15239,
+ "周到": 15240,
+ "要钱": 15241,
+ "丢人": 15242,
+ "善意": 15243,
+ "求求": 15244,
+ "茫然": 15245,
+ "实实在在": 15246,
+ "心愿": 15247,
+ "负债": 15248,
+ "家门": 15249,
+ "亲生": 15250,
+ "养育": 15251,
+ "打下": 15252,
+ "放手": 15253,
+ "学业": 15254,
+ "循序渐进": 15255,
+ "蛋白粉": 15256,
+ "教练": 15257,
+ "自动更新": 15258,
+ "上天": 15259,
+ "公共场合": 15260,
+ "有血": 15261,
+ "思密达": 15262,
+ "李易峰": 15263,
+ "水印": 15264,
+ "合集": 15265,
+ "帅气": 15266,
+ "写真": 15267,
+ "www": 15268,
+ "%": 15269,
+ "观望": 15270,
+ "外币": 15271,
+ "存入": 15272,
+ "回国": 15273,
+ "中行": 15274,
+ "理科生": 15275,
+ "状元": 15276,
+ "超重": 15277,
+ "本线": 15278,
+ "S1": 15279,
+ "术语": 15280,
+ "原意": 15281,
+ "工": 15282,
+ "字幕": 15283,
+ "味蕾": 15284,
+ "椰子": 15285,
+ "咽": 15286,
+ "美少女": 15287,
+ "加分": 15288,
+ "利于": 15289,
+ "依赖性": 15290,
+ "阴茎头": 15291,
+ "包皮炎": 15292,
+ "尿道口": 15293,
+ "困": 15294,
+ "环切术": 15295,
+ "逆行": 15296,
+ "膀胱炎": 15297,
+ "继发": 15298,
+ "嵌顿": 15299,
+ "离合": 15300,
+ "发抖": 15301,
+ "机油": 15302,
+ "一档": 15303,
+ "油门": 15304,
+ "路边": 15305,
+ "128": 15306,
+ "有大": 15307,
+ "床单": 15308,
+ "布料": 15309,
+ "神经病": 15310,
+ "敲门": 15311,
+ "公安": 15312,
+ "罚款": 15313,
+ "施行": 15314,
+ "污染物": 15315,
+ "人民法院": 15316,
+ "要死": 15317,
+ "视觉效果": 15318,
+ "大卫": 15319,
+ "外星人": 15320,
+ "然": 15321,
+ "处有": 15322,
+ "很深": 15323,
+ "松弛": 15324,
+ "法令": 15325,
+ "YY": 15326,
+ "震荡": 15327,
+ "功耗": 15328,
+ "是否是": 15329,
+ "电能": 15330,
+ "负载": 15331,
+ "减半": 15332,
+ "发电厂": 15333,
+ "发电机": 15334,
+ "变压器": 15335,
+ "不计": 15336,
+ "外加": 15337,
+ "乐意": 15338,
+ "秦汉": 15339,
+ "朝代": 15340,
+ "近代": 15341,
+ "电脑游戏": 15342,
+ "安全措施": 15343,
+ "解锁": 15344,
+ "Q": 15345,
+ "过头": 15346,
+ "来定": 15347,
+ "创意": 15348,
+ "二十世纪": 15349,
+ "陆续": 15350,
+ "革新": 15351,
+ "不懈": 15352,
+ "百年": 15353,
+ "1940": 15354,
+ "孙子": 15355,
+ "出众": 15356,
+ "创造力": 15357,
+ "修饰": 15358,
+ "1960": 15359,
+ "第一款": 15360,
+ "稀有": 15361,
+ "殿堂": 15362,
+ "专业知识": 15363,
+ "代名词": 15364,
+ "精心": 15365,
+ "艺术品": 15366,
+ "创始人": 15367,
+ "乔治": 15368,
+ "爱德华": 15369,
+ "开创": 15370,
+ "经由": 15371,
+ "奇观": 15372,
+ "秘鲁": 15373,
+ "智利": 15374,
+ "岩": 15375,
+ "山区": 15376,
+ "La": 15377,
+ "村落": 15378,
+ "1942": 15379,
+ "自家": 15380,
+ "其父": 15381,
+ "1943": 15382,
+ "永": 15383,
+ "营": 15384,
+ "创办人": 15385,
+ "知名度": 15386,
+ "展现出": 15387,
+ "管制": 15388,
+ "厂房": 15389,
+ "落成": 15390,
+ "1963": 15391,
+ "1957": 15392,
+ "链": 15393,
+ "2.3": 15394,
+ "翻开": 15395,
+ "安置": 15396,
+ "日内瓦": 15397,
+ "专卖店": 15398,
+ "1978": 15399,
+ "至上": 15400,
+ "独家": 15401,
+ "两项": 15402,
+ "火花": 15403,
+ "界": 15404,
+ "1976": 15405,
+ "配饰": 15406,
+ "出发点": 15407,
+ "构思": 15408,
+ "款式": 15409,
+ "特质": 15410,
+ "璀璨": 15411,
+ "伊": 15412,
+ "1990": 15413,
+ "首个": 15414,
+ "空前": 15415,
+ "热烈": 15416,
+ "高雅": 15417,
+ "演绎": 15418,
+ "经典之作": 15419,
+ "淋漓尽致": 15420,
+ "Black": 15421,
+ "蓬勃发展": 15422,
+ "代表作": 15423,
+ "面貌": 15424,
+ "登场": 15425,
+ "传达": 15426,
+ "诉求": 15427,
+ "瞩目": 15428,
+ "3.5": 15429,
+ "周年": 15430,
+ "停下": 15431,
+ "名家": 15432,
+ "添": 15433,
+ "带领": 15434,
+ "5.6": 15435,
+ "固有": 15436,
+ "敬意": 15437,
+ "创造性": 15438,
+ "Time": 15439,
+ "旨在": 15440,
+ "逾": 15441,
+ "展览": 15442,
+ "上个世纪": 15443,
+ "颠覆": 15444,
+ "镶": 15445,
+ "男装": 15446,
+ "女装": 15447,
+ "衍生": 15448,
+ "多种不同": 15449,
+ "极具": 15450,
+ "精妙": 15451,
+ "之美": 15452,
+ "1950": 15453,
+ "之名": 15454,
+ "钻石": 15455,
+ "钟爱": 15456,
+ "爬山": 15457,
+ "发车": 15458,
+ "慢慢来": 15459,
+ "戒除": 15460,
+ "奥特曼": 15461,
+ "怪兽": 15462,
+ "雨天": 15463,
+ "伞": 15464,
+ "午夜": 15465,
+ "酸甜": 15466,
+ "到家": 15467,
+ "溶化": 15468,
+ "化学性质": 15469,
+ "氧气": 15470,
+ "所有权": 15471,
+ "野外": 15472,
+ "斗士": 15473,
+ "斯科特": 15474,
+ "外籍": 15475,
+ "兵团": 15476,
+ "再造": 15477,
+ "激情": 15478,
+ "拳": 15479,
+ "大叔": 15480,
+ "动作片": 15481,
+ "值得一看": 15482,
+ "坠落": 15483,
+ "野蛮": 15484,
+ "仿真": 15485,
+ "人去": 15486,
+ "数据分析": 15487,
+ "扰乱": 15488,
+ "熬": 15489,
+ "暖和": 15490,
+ "税费": 15491,
+ "主营业务": 15492,
+ "营业税": 15493,
+ "摊销": 15494,
+ "损益": 15495,
+ "精英": 15496,
+ "英特尔": 15497,
+ "戴眼镜": 15498,
+ "瓣": 15499,
+ "6.0": 15500,
+ "流感": 15501,
+ "其间": 15502,
+ "人手": 15503,
+ "电子产品": 15504,
+ "酷": 15505,
+ "等等等等": 15506,
+ "征收": 15507,
+ "交纳": 15508,
+ "核定": 15509,
+ "综上": 15510,
+ "开具": 15511,
+ "摇滚": 15512,
+ "分到": 15513,
+ "财": 15514,
+ "合资": 15515,
+ "按揭": 15516,
+ "前有": 15517,
+ "拆迁": 15518,
+ "二手房": 15519,
+ "产权": 15520,
+ "过世": 15521,
+ "另一方": 15522,
+ "人情": 15523,
+ "套房": 15524,
+ "补救": 15525,
+ "收回": 15526,
+ "增值": 15527,
+ "遗产": 15528,
+ "遗嘱": 15529,
+ "姥姥": 15530,
+ "姥爷": 15531,
+ "继承人": 15532,
+ "应是": 15533,
+ "约定": 15534,
+ "动用": 15535,
+ "太过": 15536,
+ "悲": 15537,
+ "惊恐": 15538,
+ "忧伤": 15539,
+ "脏腑": 15540,
+ "来临": 15541,
+ "早衰": 15542,
+ "很广": 15543,
+ "心肌梗塞": 15544,
+ "胃溃疡": 15545,
+ "酒精中毒": 15546,
+ "燃气": 15547,
+ "水温": 15548,
+ "73": 15549,
+ "第一年": 15550,
+ "技术水平": 15551,
+ "嵌入": 15552,
+ "透视": 15553,
+ "宫腔内": 15554,
+ "王道": 15555,
+ "自立": 15556,
+ "打斗": 15557,
+ "著称": 15558,
+ "出手": 15559,
+ "击毙": 15560,
+ "越强": 15561,
+ "较弱": 15562,
+ "强健": 15563,
+ "修炼": 15564,
+ "争执": 15565,
+ "欺负": 15566,
+ "术士": 15567,
+ "围": 15568,
+ "劣势": 15569,
+ "HP": 15570,
+ "一帮": 15571,
+ "葫芦": 15572,
+ "争斗": 15573,
+ "一切都是": 15574,
+ "弱化": 15575,
+ "介于": 15576,
+ "纸币": 15577,
+ "形容词": 15578,
+ "副词": 15579,
+ "连词": 15580,
+ "三菱": 15581,
+ "睿智": 15582,
+ "2.0": 15583,
+ "包围": 15584,
+ "做起": 15585,
+ "传授": 15586,
+ "实名": 15587,
+ "采矿": 15588,
+ "长到": 15589,
+ "荒芜": 15590,
+ "性子": 15591,
+ "应收": 15592,
+ "核对": 15593,
+ "敏感度": 15594,
+ "敏感性": 15595,
+ "避孕套": 15596,
+ "滑冰": 15597,
+ "两性": 15598,
+ "国庆": 15599,
+ "优惠": 15600,
+ "折扣": 15601,
+ "家居": 15602,
+ "之旅": 15603,
+ "安慰": 15604,
+ "无条件": 15605,
+ "一个多": 15606,
+ "周五": 15607,
+ "分心": 15608,
+ "停靠": 15609,
+ "哈尔": 15610,
+ "宾": 15611,
+ "下个月": 15612,
+ "过生日": 15613,
+ "尴尬": 15614,
+ "往后": 15615,
+ "家电": 15616,
+ "修建": 15617,
+ "驱使": 15618,
+ "建国": 15619,
+ "最先": 15620,
+ "两国": 15621,
+ "新式": 15622,
+ "基础设施": 15623,
+ "先是": 15624,
+ "制裁": 15625,
+ "经济损失": 15626,
+ "促成": 15627,
+ "解体": 15628,
+ "重心": 15629,
+ "移": 15630,
+ "不要脸": 15631,
+ "诚意": 15632,
+ "极光": 15633,
+ "改良": 15634,
+ "有心": 15635,
+ "千": 15636,
+ "此次": 15637,
+ "躲避": 15638,
+ "电场": 15639,
+ "电击": 15640,
+ "56": 15641,
+ "锻造": 15642,
+ "深造": 15643,
+ "合理安排": 15644,
+ "铠甲": 15645,
+ "永久性": 15646,
+ "成员国": 15647,
+ "全称": 15648,
+ "不列颠": 15649,
+ "海岸": 15650,
+ "将近": 15651,
+ "英里": 15652,
+ "拉丁": 15653,
+ "史前": 15654,
+ "凯尔特人": 15655,
+ "遗迹": 15656,
+ "此后": 15657,
+ "定居": 15658,
+ "克斯": 15659,
+ "诺曼底": 15660,
+ "威廉": 15661,
+ "战役": 15662,
+ "英国人": 15663,
+ "堡垒": 15664,
+ "王子": 15665,
+ "阵亡": 15666,
+ "之下": 15667,
+ "欧文": 15668,
+ "格林": 15669,
+ "起义": 15670,
+ "洛": 15671,
+ "人则": 15672,
+ "北上": 15673,
+ "中世纪": 15674,
+ "伊丽莎白": 15675,
+ "詹姆斯": 15676,
+ "继位": 15677,
+ "紧密": 15678,
+ "联合会": 15679,
+ "二世": 15680,
+ "王室": 15681,
+ "叛乱": 15682,
+ "试图": 15683,
+ "免受": 15684,
+ "亨利": 15685,
+ "籍": 15686,
+ "四世": 15687,
+ "统治者": 15688,
+ "落到": 15689,
+ "权贵": 15690,
+ "君主": 15691,
+ "干预": 15692,
+ "领导人": 15693,
+ "镇压": 15694,
+ "世纪末": 15695,
+ "1916": 15696,
+ "第一次世界大战": 15697,
+ "1920": 15698,
+ "法案": 15699,
+ "郡": 15700,
+ "席位": 15701,
+ "服从": 15702,
+ "英": 15703,
+ "条约": 15704,
+ "1949": 15705,
+ "管辖": 15706,
+ "防卫": 15707,
+ "距今": 15708,
+ "阿尔卑斯": 15709,
+ "五千年": 15710,
+ "首批": 15711,
+ "留下来": 15712,
+ "法兰西": 15713,
+ "诸": 15714,
+ "残酷": 15715,
+ "中叶": 15716,
+ "拉丁语": 15717,
+ "习俗": 15718,
+ "渗入": 15719,
+ "老家": 15720,
+ "撤": 15721,
+ "四次": 15722,
+ "军团": 15723,
+ "撤离": 15724,
+ "软弱": 15725,
+ "领袖": 15726,
+ "耗时": 15727,
+ "秦始皇": 15728,
+ "碟": 15729,
+ "金庸": 15730,
+ "血性": 15731,
+ "共存": 15732,
+ "世": 15733,
+ "赤裸裸": 15734,
+ "三十年": 15735,
+ "朝廷": 15736,
+ "无不": 15737,
+ "瓦解": 15738,
+ "同化": 15739,
+ "领地": 15740,
+ "诸侯": 15741,
+ "属下": 15742,
+ "独立性": 15743,
+ "自幼": 15744,
+ "流亡": 15745,
+ "即位": 15746,
+ "表弟": 15747,
+ "○": 15748,
+ "生前": 15749,
+ "五千": 15750,
+ "凭着": 15751,
+ "圣经": 15752,
+ "便携": 15753,
+ "法国人": 15754,
+ "杀戮": 15755,
+ "掠夺": 15756,
+ "亲属": 15757,
+ "殖民": 15758,
+ "兴建": 15759,
+ "世俗": 15760,
+ "盛世": 15761,
+ "汉武帝": 15762,
+ "后边": 15763,
+ "世袭": 15764,
+ "捧": 15765,
+ "开端": 15766,
+ "一百年": 15767,
+ "地名": 15768,
+ "番": 15769,
+ "后裔": 15770,
+ "君": 15771,
+ "在位": 15772,
+ "不及": 15773,
+ "尽管如此": 15774,
+ "君王": 15775,
+ "尝": 15776,
+ "第一任": 15777,
+ "法庭": 15778,
+ "废止": 15779,
+ "不久前": 15780,
+ "泰晤士河": 15781,
+ "舰艇": 15782,
+ "旗": 15783,
+ "查尔斯": 15784,
+ "震撼": 15785,
+ "港": 15786,
+ "女婿": 15787,
+ "外甥": 15788,
+ "王位": 15789,
+ "姐夫": 15790,
+ "老爹": 15791,
+ "泰山": 15792,
+ "三世": 15793,
+ "极富": 15794,
+ "人要": 15795,
+ "质问": 15796,
+ "伦理": 15797,
+ "焉": 15798,
+ "确立": 15799,
+ "大败": 15800,
+ "称之为": 15801,
+ "国会": 15802,
+ "举": 15803,
+ "基": 15804,
+ "史书": 15805,
+ "维多利亚": 15806,
+ "十八岁": 15807,
+ "白发": 15808,
+ "老太太": 15809,
+ "康熙": 15810,
+ "本是": 15811,
+ "教养": 15812,
+ "亲王": 15813,
+ "瞧": 15814,
+ "伦": 15815,
+ "打仗": 15816,
+ "迁居": 15817,
+ "极其": 15818,
+ "上边": 15819,
+ "财物": 15820,
+ "远比": 15821,
+ "诚实": 15822,
+ "流汗": 15823,
+ "抢劫": 15824,
+ "不惜": 15825,
+ "二年": 15826,
+ "民": 15827,
+ "惨烈": 15828,
+ "战死": 15829,
+ "欧洲人": 15830,
+ "老子": 15831,
+ "不详": 15832,
+ "变动": 15833,
+ "跨国": 15834,
+ "互通": 15835,
+ "掷": 15836,
+ "明末": 15837,
+ "公历": 15838,
+ "迷信": 15839,
+ "一族": 15840,
+ "永不": 15841,
+ "超频": 15842,
+ "农行": 15843,
+ "久久": 15844,
+ "痤疮": 15845,
+ "牙医": 15846,
+ "乳膏": 15847,
+ "脂": 15848,
+ "药房": 15849,
+ "原创": 15850,
+ "七个": 15851,
+ "假装": 15852,
+ "吃醋": 15853,
+ "贴近": 15854,
+ "一丝": 15855,
+ "无缘": 15856,
+ "花草": 15857,
+ "换气": 15858,
+ "怀旧": 15859,
+ "永远都是": 15860,
+ "血中": 15861,
+ "游离": 15862,
+ "水解": 15863,
+ "家属": 15864,
+ "惊厥": 15865,
+ "抽搐": 15866,
+ "不可逆转": 15867,
+ "多多少少": 15868,
+ "唉": 15869,
+ "虚拟世界": 15870,
+ "乎": 15871,
+ "虚无": 15872,
+ "管理局": 15873,
+ "当事人": 15874,
+ "单方面": 15875,
+ "拿走": 15876,
+ "悲剧": 15877,
+ "胰腺癌": 15878,
+ "感激不尽": 15879,
+ "老爷": 15880,
+ "吉林省": 15881,
+ "叔叔": 15882,
+ "自愿": 15883,
+ "人身": 15884,
+ "送货": 15885,
+ "利物浦": 15886,
+ "vs": 15887,
+ "卡斯": 15888,
+ "沃": 15889,
+ "冷门": 15890,
+ "厨师": 15891,
+ "去学": 15892,
+ "上个月": 15893,
+ "十二个": 15894,
+ "太冷": 15895,
+ "尿布": 15896,
+ "太紧": 15897,
+ "日夜": 15898,
+ "颠倒": 15899,
+ "摇": 15900,
+ "要不是": 15901,
+ "安抚": 15902,
+ "八个": 15903,
+ "抱抱": 15904,
+ "夜里": 15905,
+ "美美": 15906,
+ "飚": 15907,
+ "硒": 15908,
+ "碘": 15909,
+ "犹如": 15910,
+ "身价": 15911,
+ "球蛋白": 15912,
+ "财务管理": 15913,
+ "国际性": 15914,
+ "融资": 15915,
+ "造就": 15916,
+ "一大批": 15917,
+ "年薪": 15918,
+ "会计师": 15919,
+ "丰厚": 15920,
+ "执业": 15921,
+ "学员": 15922,
+ "颁发": 15923,
+ "资格证书": 15924,
+ "喷雾": 15925,
+ "尿急": 15926,
+ "王菲": 15927,
+ "单曲": 15928,
+ "有效率": 15929,
+ "URL": 15930,
+ "第三行": 15931,
+ "ize": 15932,
+ "核算": 15933,
+ "贵阳": 15934,
+ "新世纪": 15935,
+ "幼儿园": 15936,
+ "莫大": 15937,
+ "1024": 15938,
+ "LCD": 15939,
+ "液晶电视": 15940,
+ "最合适": 15941,
+ "电视机": 15942,
+ "2.7": 15943,
+ "催化剂": 15944,
+ "蓝牙": 15945,
+ "有线": 15946,
+ "你学": 15947,
+ "汇": 15948,
+ "陕西": 15949,
+ "汇聚": 15950,
+ "街边": 15951,
+ "潜入": 15952,
+ "刺杀": 15953,
+ "里加": 15954,
+ "敏锐": 15955,
+ "叛逆": 15956,
+ "濒": 15957,
+ "中旬": 15958,
+ "时间表": 15959,
+ "眼霜": 15960,
+ "鞘": 15961,
+ "婊": 15962,
+ "轻薄": 15963,
+ "类产品": 15964,
+ "排毒": 15965,
+ "HR": 15966,
+ "VC": 15967,
+ "吉他": 15968,
+ "秒杀": 15969,
+ "火箭": 15970,
+ "叫作": 15971,
+ "玩意儿": 15972,
+ "历经": 15973,
+ "挣扎": 15974,
+ "一连串": 15975,
+ "话说回来": 15976,
+ "无法自拔": 15977,
+ "一来": 15978,
+ "二来": 15979,
+ "坚强": 15980,
+ "意志力": 15981,
+ "沮丧": 15982,
+ "况且": 15983,
+ "宁可": 15984,
+ "导向": 15985,
+ "言语": 15986,
+ "简单明了": 15987,
+ "用词": 15988,
+ "格外": 15989,
+ "亲近": 15990,
+ "水星": 15991,
+ "交点": 15992,
+ "行星": 15993,
+ "毒品": 15994,
+ "成瘾": 15995,
+ "素食": 15996,
+ "小肠": 15997,
+ "优惠券": 15998,
+ "麦当劳": 15999,
+ "梦幻": 16000,
+ "ve": 16001,
+ "been": 16002,
+ "be": 16003,
+ "down": 16004,
+ "could": 16005,
+ "brown": 16006,
+ "树叶": 16007,
+ "well": 16008,
+ "he": 16009,
+ "her": 16010,
+ "today": 16011,
+ "离去": 16012,
+ "发红": 16013,
+ "大局": 16014,
+ "用以": 16015,
+ "灌": 16016,
+ "拐": 16017,
+ "V": 16018,
+ "那条": 16019,
+ "实体": 16020,
+ "办到": 16021,
+ "表面积": 16022,
+ "never": 16023,
+ "really": 16024,
+ "positive": 16025,
+ "too": 16026,
+ "being": 16027,
+ "negative": 16028,
+ "what": 16029,
+ "get": 16030,
+ "live": 16031,
+ "we": 16032,
+ "love": 16033,
+ "But": 16034,
+ "hould": 16035,
+ "try": 16036,
+ "My": 16037,
+ "different": 16038,
+ "We": 16039,
+ "re": 16040,
+ "go": 16041,
+ "our": 16042,
+ "econd": 16043,
+ "girl": 16044,
+ "ay": 16045,
+ "have": 16046,
+ "标明": 16047,
+ "总说": 16048,
+ "申诉": 16049,
+ "应酬": 16050,
+ "最怕": 16051,
+ "酒精性": 16052,
+ "這": 16053,
+ "做客": 16054,
+ "X射线": 16055,
+ "可见光": 16056,
+ "红外线": 16057,
+ "高频": 16058,
+ "低频": 16059,
+ "微弱": 16060,
+ "北京大学": 16061,
+ "现实生活": 16062,
+ "定罪": 16063,
+ "电脑前": 16064,
+ "山东省": 16065,
+ "赛跑": 16066,
+ "洗手间": 16067,
+ "不熟": 16068,
+ "惊醒": 16069,
+ "收音机": 16070,
+ "上床睡觉": 16071,
+ "毛线": 16072,
+ "一天到晚": 16073,
+ "可口可乐": 16074,
+ "改掉": 16075,
+ "不快": 16076,
+ "晚间": 16077,
+ "降下来": 16078,
+ "体育比赛": 16079,
+ "57": 16080,
+ "传教": 16081,
+ "调教": 16082,
+ "作风": 16083,
+ "流水": 16084,
+ "多情": 16085,
+ "一寸": 16086,
+ "我本": 16087,
+ "奈何": 16088,
+ "无边": 16089,
+ "匆匆": 16090,
+ "醉": 16091,
+ "何处": 16092,
+ "粤语": 16093,
+ "潮州": 16094,
+ "遗精": 16095,
+ "阴囊": 16096,
+ "肿": 16097,
+ "潮": 16098,
+ "门诊": 16099,
+ "搜到": 16100,
+ "简历": 16101,
+ "未知数": 16102,
+ "期末": 16103,
+ "逼迫": 16104,
+ "期末考试": 16105,
+ "一发": 16106,
+ "唠叨": 16107,
+ "理会": 16108,
+ "反面": 16109,
+ "班主任": 16110,
+ "上进心": 16111,
+ "女同学": 16112,
+ "或多或少": 16113,
+ "催": 16114,
+ "往年": 16115,
+ "慕尼黑": 16116,
+ "那段": 16117,
+ "小鸟": 16118,
+ "笼子": 16119,
+ "嫂子": 16120,
+ "木头": 16121,
+ "心想": 16122,
+ "两张": 16123,
+ "贴纸": 16124,
+ "地想": 16125,
+ "掉下来": 16126,
+ "肝癌": 16127,
+ "兼顾": 16128,
+ "百分之百": 16129,
+ "大意": 16130,
+ "民歌": 16131,
+ "可观": 16132,
+ "暴跌": 16133,
+ "year": 16134,
+ "end": 16135,
+ "important": 16136,
+ "An": 16137,
+ "count": 16138,
+ "used": 16139,
+ "All": 16140,
+ "System": 16141,
+ "表述": 16142,
+ "职责": 16143,
+ "": 16144,
+ "盘点": 16145,
+ "拽": 16146,
+ "谅解": 16147,
+ "备忘录": 16148,
+ "纯洁": 16149,
+ "录": 16150,
+ "豆浆": 16151,
+ "打磨": 16152,
+ "姜末": 16153,
+ "鸡精": 16154,
+ "揪": 16155,
+ "揭开": 16156,
+ "成形": 16157,
+ "无味": 16158,
+ "花生油": 16159,
+ "偏爱": 16160,
+ "主料": 16161,
+ "大火": 16162,
+ "大匙": 16163,
+ "汁液": 16164,
+ "木瓜": 16165,
+ "酵素": 16166,
+ "熄火": 16167,
+ "鲜肉": 16168,
+ "排在": 16169,
+ "冒": 16170,
+ "粗暴": 16171,
+ "简陋": 16172,
+ "附件炎": 16173,
+ "两名": 16174,
+ "兄妹": 16175,
+ "过快": 16176,
+ "慎重": 16177,
+ "佛山": 16178,
+ "菩萨": 16179,
+ "安徽": 16180,
+ "半径": 16181,
+ "固体": 16182,
+ "摄氏度": 16183,
+ "工商管理": 16184,
+ "管理学": 16185,
+ "统计学": 16186,
+ "宏观": 16187,
+ "微观": 16188,
+ "市场营销": 16189,
+ "有图": 16190,
+ "讨": 16191,
+ "抗病毒": 16192,
+ "杜绝": 16193,
+ "贴图": 16194,
+ "背面": 16195,
+ "DIY": 16196,
+ "出轨": 16197,
+ "维系": 16198,
+ "红旗": 16199,
+ "SE": 16200,
+ "纪录": 16201,
+ "以示": 16202,
+ "真相": 16203,
+ "1100": 16204,
+ "本周": 16205,
+ "对决": 16206,
+ "球迷": 16207,
+ "1.9": 16208,
+ "就读": 16209,
+ "驱动程序": 16210,
+ "NB": 16211,
+ "体制": 16212,
+ "虾皮": 16213,
+ "中加": 16214,
+ "制法": 16215,
+ "千克": 16216,
+ "蒜末": 16217,
+ "上桌": 16218,
+ "肉丝": 16219,
+ "排骨": 16220,
+ "煸炒": 16221,
+ "木耳": 16222,
+ "猪油": 16223,
+ "丸子": 16224,
+ "羹": 16225,
+ "鲫鱼": 16226,
+ "片刻": 16227,
+ "搅匀": 16228,
+ "甩": 16229,
+ "鱿鱼": 16230,
+ "墓地": 16231,
+ "死后": 16232,
+ "棵": 16233,
+ "泥沙": 16234,
+ "肥料": 16235,
+ "几本": 16236,
+ "实务": 16237,
+ "大侠": 16238,
+ "理工": 16239,
+ "约会": 16240,
+ "此举": 16241,
+ "小气": 16242,
+ "打扮": 16243,
+ "看清": 16244,
+ "网络层": 16245,
+ "近亲": 16246,
+ "别说": 16247,
+ "下一代": 16248,
+ "遗传病": 16249,
+ "酗酒": 16250,
+ "劝说": 16251,
+ "不良后果": 16252,
+ "争论": 16253,
+ "私下": 16254,
+ "出席": 16255,
+ "搜集": 16256,
+ "动员": 16257,
+ "说服力": 16258,
+ "同情心": 16259,
+ "不止": 16260,
+ "头脑": 16261,
+ "减量": 16262,
+ "相聚": 16263,
+ "柜子": 16264,
+ "出外": 16265,
+ "一碗": 16266,
+ "油锅": 16267,
+ "炒熟": 16268,
+ "多种多样": 16269,
+ "打入": 16270,
+ "搂": 16271,
+ "分明": 16272,
+ "善": 16273,
+ "淘": 16274,
+ "盛": 16275,
+ "法则": 16276,
+ "香肠": 16277,
+ "铲": 16278,
+ "小匙": 16279,
+ "七分": 16280,
+ "射频": 16281,
+ "数据库": 16282,
+ "阅读器": 16283,
+ "环境保护": 16284,
+ "消防": 16285,
+ "浪潮": 16286,
+ "奥巴马": 16287,
+ "美国政府": 16288,
+ "此前": 16289,
+ "小到": 16290,
+ "大到": 16291,
+ "楼房": 16292,
+ "即时": 16293,
+ "智能家居": 16294,
+ "公共卫生": 16295,
+ "上车": 16296,
+ "脉搏": 16297,
+ "电饭煲": 16298,
+ "降温": 16299,
+ "科幻电影": 16300,
+ "具体来说": 16301,
+ "衔接": 16302,
+ "洗衣机": 16303,
+ "门锁": 16304,
+ "密切相关": 16305,
+ "二维码": 16306,
+ "多岁": 16307,
+ "全程": 16308,
+ "柯南": 16309,
+ "漫画家": 16310,
+ "传言": 16311,
+ "定下": 16312,
+ "头目": 16313,
+ "全名": 16314,
+ "穴位": 16315,
+ "痛感": 16316,
+ "减肥药": 16317,
+ "饮水量": 16318,
+ "弊端": 16319,
+ "电解质": 16320,
+ "代谢性": 16321,
+ "酸中毒": 16322,
+ "狭义": 16323,
+ "广义": 16324,
+ "江西": 16325,
+ "老乡": 16326,
+ "当地人": 16327,
+ "懒得": 16328,
+ "松开": 16329,
+ "忙于": 16330,
+ "怨": 16331,
+ "撸": 16332,
+ "广": 16333,
+ "笔下": 16334,
+ "评论家": 16335,
+ "不已": 16336,
+ "衣着": 16337,
+ "故事情节": 16338,
+ "局限于": 16339,
+ "推理": 16340,
+ "追逐": 16341,
+ "B型": 16342,
+ "油画": 16343,
+ "馆": 16344,
+ "连载": 16345,
+ "密": 16346,
+ "探险": 16347,
+ "福尔摩斯": 16348,
+ "第一篇": 16349,
+ "人形": 16350,
+ "四年级": 16351,
+ "桩": 16352,
+ "选手": 16353,
+ "别看": 16354,
+ "一职": 16355,
+ "凶手": 16356,
+ "投稿": 16357,
+ "登上": 16358,
+ "描绘": 16359,
+ "转播": 16360,
+ "好喝": 16361,
+ "棒球": 16362,
+ "画风": 16363,
+ "先驱": 16364,
+ "峰": 16365,
+ "包里": 16366,
+ "先给": 16367,
+ "收钱": 16368,
+ "O": 16369,
+ "搞个": 16370,
+ "亏": 16371,
+ "营收": 16372,
+ "毛利": 16373,
+ "迈克尔": 16374,
+ "太空": 16375,
+ "僵尸": 16376,
+ "套路": 16377,
+ "强烈建议": 16378,
+ "辆": 16379,
+ "熊猫": 16380,
+ "喉咙痛": 16381,
+ "这段话": 16382,
+ "改正": 16383,
+ "家有": 16384,
+ "Control": 16385,
+ "坏处": 16386,
+ "热恋": 16387,
+ "时时刻刻": 16388,
+ "抛物线": 16389,
+ "水面": 16390,
+ "水位": 16391,
+ "洪水": 16392,
+ "0.2": 16393,
+ "中点": 16394,
+ "原点": 16395,
+ "恐惧症": 16396,
+ "运营商": 16397,
+ "狩猎": 16398,
+ "好地解决": 16399,
+ "公平性": 16400,
+ "遗失": 16401,
+ "had": 16402,
+ "world": 16403,
+ "much": 16404,
+ "feel": 16405,
+ "白白的": 16406,
+ "练到": 16407,
+ "疏通": 16408,
+ "秘籍": 16409,
+ "武": 16410,
+ "击退": 16411,
+ "间隔时间": 16412,
+ "PM": 16413,
+ "认购": 16414,
+ "欧式": 16415,
+ "上市公司": 16416,
+ "四是": 16417,
+ "保持平衡": 16418,
+ "117": 16419,
+ "巡航": 16420,
+ "有待": 16421,
+ "干涩": 16422,
+ "牛市": 16423,
+ "善待": 16424,
+ "代理人": 16425,
+ "晚安": 16426,
+ "开房": 16427,
+ "带我去": 16428,
+ "敬": 16429,
+ "模特": 16430,
+ "搞不清楚": 16431,
+ "从此以后": 16432,
+ "迷恋": 16433,
+ "区间": 16434,
+ "∞": 16435,
+ "x1": 16436,
+ "吃香": 16437,
+ "之歌": 16438,
+ "撒娇": 16439,
+ "妥善": 16440,
+ "伪": 16441,
+ "闲暇": 16442,
+ "演习": 16443,
+ "评判": 16444,
+ "司令部": 16445,
+ "战斗力": 16446,
+ "适应性": 16447,
+ "红军": 16448,
+ "守": 16449,
+ "坚守": 16450,
+ "派出": 16451,
+ "现役": 16452,
+ "步兵": 16453,
+ "人员伤亡": 16454,
+ "重型": 16455,
+ "人眼": 16456,
+ "态势": 16457,
+ "上岸": 16458,
+ "周二": 16459,
+ "周日": 16460,
+ "赛季": 16461,
+ "周四": 16462,
+ "马刺": 16463,
+ "活塞": 16464,
+ "公牛": 16465,
+ "尼克斯": 16466,
+ "老鹰": 16467,
+ "超音速": 16468,
+ "湖人": 16469,
+ "爵士": 16470,
+ "踢球": 16471,
+ "脚尖": 16472,
+ "加载": 16473,
+ "联机": 16474,
+ "国家标准": 16475,
+ "助": 16476,
+ "细分": 16477,
+ "跨度": 16478,
+ "市场需求": 16479,
+ "不断更新": 16480,
+ "科研": 16481,
+ "已于": 16482,
+ "手册": 16483,
+ "机型": 16484,
+ "华硕": 16485,
+ "惠普": 16486,
+ "泌尿系统": 16487,
+ "勤": 16488,
+ "浅色": 16489,
+ "尿量": 16490,
+ "巨龙": 16491,
+ "溜": 16492,
+ "能用": 16493,
+ "一模一样": 16494,
+ "低级": 16495,
+ "场内": 16496,
+ "场外": 16497,
+ "ETF": 16498,
+ "单向": 16499,
+ "账": 16500,
+ "股票交易": 16501,
+ "泉州": 16502,
+ "中央政府": 16503,
+ "泉": 16504,
+ "码头": 16505,
+ "龙头": 16506,
+ "无知": 16507,
+ "每每": 16508,
+ "带回家": 16509,
+ "新婚": 16510,
+ "前女友": 16511,
+ "懂事": 16512,
+ "这辈子": 16513,
+ "耗尽": 16514,
+ "舆论": 16515,
+ "撕裂": 16516,
+ "尊严": 16517,
+ "丢弃": 16518,
+ "愚昧": 16519,
+ "票房": 16520,
+ "圆满": 16521,
+ "第三部": 16522,
+ "机密": 16523,
+ "first": 16524,
+ "new": 16525,
+ "will": 16526,
+ "借给": 16527,
+ "蓝天": 16528,
+ "白云": 16529,
+ "农田": 16530,
+ "影子": 16531,
+ "一副": 16532,
+ "加号": 16533,
+ "真伪": 16534,
+ "假货": 16535,
+ "混浊": 16536,
+ "扯": 16537,
+ "粘性": 16538,
+ "试用期": 16539,
+ "劳动合同": 16540,
+ "书面": 16541,
+ "口头": 16542,
+ "真要": 16543,
+ "用人单位": 16544,
+ "工伤": 16545,
+ "不干": 16546,
+ "钢笔": 16547,
+ "书法": 16548,
+ "写字": 16549,
+ "皮毛": 16550,
+ "发展潜力": 16551,
+ "指在": 16552,
+ "纸张": 16553,
+ "调入": 16554,
+ "三方": 16555,
+ "要紧": 16556,
+ "传送门": 16557,
+ "85%": 16558,
+ "相恋": 16559,
+ "换位": 16560,
+ "呵护": 16561,
+ "兼职": 16562,
+ "业余时间": 16563,
+ "内蒙古自治区": 16564,
+ "颁布": 16565,
+ "国务院": 16566,
+ "牧区": 16567,
+ "第三条": 16568,
+ "主管部门": 16569,
+ "各级": 16570,
+ "公安机关": 16571,
+ "大牌": 16572,
+ "铜牌": 16573,
+ "门户": 16574,
+ "不分": 16575,
+ "胡同": 16576,
+ "偏远": 16577,
+ "区内": 16578,
+ "空地": 16579,
+ "扩建": 16580,
+ "大门": 16581,
+ "地下室": 16582,
+ "分层": 16583,
+ "二层": 16584,
+ "米左右": 16585,
+ "窗": 16586,
+ "城区": 16587,
+ "管理工作": 16588,
+ "动工": 16589,
+ "住宅区": 16590,
+ "当地政府": 16591,
+ "盗窃": 16592,
+ "日起": 16593,
+ "帕": 16594,
+ "bar": 16595,
+ "羞耻": 16596,
+ "再也不会": 16597,
+ "卡号": 16598,
+ "拨打": 16599,
+ "阴道口": 16600,
+ "如是": 16601,
+ "话语权": 16602,
+ "举例说明": 16603,
+ "230": 16604,
+ "符合条件": 16605,
+ "丑闻": 16606,
+ "寺庙": 16607,
+ "原为": 16608,
+ "丞相": 16609,
+ "蒙古": 16610,
+ "呼应": 16611,
+ "仅存": 16612,
+ "和尚": 16613,
+ "王府": 16614,
+ "市民": 16615,
+ "戏曲": 16616,
+ "中说": 16617,
+ "火影忍者": 16618,
+ "火影": 16619,
+ "兜": 16620,
+ "说道": 16621,
+ "81": 16622,
+ "83": 16623,
+ "反驳": 16624,
+ "自来": 16625,
+ "对战": 16626,
+ "逃避": 16627,
+ "鸣人": 16628,
+ "精髓": 16629,
+ "分歧": 16630,
+ "村里": 16631,
+ "二代": 16632,
+ "预知": 16633,
+ "各种各样": 16634,
+ "童话": 16635,
+ "喂养": 16636,
+ "小人": 16637,
+ "太热": 16638,
+ "顶上": 16639,
+ "假象": 16640,
+ "留恋": 16641,
+ "肯": 16642,
+ "新鲜感": 16643,
+ "上路": 16644,
+ "找寻": 16645,
+ "十点": 16646,
+ "六点": 16647,
+ "合伙": 16648,
+ "名将": 16649,
+ "国军": 16650,
+ "集团军": 16651,
+ "总司令": 16652,
+ "师团": 16653,
+ "将领": 16654,
+ "汉奸": 16655,
+ "清白": 16656,
+ "战区": 16657,
+ "长官": 16658,
+ "中共": 16659,
+ "一战": 16660,
+ "王牌": 16661,
+ "遭受": 16662,
+ "第三名": 16663,
+ "昆仑": 16664,
+ "机械化": 16665,
+ "强于": 16666,
+ "日军": 16667,
+ "二流": 16668,
+ "出征": 16669,
+ "对错": 16670,
+ "个人感觉": 16671,
+ "第四名": 16672,
+ "救出": 16673,
+ "英军": 16674,
+ "罗斯福": 16675,
+ "授": 16676,
+ "勋章": 16677,
+ "鲜血": 16678,
+ "略显": 16679,
+ "治理": 16680,
+ "遭": 16681,
+ "走私": 16682,
+ "饿死": 16683,
+ "民谣": 16684,
+ "数万": 16685,
+ "远征": 16686,
+ "打通": 16687,
+ "太原": 16688,
+ "数千": 16689,
+ "不屑": 16690,
+ "军中": 16691,
+ "敌": 16692,
+ "余人": 16693,
+ "吉": 16694,
+ "下属": 16695,
+ "不予": 16696,
+ "少有": 16697,
+ "为数不多": 16698,
+ "歌颂": 16699,
+ "剧中": 16700,
+ "一时间": 16701,
+ "第十": 16702,
+ "致敬": 16703,
+ "自由职业者": 16704,
+ "仙人": 16705,
+ "情报": 16706,
+ "请勿": 16707,
+ "下令": 16708,
+ "虚构": 16709,
+ "饭量": 16710,
+ "大碗": 16711,
+ "饱": 16712,
+ "嘴角": 16713,
+ "广告宣传": 16714,
+ "上当": 16715,
+ "民用": 16716,
+ "概括": 16717,
+ "后能": 16718,
+ "标本兼治": 16719,
+ "教程": 16720,
+ "匹配": 16721,
+ "逐个": 16722,
+ "弹道导弹": 16723,
+ "滑行": 16724,
+ "推力": 16725,
+ "翼": 16726,
+ "洲际": 16727,
+ "320": 16728,
+ "Ⅲ": 16729,
+ "击中": 16730,
+ "远距离": 16731,
+ "敌对": 16732,
+ "意味": 16733,
+ "编译器": 16734,
+ "IDE": 16735,
+ "破伤风": 16736,
+ "打针": 16737,
+ "可疑": 16738,
+ "开放性": 16739,
+ "外伤": 16740,
+ "0.8": 16741,
+ "数分钟": 16742,
+ "肾上腺素": 16743,
+ "红斑": 16744,
+ "钙剂": 16745,
+ "数日": 16746,
+ "限度": 16747,
+ "制备": 16748,
+ "用具": 16749,
+ "ml": 16750,
+ "脱敏": 16751,
+ "股票市场": 16752,
+ "大好": 16753,
+ "税后": 16754,
+ "卡巴斯基": 16755,
+ "时分": 16756,
+ "5.0": 16757,
+ "自古以来": 16758,
+ "断言": 16759,
+ "里会": 16760,
+ "孕酮": 16761,
+ "受体": 16762,
+ "恶性肿瘤": 16763,
+ "青光眼": 16764,
+ "紧急情况": 16765,
+ "未婚": 16766,
+ "醇": 16767,
+ "口香糖": 16768,
+ "大出血": 16769,
+ "生命危险": 16770,
+ "告诫": 16771,
+ "急诊": 16772,
+ "周内": 16773,
+ "体力劳动": 16774,
+ "会阴": 16775,
+ "盆浴": 16776,
+ "未见": 16777,
+ "腺": 16778,
+ "间质": 16779,
+ "纤维化": 16780,
+ "钙化": 16781,
+ "炎性": 16782,
+ "有著": 16783,
+ "遵从": 16784,
+ "2.1": 16785,
+ "亚热带": 16786,
+ "想学": 16787,
+ "长处": 16788,
+ "太好了": 16789,
+ "好好学习": 16790,
+ "抑或": 16791,
+ "兴趣爱好": 16792,
+ "要强": 16793,
+ "吃力": 16794,
+ "生子": 16795,
+ "宫缩": 16796,
+ "脑子里": 16797,
+ "敬佩": 16798,
+ "易怒": 16799,
+ "菊花": 16800,
+ "口苦": 16801,
+ "耳聋": 16802,
+ "窝": 16803,
+ "葱白": 16804,
+ "果皮": 16805,
+ "不差": 16806,
+ "撒谎": 16807,
+ "朗读": 16808,
+ "一天天": 16809,
+ "﹐": 16810,
+ "交朋友": 16811,
+ "小腿": 16812,
+ "武警": 16813,
+ "瓣膜": 16814,
+ "反流": 16815,
+ "我长": 16816,
+ "起效": 16817,
+ "能治": 16818,
+ "上周": 16819,
+ "打篮球": 16820,
+ "有点痛": 16821,
+ "骨科": 16822,
+ "病情严重": 16823,
+ "过久": 16824,
+ "劳动力": 16825,
+ "妮": 16826,
+ "某人": 16827,
+ "西安市": 16828,
+ "多位": 16829,
+ "参考文献": 16830,
+ "VCD": 16831,
+ "正方形": 16832,
+ "空气清新": 16833,
+ "经理人": 16834,
+ "笔者": 16835,
+ "第一层": 16836,
+ "扮演": 16837,
+ "开辟": 16838,
+ "早年": 16839,
+ "97": 16840,
+ "第一张": 16841,
+ "轮流": 16842,
+ "通宵": 16843,
+ "徐州": 16844,
+ "箱": 16845,
+ "最深": 16846,
+ "狭隘": 16847,
+ "稳": 16848,
+ "扩充": 16849,
+ "中层": 16850,
+ "违背": 16851,
+ "低落": 16852,
+ "反思": 16853,
+ "氛围": 16854,
+ "不断进步": 16855,
+ "攀升": 16856,
+ "自律": 16857,
+ "约束": 16858,
+ "腐败": 16859,
+ "用人": 16860,
+ "输送": 16861,
+ "分支机构": 16862,
+ "营造": 16863,
+ "南京大学": 16864,
+ "MBA": 16865,
+ "硕士学位": 16866,
+ "轰动": 16867,
+ "风气": 16868,
+ "领导力": 16869,
+ "塑造": 16870,
+ "救救": 16871,
+ "献上": 16872,
+ "la": 16873,
+ "泰坦尼克号": 16874,
+ "宏大": 16875,
+ "知晓": 16876,
+ "无处": 16877,
+ "出卖": 16878,
+ "会谈": 16879,
+ "98": 16880,
+ "定向": 16881,
+ "全日制": 16882,
+ "院校": 16883,
+ "生源": 16884,
+ "内地": 16885,
+ "港币": 16886,
+ "各家": 16887,
+ "三万": 16888,
+ "分行": 16889,
+ "不受": 16890,
+ "俱": 16891,
+ "不太会": 16892,
+ "五点": 16893,
+ "数是": 16894,
+ "时钟": 16895,
+ "移动硬盘": 16896,
+ "塞尔": 16897,
+ "乔": 16898,
+ "三部曲": 16899,
+ "决战": 16900,
+ "简": 16901,
+ "奥斯卡": 16902,
+ "最佳影片": 16903,
+ "案": 16904,
+ "1939": 16905,
+ "1952": 16906,
+ "1948": 16907,
+ "镇": 16908,
+ "保罗": 16909,
+ "脚本": 16910,
+ "蜂蜜水": 16911,
+ "可治": 16912,
+ "胃病": 16913,
+ "酸辣": 16914,
+ "胃酸": 16915,
+ "申论": 16916,
+ "表达能力": 16917,
+ "作答": 16918,
+ "罗列": 16919,
+ "陈述": 16920,
+ "篇幅": 16921,
+ "仔细阅读": 16922,
+ "论证": 16923,
+ "万有引力": 16924,
+ "飞船": 16925,
+ "椭圆": 16926,
+ "地球表面": 16927,
+ "T1": 16928,
+ "长轴": 16929,
+ "细微": 16930,
+ "方剂": 16931,
+ "1.7": 16932,
+ "奖牌": 16933,
+ "爪子": 16934,
+ "卖出去": 16935,
+ "天性": 16936,
+ "引来": 16937,
+ "捕猎": 16938,
+ "吃掉": 16939,
+ "觅食": 16940,
+ "殴打": 16941,
+ "进门": 16942,
+ "急躁": 16943,
+ "宝物": 16944,
+ "听从": 16945,
+ "亢进": 16946,
+ "曲子": 16947,
+ "音乐家": 16948,
+ "配乐": 16949,
+ "联手": 16950,
+ "打包": 16951,
+ "哺育": 16952,
+ "乳汁": 16953,
+ "更为重要": 16954,
+ "历来": 16955,
+ "部份": 16956,
+ "通货膨胀": 16957,
+ "三类": 16958,
+ "爬行": 16959,
+ "比较稳定": 16960,
+ "两位数": 16961,
+ "恶性": 16962,
+ "实物": 16963,
+ "紧缩": 16964,
+ "货币政策": 16965,
+ "利率": 16966,
+ "股票价格": 16967,
+ "征税": 16968,
+ "并不大": 16969,
+ "希腊神话": 16970,
+ "大军": 16971,
+ "奇异": 16972,
+ "狂欢": 16973,
+ "城门": 16974,
+ "涌入": 16975,
+ "后世": 16976,
+ "一经": 16977,
+ "之意": 16978,
+ "动车": 16979,
+ "旅客": 16980,
+ "逃生": 16981,
+ "车厢": 16982,
+ "下坠": 16983,
+ "有位": 16984,
+ "断电": 16985,
+ "按键": 16986,
+ "生死": 16987,
+ "握手": 16988,
+ "位子": 16989,
+ "女排": 16990,
+ "输给": 16991,
+ "中国队": 16992,
+ "醒过来": 16993,
+ "排球": 16994,
+ "呼唤": 16995,
+ "崛起": 16996,
+ "温差": 16997,
+ "惊慌": 16998,
+ "点半": 16999,
+ "追到": 17000,
+ "称赞": 17001,
+ "氯": 17002,
+ "终": 17003,
+ "会痛": 17004,
+ "平卧": 17005,
+ "最贵": 17006,
+ "之星": 17007,
+ "不觉": 17008,
+ "2D": 17009,
+ "墨水": 17010,
+ "执教": 17011,
+ "墨盒": 17012,
+ "待机": 17013,
+ "通话": 17014,
+ "科学界": 17015,
+ "完备": 17016,
+ "广东省": 17017,
+ "知名品牌": 17018,
+ "样品": 17019,
+ "μ": 17020,
+ "口袋": 17021,
+ "床头": 17022,
+ "老鼠": 17023,
+ "输精管": 17024,
+ "上皮细胞": 17025,
+ "接通": 17026,
+ "脑组织": 17027,
+ "神经元": 17028,
+ "结果显示": 17029,
+ "环境影响": 17030,
+ "胸前": 17031,
+ "小红帽": 17032,
+ "一顶": 17033,
+ "最佳答案": 17034,
+ "为啥": 17035,
+ "求学": 17036,
+ "琐事": 17037,
+ "和解": 17038,
+ "分居": 17039,
+ "上诉": 17040,
+ "不道德": 17041,
+ "二字": 17042,
+ "真谛": 17043,
+ "消亡": 17044,
+ "小马": 17045,
+ "烟草": 17046,
+ "视觉": 17047,
+ "监": 17048,
+ "雾": 17049,
+ "反向": 17050,
+ "瞳孔": 17051,
+ "无副作用": 17052,
+ "判断力": 17053,
+ "遇到困难": 17054,
+ "近距离": 17055,
+ "不由自主": 17056,
+ "正视": 17057,
+ "尚书": 17058,
+ "尺": 17059,
+ "租金": 17060,
+ "read": 17061,
+ "错误信息": 17062,
+ "Microsoft": 17063,
+ "命令提示符": 17064,
+ "滚动": 17065,
+ "毛衣": 17066,
+ "围巾": 17067,
+ "靴": 17068,
+ "加个": 17069,
+ "披": 17070,
+ "前部": 17071,
+ "边框": 17072,
+ "水下": 17073,
+ "水深": 17074,
+ "两句话": 17075,
+ "满分": 17076,
+ "看得出": 17077,
+ "失利": 17078,
+ "陪伴": 17079,
+ "终生": 17080,
+ "往常": 17081,
+ "败": 17082,
+ "脂肪瘤": 17083,
+ "赤": 17084,
+ "尿路感染": 17085,
+ "结核病": 17086,
+ "植物神经": 17087,
+ "尿血": 17088,
+ "劳损": 17089,
+ "而生": 17090,
+ "气虚": 17091,
+ "形体": 17092,
+ "燥热": 17093,
+ "气短": 17094,
+ "溏": 17095,
+ "治法": 17096,
+ "几类": 17097,
+ "利湿": 17098,
+ "泥鳅": 17099,
+ "芒果": 17100,
+ "党参": 17101,
+ "白术": 17102,
+ "石榴": 17103,
+ "银耳": 17104,
+ "韭菜": 17105,
+ "阳气": 17106,
+ "忌讳": 17107,
+ "瓜果": 17108,
+ "白砂糖": 17109,
+ "鲜嫩": 17110,
+ "筋骨": 17111,
+ "休息时间": 17112,
+ "英语专业": 17113,
+ "相位": 17114,
+ "聚焦": 17115,
+ "信息量": 17116,
+ "数字化": 17117,
+ "零点": 17118,
+ "附带": 17119,
+ "终端": 17120,
+ "草莓": 17121,
+ "工商银行": 17122,
+ "早产儿": 17123,
+ "测定": 17124,
+ "溶": 17125,
+ "红细胞": 17126,
+ "败血症": 17127,
+ "血肿": 17128,
+ "斑点": 17129,
+ "玩笑": 17130,
+ "云南省": 17131,
+ "建材": 17132,
+ "估算": 17133,
+ "基层": 17134,
+ "修补": 17135,
+ "漆": 17136,
+ "起泡": 17137,
+ "环保": 17138,
+ "裂": 17139,
+ "手感": 17140,
+ "树脂": 17141,
+ "地砖": 17142,
+ "杆": 17143,
+ "水池": 17144,
+ "实木": 17145,
+ "微": 17146,
+ "850": 17147,
+ "照明": 17148,
+ "kg": 17149,
+ "灯具": 17150,
+ "电工": 17151,
+ "业": 17152,
+ "水箱": 17153,
+ "进水": 17154,
+ "中小型": 17155,
+ "打扫": 17156,
+ "亲手": 17157,
+ "管理费": 17158,
+ "写明": 17159,
+ "套用": 17160,
+ "停产": 17161,
+ "初始值": 17162,
+ "当当": 17163,
+ "打得": 17164,
+ "地盘": 17165,
+ "建筑群": 17166,
+ "故居": 17167,
+ "味儿": 17168,
+ "破旧": 17169,
+ "木有": 17170,
+ "逛街": 17171,
+ "万达": 17172,
+ "转职": 17173,
+ "袜子": 17174,
+ "双脚": 17175,
+ "臭味": 17176,
+ "而异": 17177,
+ "多汗": 17178,
+ "汗腺": 17179,
+ "闷热": 17180,
+ "盐分": 17181,
+ "热度": 17182,
+ "染上": 17183,
+ "交际": 17184,
+ "拖鞋": 17185,
+ "短裤": 17186,
+ "绅士": 17187,
+ "人问": 17188,
+ "球鞋": 17189,
+ "手机号": 17190,
+ "恋人": 17191,
+ "太深": 17192,
+ "打卡": 17193,
+ "一次次": 17194,
+ "断绝": 17195,
+ "第五个": 17196,
+ "双胞胎": 17197,
+ "很累": 17198,
+ "朋友家": 17199,
+ "回过": 17200,
+ "昨日": 17201,
+ "爱着": 17202,
+ "露天": 17203,
+ "潜能": 17204,
+ "高效率": 17205,
+ "理": 17206,
+ "迟": 17207,
+ "庄园": 17208,
+ "太高": 17209,
+ "减掉": 17210,
+ "抽奖": 17211,
+ "线程": 17212,
+ "OS": 17213,
+ "篮子": 17214,
+ "八十年代": 17215,
+ "九十年代": 17216,
+ "能比": 17217,
+ "调度": 17218,
+ "分身": 17219,
+ "图纸": 17220,
+ "影音": 17221,
+ "越多越好": 17222,
+ "残余": 17223,
+ "MV": 17224,
+ "化肥": 17225,
+ "汽油": 17226,
+ "饲养": 17227,
+ "PS2": 17228,
+ "突袭": 17229,
+ "顽强": 17230,
+ "这款": 17231,
+ "贴心": 17232,
+ "小屋": 17233,
+ "收纳": 17234,
+ "蝎子": 17235,
+ "征兆": 17236,
+ "取得成功": 17237,
+ "友人": 17238,
+ "消散": 17239,
+ "和睦": 17240,
+ "口交": 17241,
+ "题外话": 17242,
+ "抽动症": 17243,
+ "侄子": 17244,
+ "就近": 17245,
+ "1889": 17246,
+ "话费": 17247,
+ "还行": 17248,
+ "精症": 17249,
+ "鱼虾": 17250,
+ "性器官": 17251,
+ "空虚": 17252,
+ "大众": 17253,
+ "HTTP": 17254,
+ "密钥": 17255,
+ "备孕": 17256,
+ "真想": 17257,
+ "想来": 17258,
+ "^": 17259,
+ "萌芽": 17260,
+ "敲打": 17261,
+ "榜样": 17262,
+ "身长": 17263,
+ "有否": 17264,
+ "十二年": 17265,
+ "年份": 17266,
+ "必有": 17267,
+ "迈进": 17268,
+ "背心": 17269,
+ "对联": 17270,
+ "以求": 17271,
+ "六十": 17272,
+ "岳飞": 17273,
+ "大将军": 17274,
+ "木星": 17275,
+ "星辰": 17276,
+ "对冲": 17277,
+ "不顺": 17278,
+ "马拉": 17279,
+ "孢子": 17280,
+ "邻近": 17281,
+ "不规则": 17282,
+ "皮损": 17283,
+ "累及": 17284,
+ "弧形": 17285,
+ "荧光": 17286,
+ "盐酸": 17287,
+ "病例": 17288,
+ "西游": 17289,
+ "仿": 17290,
+ "不玩": 17291,
+ "同食": 17292,
+ "饮品": 17293,
+ "运动量": 17294,
+ "蠕动": 17295,
+ "乳酸菌": 17296,
+ "喝多": 17297,
+ "来不及": 17298,
+ "体重增加": 17299,
+ "迫切": 17300,
+ "胃黏膜": 17301,
+ "扇": 17302,
+ "苯": 17303,
+ "池塘": 17304,
+ "正题": 17305,
+ "79": 17306,
+ "骑兵": 17307,
+ "引": 17308,
+ "富裕": 17309,
+ "省委": 17310,
+ "委员": 17311,
+ "常委": 17312,
+ "书记": 17313,
+ "惯例": 17314,
+ "76": 17315,
+ "皇马": 17316,
+ "不曾": 17317,
+ "风向": 17318,
+ "姚明": 17319,
+ "珠峰": 17320,
+ "高处": 17321,
+ "索性": 17322,
+ "纵观": 17323,
+ "星巴克": 17324,
+ "华盛顿州": 17325,
+ "州长": 17326,
+ "漂": 17327,
+ "安全套": 17328,
+ "卷入": 17329,
+ "谣言": 17330,
+ "巧妙": 17331,
+ "张力": 17332,
+ "肆虐": 17333,
+ "游戏规则": 17334,
+ "大肆": 17335,
+ "低调": 17336,
+ "行事": 17337,
+ "业务员": 17338,
+ "之道": 17339,
+ "控制能力": 17340,
+ "一向": 17341,
+ "通路": 17342,
+ "商机": 17343,
+ "跟风": 17344,
+ "急剧": 17345,
+ "产能": 17346,
+ "货物": 17347,
+ "江湖": 17348,
+ "西洋": 17349,
+ "供应链": 17350,
+ "切入": 17351,
+ "宾馆": 17352,
+ "楼梯": 17353,
+ "疏散": 17354,
+ "不谈": 17355,
+ "封杀": 17356,
+ "保密": 17357,
+ "上演": 17358,
+ "父子": 17359,
+ "手头": 17360,
+ "开支": 17361,
+ "要用": 17362,
+ "一家人": 17363,
+ "留意": 17364,
+ "周易": 17365,
+ "韩剧": 17366,
+ "祛除": 17367,
+ "供选择": 17368,
+ "光子": 17369,
+ "每家": 17370,
+ "雀斑": 17371,
+ "波长": 17372,
+ "新买": 17373,
+ "扬声器": 17374,
+ "断定": 17375,
+ "高血压病": 17376,
+ "Ⅰ": 17377,
+ "以期": 17378,
+ "钠": 17379,
+ "忌酒": 17380,
+ "自我调节": 17381,
+ "低糖": 17382,
+ "低脂": 17383,
+ "植物油": 17384,
+ "榜": 17385,
+ "补给": 17386,
+ "村子": 17387,
+ "103": 17388,
+ "总体而言": 17389,
+ "晚宴": 17390,
+ "哥": 17391,
+ "开着": 17392,
+ "生物钟": 17393,
+ "破坏性": 17394,
+ "白血病": 17395,
+ "环境因素": 17396,
+ "起着": 17397,
+ "莱特": 17398,
+ "癌细胞": 17399,
+ "抗氧化剂": 17400,
+ "乳腺癌": 17401,
+ "常人": 17402,
+ "盲人": 17403,
+ "五项": 17404,
+ "能源": 17405,
+ "生化": 17406,
+ "褪": 17407,
+ "空姐": 17408,
+ "护士": 17409,
+ "光源": 17410,
+ "视网膜": 17411,
+ "交感神经": 17412,
+ "颅骨": 17413,
+ "静脉滴注": 17414,
+ "本法": 17415,
+ "复位": 17416,
+ "MRI": 17417,
+ "沟": 17418,
+ "前年": 17419,
+ "改善生活": 17420,
+ "残存": 17421,
+ "轮椅": 17422,
+ "马桶": 17423,
+ "编织": 17424,
+ "以利": 17425,
+ "顺利完成": 17426,
+ "否认": 17427,
+ "愤怒": 17428,
+ "细心": 17429,
+ "万圣节": 17430,
+ "很近": 17431,
+ "风流": 17432,
+ "规矩": 17433,
+ "口水": 17434,
+ "多去": 17435,
+ "平均寿命": 17436,
+ "插上": 17437,
+ "非常简单": 17438,
+ "启动项": 17439,
+ "CAD": 17440,
+ "转成": 17441,
+ "封装": 17442,
+ "图层": 17443,
+ "对比度": 17444,
+ "热心": 17445,
+ "凹陷": 17446,
+ "属实": 17447,
+ "求职": 17448,
+ "师范大学": 17449,
+ "师大": 17450,
+ "华南": 17451,
+ "网线": 17452,
+ "数据包": 17453,
+ "网关": 17454,
+ "补全": 17455,
+ "255": 17456,
+ "食用油": 17457,
+ "艾滋病": 17458,
+ "叮咬": 17459,
+ "挤压": 17460,
+ "应急": 17461,
+ "API": 17462,
+ "推论": 17463,
+ "狂暴": 17464,
+ "单手": 17465,
+ "定论": 17466,
+ "现存": 17467,
+ "东晋": 17468,
+ "不休": 17469,
+ "数百年": 17470,
+ "演变成": 17471,
+ "小花": 17472,
+ "草木": 17473,
+ "染": 17474,
+ "投影": 17475,
+ "雕刻": 17476,
+ "而后": 17477,
+ "特制": 17478,
+ "浸": 17479,
+ "甲硝唑": 17480,
+ "四天": 17481,
+ "奶嘴": 17482,
+ "吸取": 17483,
+ "强求": 17484,
+ "LED": 17485,
+ "前辈": 17486,
+ "善于": 17487,
+ "处事": 17488,
+ "浮": 17489,
+ "沉": 17490,
+ "蜂王浆": 17491,
+ "临睡前": 17492,
+ "换来": 17493,
+ "家用电器": 17494,
+ "根据上述": 17495,
+ "数码相机": 17496,
+ "回调": 17497,
+ "新高": 17498,
+ "当晚": 17499,
+ "安妮": 17500,
+ "隆": 17501,
+ "单子": 17502,
+ "我爸": 17503,
+ "福利": 17504,
+ "抚养": 17505,
+ "菲": 17506,
+ "拉斯": 17507,
+ "公公": 17508,
+ "TG": 17509,
+ "月亮": 17510,
+ "过关": 17511,
+ "船": 17512,
+ "河水": 17513,
+ "对岸": 17514,
+ "斜边": 17515,
+ "应为": 17516,
+ "刚满": 17517,
+ "优越感": 17518,
+ "愈发": 17519,
+ "坏事": 17520,
+ "掩盖": 17521,
+ "得失": 17522,
+ "观测": 17523,
+ "总能": 17524,
+ "偏见": 17525,
+ "减缓": 17526,
+ "训练方法": 17527,
+ "世界冠军": 17528,
+ "深感": 17529,
+ "不能不": 17530,
+ "自我意识": 17531,
+ "自我实现": 17532,
+ "厨艺": 17533,
+ "温情": 17534,
+ "统领": 17535,
+ "精良": 17536,
+ "苛刻": 17537,
+ "一曲": 17538,
+ "冷漠": 17539,
+ "手艺": 17540,
+ "交集": 17541,
+ "届时": 17542,
+ "刘": 17543,
+ "平手": 17544,
+ "主队": 17545,
+ "一中": 17546,
+ "过往": 17547,
+ "未曾": 17548,
+ "这使": 17549,
+ "兄": 17550,
+ "四岁": 17551,
+ "清肺": 17552,
+ "龙胆": 17553,
+ "泻": 17554,
+ "专科学校": 17555,
+ "新生": 17556,
+ "修订": 17557,
+ "爱看": 17558,
+ "动画片": 17559,
+ "太忙": 17560,
+ "平价": 17561,
+ "新开": 17562,
+ "英尺": 17563,
+ "沙漠": 17564,
+ "看病": 17565,
+ "云端": 17566,
+ "后置": 17567,
+ "光圈": 17568,
+ "闪光灯": 17569,
+ "噱头": 17570,
+ "iOS": 17571,
+ "易懂": 17572,
+ "沸腾": 17573,
+ "凉水": 17574,
+ "神经细胞": 17575,
+ "冷空气": 17576,
+ "保护性": 17577,
+ "强直": 17578,
+ "难忍": 17579,
+ "趾": 17580,
+ "伸直": 17581,
+ "牵拉": 17582,
+ "伸": 17583,
+ "痉": 17584,
+ "喝些": 17585,
+ "适应能力": 17586,
+ "四名": 17587,
+ "门牙": 17588,
+ "外交官": 17589,
+ "纯棉": 17590,
+ "二手": 17591,
+ "主持人": 17592,
+ "抓紧": 17593,
+ "脱颖而出": 17594,
+ "节奏感": 17595,
+ "内心深处": 17596,
+ "比率": 17597,
+ "斯托": 17598,
+ "甲烷": 17599,
+ "一氧化碳": 17600,
+ "剃": 17601,
+ "每场": 17602,
+ "严重危害": 17603,
+ "深远": 17604,
+ "医治": 17605,
+ "耽搁": 17606,
+ "类风湿": 17607,
+ "病患者": 17608,
+ "福音": 17609,
+ "巡回赛": 17610,
+ "流动性": 17611,
+ "赶": 17612,
+ "文言文": 17613,
+ "世家": 17614,
+ "圣保罗": 17615,
+ "蒂": 17616,
+ "巴拉": 17617,
+ "勒斯": 17618,
+ "蜜": 17619,
+ "可有": 17620,
+ "基础体温": 17621,
+ "禁欲": 17622,
+ "性高潮": 17623,
+ "扛": 17624,
+ "经济基础": 17625,
+ "说真的": 17626,
+ "残忍": 17627,
+ "共同努力": 17628,
+ "几十块": 17629,
+ "互联": 17630,
+ "阻止": 17631,
+ "高峰期": 17632,
+ "下岗": 17633,
+ "大伯": 17634,
+ "偷偷": 17635,
+ "这事": 17636,
+ "脂肪肝": 17637,
+ "2017": 17638,
+ "颜料": 17639,
+ "作画": 17640,
+ "家养": 17641,
+ "家禽": 17642,
+ "内蒙古": 17643,
+ "利好": 17644,
+ "停顿": 17645,
+ "mac": 17646,
+ "XXX": 17647,
+ "私有": 17648,
+ "收录": 17649,
+ "涉嫌": 17650,
+ "电动机": 17651,
+ "异步": 17652,
+ "猎物": 17653,
+ "不痛不痒": 17654,
+ "最高峰": 17655,
+ "纤维瘤": 17656,
+ "烧烤": 17657,
+ "这病": 17658,
+ "可供": 17659,
+ "散结": 17660,
+ "乳腺炎": 17661,
+ "淋巴结炎": 17662,
+ "沉迷于": 17663,
+ "短语": 17664,
+ "深化": 17665,
+ "知识点": 17666,
+ "攻克": 17667,
+ "认真对待": 17668,
+ "破碎": 17669,
+ "时装": 17670,
+ "奢侈品": 17671,
+ "悬浮": 17672,
+ "tyle": 17673,
+ "expresion": 17674,
+ "center": 17675,
+ "target": 17676,
+ "border": 17677,
+ "原子": 17678,
+ "质子": 17679,
+ "中子": 17680,
+ "同位素": 17681,
+ "总称": 17682,
+ "自然界": 17683,
+ "氦": 17684,
+ "结尾": 17685,
+ "英联邦": 17686,
+ "为难": 17687,
+ "嘿": 17688,
+ "符合要求": 17689,
+ "扎克": 17690,
+ "源自": 17691,
+ "丰满": 17692,
+ "看不清": 17693,
+ "各路": 17694,
+ "弱视": 17695,
+ "红光": 17696,
+ "眼底": 17697,
+ "比亚迪": 17698,
+ "旺季": 17699,
+ "之品": 17700,
+ "虾米": 17701,
+ "第一天": 17702,
+ "哈姆雷特": 17703,
+ "签到": 17704,
+ "生完": 17705,
+ "谢谢你们": 17706,
+ "下腹部": 17707,
+ "激光治疗": 17708,
+ "驾车": 17709,
+ "胆子": 17710,
+ "分量": 17711,
+ "体育场": 17712,
+ "哈尔滨": 17713,
+ "苏州": 17714,
+ "连结": 17715,
+ "直角三角形": 17716,
+ "225": 17717,
+ "周星驰": 17718,
+ "性冷淡": 17719,
+ "气愤": 17720,
+ "活该": 17721,
+ "光照": 17722,
+ "近义词": 17723,
+ "沉睡": 17724,
+ "漆黑": 17725,
+ "惋惜": 17726,
+ "滑稽": 17727,
+ "隐约": 17728,
+ "向导": 17729,
+ "焦急": 17730,
+ "洁白": 17731,
+ "尘埃": 17732,
+ "枯": 17733,
+ "呼叫": 17734,
+ "照料": 17735,
+ "惊叹": 17736,
+ "讽刺": 17737,
+ "欺凌": 17738,
+ "照耀": 17739,
+ "漫步": 17740,
+ "离散": 17741,
+ "迫害": 17742,
+ "渺小": 17743,
+ "光波": 17744,
+ "引力波": 17745,
+ "远方": 17746,
+ "引力": 17747,
+ "向外": 17748,
+ "粒子": 17749,
+ "引力场": 17750,
+ "受力": 17751,
+ "光速": 17752,
+ "v": 17753,
+ "坐标系": 17754,
+ "在此期间": 17755,
+ "式子": 17756,
+ "天府": 17757,
+ "大帝": 17758,
+ "钓": 17759,
+ "妆": 17760,
+ "审理": 17761,
+ "下级": 17762,
+ "意指": 17763,
+ "101": 17764,
+ "津贴": 17765,
+ "稿费": 17766,
+ "三日": 17767,
+ "分担": 17768,
+ "管理者": 17769,
+ "借款": 17770,
+ "母公司": 17771,
+ "大一": 17772,
+ "琐碎": 17773,
+ "对症下药": 17774,
+ "不服": 17775,
+ "闭锁": 17776,
+ "骶": 17777,
+ "触及": 17778,
+ "住在一起": 17779,
+ "一目了然": 17780,
+ "5x": 17781,
+ "复检": 17782,
+ "仰望": 17783,
+ "星空": 17784,
+ "惬意": 17785,
+ "三亚": 17786,
+ "绿灯": 17787,
+ "考官": 17788,
+ "商品名称": 17789,
+ "虚假": 17790,
+ "留存": 17791,
+ "减仓": 17792,
+ "穿越": 17793,
+ "骨髓": 17794,
+ "结缔组织": 17795,
+ "年长": 17796,
+ "阅历": 17797,
+ "白凤丸": 17798,
+ "风寒": 17799,
+ "深部": 17800,
+ "化痰": 17801,
+ "萎缩性": 17802,
+ "止血": 17803,
+ "预先": 17804,
+ "咽痛": 17805,
+ "干呕": 17806,
+ "7.5": 17807,
+ "甘草": 17808,
+ "水煎服": 17809,
+ "桔梗": 17810,
+ "连翘": 17811,
+ "两份": 17812,
+ "养老金": 17813,
+ "张图": 17814,
+ "整": 17815,
+ "封面": 17816,
+ "什麼": 17817,
+ "目": 17818,
+ "說": 17819,
+ "娘": 17820,
+ "與": 17821,
+ "北宋": 17822,
+ "さ": 17823,
+ "樱": 17824,
+ "ρ": 17825,
+ "谥": 17826,
+ "嘤": 17827,
+ "掌": 17828,
+ "绷带": 17829,
+ "单打": 17830,
+ "食量": 17831,
+ "专家建议": 17832,
+ "情绪低落": 17833,
+ "忧郁": 17834,
+ "好时机": 17835,
+ "暴饮暴食": 17836,
+ "禁烟": 17837,
+ "肉桂": 17838,
+ "多吃含": 17839,
+ "会令": 17840,
+ "顶峰": 17841,
+ "让你在": 17842,
+ "高脂肪": 17843,
+ "短短": 17844,
+ "活化": 17845,
+ "跑步机": 17846,
+ "健身房": 17847,
+ "谷类": 17848,
+ "全麦": 17849,
+ "糙米": 17850,
+ "骨盆": 17851,
+ "划船": 17852,
+ "夜宵": 17853,
+ "多饮水": 17854,
+ "沼泽": 17855,
+ "MP": 17856,
+ "乐章": 17857,
+ "凝固": 17858,
+ "宽容": 17859,
+ "净土": 17860,
+ "容忍": 17861,
+ "宽阔": 17862,
+ "乐园": 17863,
+ "杯中": 17864,
+ "治本": 17865,
+ "甘油": 17866,
+ "鸡蛋清": 17867,
+ "身心健康": 17868,
+ "许多种": 17869,
+ "确有": 17870,
+ "中含": 17871,
+ "酶": 17872,
+ "科学研究": 17873,
+ "胡萝卜素": 17874,
+ "茶杯": 17875,
+ "皮炎": 17876,
+ "真实情况": 17877,
+ "坚硬": 17878,
+ "液态水": 17879,
+ "星球": 17880,
+ "内核": 17881,
+ "火山爆发": 17882,
+ "短跑": 17883,
+ "会馆": 17884,
+ "犀牛": 17885,
+ "铁血": 17886,
+ "手套": 17887,
+ "夜色": 17888,
+ "螺丝": 17889,
+ "新郎": 17890,
+ "刘翔": 17891,
+ "心理素质": 17892,
+ "过硬": 17893,
+ "国人": 17894,
+ "奥林匹克": 17895,
+ "出赛": 17896,
+ "赛前": 17897,
+ "教派": 17898,
+ "三重": 17899,
+ "犹太教": 17900,
+ "收割": 17901,
+ "布里": 17902,
+ "犯人": 17903,
+ "利器": 17904,
+ "高贵": 17905,
+ "祭": 17906,
+ "人类文明": 17907,
+ "讨伐": 17908,
+ "身穿": 17909,
+ "灭亡": 17910,
+ "守护者": 17911,
+ "一加": 17912,
+ "做工": 17913,
+ "毕加索": 17914,
+ "嘲讽": 17915,
+ "类动物": 17916,
+ "雪地": 17917,
+ "塔尔": 17918,
+ "鳄鱼": 17919,
+ "希尔": 17920,
+ "荒野": 17921,
+ "蛛": 17922,
+ "山丘": 17923,
+ "巨": 17924,
+ "鳄": 17925,
+ "希": 17926,
+ "东部": 17927,
+ "海龟": 17928,
+ "蝙蝠": 17929,
+ "猫头鹰": 17930,
+ "拉姆": 17931,
+ "凄凉": 17932,
+ "鸵鸟": 17933,
+ "恐龙": 17934,
+ "何以": 17935,
+ "←": 17936,
+ "胡说八道": 17937,
+ "微商": 17938,
+ "聘用": 17939,
+ "力学": 17940,
+ "拉力": 17941,
+ "哪一年": 17942,
+ "进军": 17943,
+ "宰相": 17944,
+ "罪名": 17945,
+ "诏": 17946,
+ "中医学": 17947,
+ "阳虚": 17948,
+ "推举": 17949,
+ "力不从心": 17950,
+ "园区": 17951,
+ "仙女": 17952,
+ "延后": 17953,
+ "中起": 17954,
+ "威士忌": 17955,
+ "武功": 17956,
+ "这回": 17957,
+ "半夏": 17958,
+ "主教": 17959,
+ "阵营": 17960,
+ "行政区": 17961,
+ "昨晚": 17962,
+ "发了": 17963,
+ "言辞": 17964,
+ "过节": 17965,
+ "公理": 17966,
+ "骂人": 17967,
+ "诋毁": 17968,
+ "欣慰": 17969,
+ "终究": 17970,
+ "学子": 17971,
+ "方便面": 17972,
+ "蜜汁": 17973,
+ "可可": 17974,
+ "可可粉": 17975,
+ "频频": 17976,
+ "成片": 17977,
+ "没过": 17978,
+ "流食": 17979,
+ "研磨": 17980,
+ "柑橘": 17981,
+ "等效": 17982,
+ "串联": 17983,
+ "气压": 17984,
+ "穷人": 17985,
+ "三件": 17986,
+ "财力": 17987,
+ "低价": 17988,
+ "买不起": 17989,
+ "溜达": 17990,
+ "顺手": 17991,
+ "win": 17992,
+ "两下": 17993,
+ "发高烧": 17994,
+ "CF": 17995,
+ "元帅": 17996,
+ "根本就是": 17997,
+ "SF": 17998,
+ "跑动": 17999,
+ "第一眼": 18000,
+ "眉毛": 18001,
+ "金鱼": 18002,
+ "太短": 18003,
+ "驼背": 18004,
+ "上肢": 18005,
+ "某项": 18006,
+ "范例": 18007,
+ "细长": 18008,
+ "搞不好": 18009,
+ "文科生": 18010,
+ "ú": 18011,
+ "保费": 18012,
+ "节能": 18013,
+ "长线": 18014,
+ "蒙": 18015,
+ "商用": 18016,
+ "这名": 18017,
+ "券": 18018,
+ "绿卡": 18019,
+ "TV": 18020,
+ "虚荣心": 18021,
+ "恰巧": 18022,
+ "朋友圈": 18023,
+ "勇者": 18024,
+ "内陆": 18025,
+ "Software": 18026,
+ "Main": 18027,
+ "波特": 18028,
+ "必将": 18029,
+ "139": 18030,
+ "略带": 18031,
+ "振荡": 18032,
+ "新股": 18033,
+ "极佳": 18034,
+ "烤鸭": 18035,
+ "跃过": 18036,
+ "回味": 18037,
+ "晴朗": 18038,
+ "证券市场": 18039,
+ "恐慌": 18040,
+ "交出": 18041,
+ "近日": 18042,
+ "阴谋": 18043,
+ "鲜活": 18044,
+ "顺势": 18045,
+ "租车": 18046,
+ "php": 18047,
+ "$": 18048,
+ "root": 18049,
+ "txt": 18050,
+ "date": 18051,
+ "720": 18052,
+ "原始数据": 18053,
+ "他俩": 18054,
+ "新能源": 18055,
+ "炒作": 18056,
+ "阑尾炎": 18057,
+ "大半": 18058,
+ "个点": 18059,
+ "完全相同": 18060,
+ "一个点": 18061,
+ "L1": 18062,
+ "L2": 18063,
+ "恢复期": 18064,
+ "有名": 18065,
+ "送上": 18066,
+ "公众": 18067,
+ "校友": 18068,
+ "出资": 18069,
+ "组建": 18070,
+ "机动车": 18071,
+ "简易": 18072,
+ "过户": 18073,
+ "快捷键": 18074,
+ "123": 18075,
+ "偏僻": 18076,
+ "知己": 18077,
+ "争夺": 18078,
+ "用语": 18079,
+ "打乱": 18080,
+ "MVP": 18081,
+ "评选": 18082,
+ "电子版": 18083,
+ "征集": 18084,
+ "沙子": 18085,
+ "打发": 18086,
+ "托管": 18087,
+ "军师": 18088,
+ "住宿": 18089,
+ "打招呼": 18090,
+ "难以置信": 18091,
+ "志同道合": 18092,
+ "选出": 18093,
+ "师兄": 18094,
+ "英俊": 18095,
+ "邂逅": 18096,
+ "彼时": 18097,
+ "升华": 18098,
+ "无数次": 18099,
+ "太贵": 18100,
+ "拎": 18101,
+ "走进": 18102,
+ "售票": 18103,
+ "客运": 18104,
+ "日文": 18105,
+ "控件": 18106,
+ "1985": 18107,
+ "篮板": 18108,
+ "69": 18109,
+ "121": 18110,
+ "辽宁": 18111,
+ "盼": 18112,
+ "5.5": 18113,
+ "1989": 18114,
+ "1983": 18115,
+ "不死": 18116,
+ "133": 18117,
+ "172": 18118,
+ "惩罚": 18119,
+ "炒股": 18120,
+ "太好": 18121,
+ "岗": 18122,
+ "口岸": 18123,
+ "西侧": 18124,
+ "人均": 18125,
+ "做不了": 18126,
+ "推销": 18127,
+ "保健品": 18128,
+ "神经官能症": 18129,
+ "海产品": 18130,
+ "足量": 18131,
+ "上瘾": 18132,
+ "辛": 18133,
+ "疟疾": 18134,
+ "唾液": 18135,
+ "可食用": 18136,
+ "多糖": 18137,
+ "龋齿": 18138,
+ "食道": 18139,
+ "反酸": 18140,
+ "游动": 18141,
+ "响声": 18142,
+ "水溶液": 18143,
+ "第一节": 18144,
+ "点钟": 18145,
+ "诶": 18146,
+ "天花板": 18147,
+ "求得": 18148,
+ "设为": 18149,
+ "耶": 18150,
+ "被俘": 18151,
+ "苏醒": 18152,
+ "过瘾": 18153,
+ "恶毒": 18154,
+ "巧合": 18155,
+ "共生": 18156,
+ "以太": 18157,
+ "躯体": 18158,
+ "那场": 18159,
+ "幼年": 18160,
+ "放出": 18161,
+ "众": 18162,
+ "感知": 18163,
+ "开战": 18164,
+ "太后": 18165,
+ "刚到": 18166,
+ "夺回": 18167,
+ "新娘": 18168,
+ "篇章": 18169,
+ "关卡": 18170,
+ "关系不大": 18171,
+ "西斯": 18172,
+ "梅": 18173,
+ "这么久": 18174,
+ "幅": 18175,
+ "凝胶": 18176,
+ "高分子": 18177,
+ "衍生物": 18178,
+ "薄膜": 18179,
+ "调剂": 18180,
+ "地向": 18181,
+ "趋向": 18182,
+ "得出结论": 18183,
+ "琵琶": 18184,
+ "夕阳": 18185,
+ "特技": 18186,
+ "打交道": 18187,
+ "再见": 18188,
+ "庆典": 18189,
+ "繁多": 18190,
+ "衬托": 18191,
+ "担当": 18192,
+ "艺术风格": 18193,
+ "意境": 18194,
+ "奇特": 18195,
+ "当今世界": 18196,
+ "中心点": 18197,
+ "枝": 18198,
+ "素材": 18199,
+ "腰围": 18200,
+ "照相": 18201,
+ "离家": 18202,
+ "稳妥": 18203,
+ "这人": 18204,
+ "剧痛": 18205,
+ "静电": 18206,
+ "副手": 18207,
+ "老老实实": 18208,
+ "守门员": 18209,
+ "足球比赛": 18210,
+ "xp": 18211,
+ "第一季度": 18212,
+ "强悍": 18213,
+ "两本": 18214,
+ "测评": 18215,
+ "媲美": 18216,
+ "杰": 18217,
+ "增肥": 18218,
+ "果酱": 18219,
+ "煎饼": 18220,
+ "中式": 18221,
+ "核果": 18222,
+ "奶昔": 18223,
+ "土司": 18224,
+ "怂": 18225,
+ "场所": 18226,
+ "光合作用": 18227,
+ "叶片": 18228,
+ "放着": 18229,
+ "兹": 18230,
+ "羯": 18231,
+ "栈": 18232,
+ "蚁": 18233,
+ "味甘": 18234,
+ "明目": 18235,
+ "简述": 18236,
+ "天文": 18237,
+ "1860": 18238,
+ "清政府": 18239,
+ "以东": 18240,
+ "半岛": 18241,
+ "市内": 18242,
+ "列宁": 18243,
+ "苏维埃": 18244,
+ "多斯": 18245,
+ "莫斯科": 18246,
+ "铁路线": 18247,
+ "西伯利亚": 18248,
+ "渔业": 18249,
+ "集团公司": 18250,
+ "各大": 18251,
+ "远东": 18252,
+ "医科大学": 18253,
+ "全长": 18254,
+ "班机": 18255,
+ "领事馆": 18256,
+ "叹": 18257,
+ "奥迪": 18258,
+ "2.4": 18259,
+ "水漂": 18260,
+ "三部": 18261,
+ "流利": 18262,
+ "挺直": 18263,
+ "肝胆": 18264,
+ "少于": 18265,
+ "疝气": 18266,
+ "疾": 18267,
+ "间歇": 18268,
+ "心律失常": 18269,
+ "律": 18270,
+ "三联": 18271,
+ "话筒": 18272,
+ "作好": 18273,
+ "金融服务": 18274,
+ "3A": 18275,
+ "仔细检查": 18276,
+ "书写": 18277,
+ "卡片": 18278,
+ "确保您": 18279,
+ "窃取": 18280,
+ "泄漏": 18281,
+ "年幼": 18282,
+ "卸": 18283,
+ "那份": 18284,
+ "使命": 18285,
+ "我错": 18286,
+ "身在": 18287,
+ "扑": 18288,
+ "核实": 18289,
+ "几小时": 18290,
+ "停机": 18291,
+ "诚挚": 18292,
+ "专区": 18293,
+ "商业化": 18294,
+ "那家": 18295,
+ "黄水": 18296,
+ "有天": 18297,
+ "阿奇": 18298,
+ "双氧水": 18299,
+ "水滴": 18300,
+ "相貌": 18301,
+ "诉说": 18302,
+ "idea": 18303,
+ "Bill": 18304,
+ "雅思": 18305,
+ "answer": 18306,
+ "Adam": 18307,
+ "F": 18308,
+ "2400": 18309,
+ "金匮": 18310,
+ "我校": 18311,
+ "雅": 18312,
+ "山中": 18313,
+ "云彩": 18314,
+ "芙蓉": 18315,
+ "杜甫": 18316,
+ "才华": 18317,
+ "非常适合": 18318,
+ "羽": 18319,
+ "谐音": 18320,
+ "各个方面": 18321,
+ "受人": 18322,
+ "嫦娥": 18323,
+ "曹丕": 18324,
+ "看中": 18325,
+ "鹦鹉": 18326,
+ "归入": 18327,
+ "原生": 18328,
+ "溪流": 18329,
+ "中美洲": 18330,
+ "出产": 18331,
+ "印度尼西亚": 18332,
+ "斯里兰卡": 18333,
+ "斗鱼": 18334,
+ "海洋生物": 18335,
+ "海滨": 18336,
+ "亩": 18337,
+ "格调": 18338,
+ "海岛": 18339,
+ "开来": 18340,
+ "景区": 18341,
+ "大气": 18342,
+ "田园": 18343,
+ "乡村": 18344,
+ "情调": 18345,
+ "度假村": 18346,
+ "生态": 18347,
+ "客家": 18348,
+ "大都市": 18349,
+ "小镇": 18350,
+ "山林": 18351,
+ "运费": 18352,
+ "单价": 18353,
+ "航空公司": 18354,
+ "星期日": 18355,
+ "球体": 18356,
+ "姑且": 18357,
+ "一小部分": 18358,
+ "割包皮": 18359,
+ "外露": 18360,
+ "男性疾病": 18361,
+ "男科": 18362,
+ "资深": 18363,
+ "打理": 18364,
+ "坦诚": 18365,
+ "泡菜": 18366,
+ "不放": 18367,
+ "摆放": 18368,
+ "顶层": 18369,
+ "结冰": 18370,
+ "速成": 18371,
+ "难吃": 18372,
+ "醋酸": 18373,
+ "咸鱼": 18374,
+ "朝鲜": 18375,
+ "收拾": 18376,
+ "后备": 18377,
+ "坛": 18378,
+ "蒜泥": 18379,
+ "刨": 18380,
+ "一整天": 18381,
+ "学术论文": 18382,
+ "肉质": 18383,
+ "碳酸": 18384,
+ "硫磺": 18385,
+ "曲折": 18386,
+ "酱汁": 18387,
+ "第四步": 18388,
+ "振兴": 18389,
+ "预处理": 18390,
+ "调试": 18391,
+ "段位": 18392,
+ "车子": 18393,
+ "太快": 18394,
+ "常见问题": 18395,
+ "一听": 18396,
+ "老妈": 18397,
+ "音译": 18398,
+ "取名": 18399,
+ "数理": 18400,
+ "透彻": 18401,
+ "偏颇": 18402,
+ "年里": 18403,
+ "忍耐": 18404,
+ "理智": 18405,
+ "表象": 18406,
+ "系统文件": 18407,
+ "镜像": 18408,
+ "彻底清除": 18409,
+ "鲁迅": 18410,
+ "文学": 18411,
+ "鼓舞": 18412,
+ "在我看来": 18413,
+ "潜规则": 18414,
+ "出生地": 18415,
+ "五年级": 18416,
+ "□": 18417,
+ "看做": 18418,
+ "我学": 18419,
+ "厄运": 18420,
+ "萨拉": 18421,
+ "毛钱": 18422,
+ "实业": 18423,
+ "饺子": 18424,
+ "得罪": 18425,
+ "专柜": 18426,
+ "烤盘": 18427,
+ "预热": 18428,
+ "线索": 18429,
+ "羽毛": 18430,
+ "市场化": 18431,
+ "抑郁症": 18432,
+ "抗抑郁": 18433,
+ "围棋": 18434,
+ "特例": 18435,
+ "判": 18436,
+ "全局": 18437,
+ "水利": 18438,
+ "违约": 18439,
+ "条款": 18440,
+ "意甲": 18441,
+ "德甲": 18442,
+ "英超": 18443,
+ "西甲": 18444,
+ "威": 18445,
+ "博彩": 18446,
+ "最最": 18447,
+ "⊙": 18448,
+ "起因": 18449,
+ "粗壮": 18450,
+ "学识": 18451,
+ "辩论": 18452,
+ "浅薄": 18453,
+ "无法忍受": 18454,
+ "玩弄": 18455,
+ "习性": 18456,
+ "勤奋": 18457,
+ "伤痛": 18458,
+ "爱因斯坦": 18459,
+ "磨难": 18460,
+ "弃": 18461,
+ "兴": 18462,
+ "基本概念": 18463,
+ "负荷": 18464,
+ "停电": 18465,
+ "晃动": 18466,
+ "很酷": 18467,
+ "night": 18468,
+ "body": 18469,
+ "合约": 18470,
+ "产出": 18471,
+ "现货": 18472,
+ "计算公式": 18473,
+ "欧元": 18474,
+ "信号处理": 18475,
+ "不可避免": 18476,
+ "卿": 18477,
+ "通称": 18478,
+ "或称": 18479,
+ "南北朝": 18480,
+ "政务": 18481,
+ "军用": 18482,
+ "铺垫": 18483,
+ "鼓": 18484,
+ "全班": 18485,
+ "一个班": 18486,
+ "怨恨": 18487,
+ "坟墓": 18488,
+ "小明": 18489,
+ "五位": 18490,
+ "一盘": 18491,
+ "局": 18492,
+ "大伙": 18493,
+ "提纲": 18494,
+ "免税": 18495,
+ "关税": 18496,
+ "如实": 18497,
+ "生抽": 18498,
+ "写给": 18499,
+ "在校": 18500,
+ "听众": 18501,
+ "生怕": 18502,
+ "反倒": 18503,
+ "瞧不起": 18504,
+ "于是乎": 18505,
+ "架": 18506,
+ "小偷": 18507,
+ "这下": 18508,
+ "觉着": 18509,
+ "一眼": 18510,
+ "跟前": 18511,
+ "临": 18512,
+ "电台": 18513,
+ "精神状态": 18514,
+ "搭理": 18515,
+ "纯天然": 18516,
+ "上山": 18517,
+ "下山": 18518,
+ "换掉": 18519,
+ "刀口": 18520,
+ "天气预报": 18521,
+ "隶属": 18522,
+ "当面": 18523,
+ "收货": 18524,
+ "免得": 18525,
+ "吉隆坡": 18526,
+ "耳环": 18527,
+ "刷子": 18528,
+ "饰": 18529,
+ "水洗": 18530,
+ "越发": 18531,
+ "变黑": 18532,
+ "一滴": 18533,
+ "氧化物": 18534,
+ "瑜": 18535,
+ "瑕": 18536,
+ "氧化剂": 18537,
+ "转变成": 18538,
+ "反光": 18539,
+ "化学反应": 18540,
+ "粗细": 18541,
+ "手环": 18542,
+ "图腾": 18543,
+ "ǎ": 18544,
+ "睿": 18545,
+ "十天": 18546,
+ "cm": 18547,
+ "回声": 18548,
+ "3.1": 18549,
+ "囊性": 18550,
+ "分隔": 18551,
+ "工学院": 18552,
+ "服装设计": 18553,
+ "误导": 18554,
+ "狂犬病": 18555,
+ "忍住": 18556,
+ "个人经历": 18557,
+ "别名": 18558,
+ "纵横": 18559,
+ "理学": 18560,
+ "人缘": 18561,
+ "3.2": 18562,
+ "Intel": 18563,
+ "单机游戏": 18564,
+ "居士": 18565,
+ "自然而然": 18566,
+ "处长": 18567,
+ "昼夜": 18568,
+ "舒适性": 18569,
+ "采取相应": 18570,
+ "严禁": 18571,
+ "亲身经历": 18572,
+ "痛快": 18573,
+ "奴隶": 18574,
+ "军人": 18575,
+ "参战": 18576,
+ "大屠杀": 18577,
+ "小国": 18578,
+ "夸大": 18579,
+ "犯下": 18580,
+ "自称": 18581,
+ "胆小": 18582,
+ "PF": 18583,
+ "要命": 18584,
+ "口服液": 18585,
+ "甘": 18586,
+ "肉食": 18587,
+ "红烧": 18588,
+ "凉血": 18589,
+ "热气": 18590,
+ "大肠": 18591,
+ "名牌": 18592,
+ "作息时间": 18593,
+ "排查": 18594,
+ "下丘脑": 18595,
+ "万个": 18596,
+ "胜过": 18597,
+ "夏日": 18598,
+ "带血": 18599,
+ "产妇": 18600,
+ "大洋": 18601,
+ "巴斯": 18602,
+ "太平": 18603,
+ "一词": 18604,
+ "航海": 18605,
+ "学家": 18606,
+ "航行": 18607,
+ "大洋洲": 18608,
+ "南极洲": 18609,
+ "总面积": 18610,
+ "平方千米": 18611,
+ "海沟": 18612,
+ "结核": 18613,
+ "品位": 18614,
+ "居于": 18615,
+ "北岸": 18616,
+ "坚实": 18617,
+ "冰层": 18618,
+ "冰山": 18619,
+ "航运": 18620,
+ "黑夜": 18621,
+ "猩猩": 18622,
+ "好长时间": 18623,
+ "十位": 18624,
+ "有木有": 18625,
+ "充裕": 18626,
+ "怪异": 18627,
+ "文书": 18628,
+ "长老": 18629,
+ "情书": 18630,
+ "测验": 18631,
+ "鉴赏": 18632,
+ "东临": 18633,
+ "树木": 18634,
+ "哉": 18635,
+ "魏晋": 18636,
+ "辞": 18637,
+ "正当": 18638,
+ "军阀": 18639,
+ "南下": 18640,
+ "建安": 18641,
+ "其子": 18642,
+ "境地": 18643,
+ "秋": 18644,
+ "七月": 18645,
+ "大道": 18646,
+ "断然": 18647,
+ "抒发": 18648,
+ "史实": 18649,
+ "学术界": 18650,
+ "突兀": 18651,
+ "之感": 18652,
+ "半点": 18653,
+ "处境": 18654,
+ "相接": 18655,
+ "壮丽": 18656,
+ "银河": 18657,
+ "一派": 18658,
+ "诗歌": 18659,
+ "细说": 18660,
+ "字面": 18661,
+ "堪称": 18662,
+ "佳作": 18663,
+ "取舍": 18664,
+ "品格": 18665,
+ "现实主义": 18666,
+ "功绩": 18667,
+ "时隔": 18668,
+ "易用性": 18669,
+ "经商": 18670,
+ "向着": 18671,
+ "成名": 18672,
+ "广度": 18673,
+ "细胞分裂": 18674,
+ "疱疹": 18675,
+ "水疱": 18676,
+ "喷出": 18677,
+ "吞噬": 18678,
+ "笼罩": 18679,
+ "大山": 18680,
+ "赤道": 18681,
+ "熔岩": 18682,
+ "做爱时": 18683,
+ "柏拉图": 18684,
+ "商城": 18685,
+ "紧凑": 18686,
+ "吸烟者": 18687,
+ "括约肌": 18688,
+ "京": 18689,
+ "本田": 18690,
+ "鼻翼": 18691,
+ "红红的": 18692,
+ "脏": 18693,
+ "海伦": 18694,
+ "接力": 18695,
+ "管理系统": 18696,
+ "计算机专业": 18697,
+ "信息化": 18698,
+ "发展前景": 18699,
+ "量化": 18700,
+ "熟人": 18701,
+ "小看": 18702,
+ "扫地": 18703,
+ "类人": 18704,
+ "英语语法": 18705,
+ "更进一步": 18706,
+ "兰州": 18707,
+ "色调": 18708,
+ "性能指标": 18709,
+ "破产": 18710,
+ "总有一天": 18711,
+ "听过": 18712,
+ "成功人士": 18713,
+ "朝着": 18714,
+ "TF": 18715,
+ "顺畅": 18716,
+ "篡改": 18717,
+ "联络": 18718,
+ "逗": 18719,
+ "营地": 18720,
+ "※": 18721,
+ "迷宫": 18722,
+ "陨石": 18723,
+ "研究室": 18724,
+ "西门": 18725,
+ "蜥蜴": 18726,
+ "唐山": 18727,
+ "独": 18728,
+ "遍": 18729,
+ "取经": 18730,
+ "人中": 18731,
+ "佛祖": 18732,
+ "大将": 18733,
+ "神龙": 18734,
+ "孙悟空": 18735,
+ "转世": 18736,
+ "身世": 18737,
+ "前世": 18738,
+ "四海": 18739,
+ "之大": 18740,
+ "132": 18741,
+ "剧情简介": 18742,
+ "小城": 18743,
+ "渔民": 18744,
+ "谜语": 18745,
+ "打听": 18746,
+ "黑子": 18747,
+ "大唐": 18748,
+ "河畔": 18749,
+ "重回": 18750,
+ "天宫": 18751,
+ "惶恐": 18752,
+ "追捕": 18753,
+ "杀害": 18754,
+ "皈依": 18755,
+ "手下": 18756,
+ "出面": 18757,
+ "阵": 18758,
+ "横行": 18759,
+ "日前": 18760,
+ "只得": 18761,
+ "重返": 18762,
+ "取回": 18763,
+ "摊": 18764,
+ "吵闹": 18765,
+ "小龙女": 18766,
+ "129": 18767,
+ "失": 18768,
+ "虫": 18769,
+ "贪心": 18770,
+ "偏偏": 18771,
+ "奔波": 18772,
+ "悟空": 18773,
+ "大法": 18774,
+ "举人": 18775,
+ "老先生": 18776,
+ "僧": 18777,
+ "离奇": 18778,
+ "妖怪": 18779,
+ "古怪": 18780,
+ "102": 18781,
+ "降雨": 18782,
+ "施法": 18783,
+ "寨": 18784,
+ "妾": 18785,
+ "无名": 18786,
+ "武器装备": 18787,
+ "单机": 18788,
+ "牙痛": 18789,
+ "233": 18790,
+ "毕业论文": 18791,
+ "男演员": 18792,
+ "剧": 18793,
+ "肮脏": 18794,
+ "来时": 18795,
+ "idx": 18796,
+ "暴风": 18797,
+ "炼化": 18798,
+ "出土": 18799,
+ "金融危机": 18800,
+ "跌幅": 18801,
+ "风波": 18802,
+ "掀起": 18803,
+ "创下": 18804,
+ "大跌": 18805,
+ "琼斯": 18806,
+ "迫使": 18807,
+ "巨额": 18808,
+ "同日": 18809,
+ "遏制": 18810,
+ "快速增长": 18811,
+ "日益严重": 18812,
+ "市场竞争": 18813,
+ "几家": 18814,
+ "近年": 18815,
+ "高估": 18816,
+ "金融市场": 18817,
+ "AP": 18818,
+ "卦": 18819,
+ "标示": 18820,
+ "天王": 18821,
+ "方向盘": 18822,
+ "工业区": 18823,
+ "群里": 18824,
+ "险": 18825,
+ "补助": 18826,
+ "过段时间": 18827,
+ "break": 18828,
+ "协调性": 18829,
+ "可得": 18830,
+ "很想": 18831,
+ "菲尔": 18832,
+ "热能": 18833,
+ "不可思议": 18834,
+ "懒人": 18835,
+ "血脉": 18836,
+ "飞行器": 18837,
+ "贪婪": 18838,
+ "进制": 18839,
+ "缓存": 18840,
+ "次序": 18841,
+ "Max": 18842,
+ "email": 18843,
+ "所示": 18844,
+ "提示信息": 18845,
+ "Server": 18846,
+ "Network": 18847,
+ "提供商": 18848,
+ "最小值": 18849,
+ "等待时间": 18850,
+ "索引": 18851,
+ "驱动器": 18852,
+ "内饰": 18853,
+ "大得多": 18854,
+ "两万": 18855,
+ "女娲": 18856,
+ "姐": 18857,
+ "其为": 18858,
+ "朗": 18859,
+ "卡罗": 18860,
+ "变速器": 18861,
+ "悬": 18862,
+ "画画": 18863,
+ "学过": 18864,
+ "脱毛": 18865,
+ "极小": 18866,
+ "深色": 18867,
+ "ne": 18868,
+ "火炬": 18869,
+ "禁": 18870,
+ "小兔子": 18871,
+ "行李": 18872,
+ "小黑": 18873,
+ "害": 18874,
+ "看官": 18875,
+ "生下": 18876,
+ "重写": 18877,
+ "讯息": 18878,
+ "mod": 18879,
+ "android": 18880,
+ "图示": 18881,
+ "0.0": 18882,
+ "0.05": 18883,
+ "后于": 18884,
+ "软体": 18885,
+ "download": 18886,
+ "早搏": 18887,
+ "频发": 18888,
+ "心肌炎": 18889,
+ "阵发性": 18890,
+ "房颤": 18891,
+ "猝死": 18892,
+ "搜寻": 18893,
+ "心肌病": 18894,
+ "应适当": 18895,
+ "好日子": 18896,
+ "再来": 18897,
+ "斯托克": 18898,
+ "趁着": 18899,
+ "冠军杯": 18900,
+ "捅": 18901,
+ "笔名": 18902,
+ "纵": 18903,
+ "第一部": 18904,
+ "复试": 18905,
+ "苏轼": 18906,
+ "本意": 18907,
+ "决斗": 18908,
+ "预备": 18909,
+ "毒药": 18910,
+ "谋杀": 18911,
+ "闪避": 18912,
+ "可贵": 18913,
+ "爪": 18914,
+ "两分钟": 18915,
+ "缠绕": 18916,
+ "美妙": 18917,
+ "火柴": 18918,
+ "挥发": 18919,
+ "火星": 18920,
+ "公司员工": 18921,
+ "艰辛": 18922,
+ "祈求": 18923,
+ "殊不知": 18924,
+ "惧怕": 18925,
+ "痣": 18926,
+ "一去": 18927,
+ "暴晒": 18928,
+ "图中": 18929,
+ "毕业证": 18930,
+ "果冻": 18931,
+ "铺": 18932,
+ "序号": 18933,
+ "久治不愈": 18934,
+ "外阴部": 18935,
+ "投机": 18936,
+ "分割线": 18937,
+ "法力": 18938,
+ "转身": 18939,
+ "几步": 18940,
+ "农场": 18941,
+ "丝绸": 18942,
+ "戈尔": 18943,
+ "从左到右": 18944,
+ "绝缘": 18945,
+ "等离子": 18946,
+ "双语": 18947,
+ "异物感": 18948,
+ "个人卫生": 18949,
+ "常在": 18950,
+ "水样": 18951,
+ "游泳池": 18952,
+ "生理盐水": 18953,
+ "读研": 18954,
+ "那句": 18955,
+ "底子": 18956,
+ "金山": 18957,
+ "开发者": 18958,
+ "莎": 18959,
+ "触摸屏": 18960,
+ "职业规划": 18961,
+ "B2B": 18962,
+ "电商": 18963,
+ "威尼斯": 18964,
+ "染发": 18965,
+ "怼": 18966,
+ "λ": 18967,
+ "低压": 18968,
+ "158": 18969,
+ "119": 18970,
+ "很慢": 18971,
+ "113": 18972,
+ "宁波": 18973,
+ "哥们儿": 18974,
+ "游击队": 18975,
+ "手柄": 18976,
+ "虫子": 18977,
+ "小红": 18978,
+ "螨": 18979,
+ "洗衣粉": 18980,
+ "害虫": 18981,
+ "塑料袋": 18982,
+ "少时": 18983,
+ "始祖": 18984,
+ "葬": 18985,
+ "山下": 18986,
+ "垂": 18987,
+ "后宫": 18988,
+ "离世": 18989,
+ "未有": 18990,
+ "陵墓": 18991,
+ "墓葬": 18992,
+ "县城": 18993,
+ "心律不齐": 18994,
+ "白内障": 18995,
+ "首领": 18996,
+ "千古": 18997,
+ "猪笼草": 18998,
+ "净化器": 18999,
+ "原产": 19000,
+ "居室": 19001,
+ "滋生": 19002,
+ "源头": 19003,
+ "养护": 19004,
+ "车速": 19005,
+ "强劲": 19006,
+ "运球": 19007,
+ "沙特": 19008,
+ "狠狠": 19009,
+ "借鉴": 19010,
+ "真空": 19011,
+ "光是": 19012,
+ "炸鸡": 19013,
+ "泡打粉": 19014,
+ "调制": 19015,
+ "时差": 19016,
+ "圈内": 19017,
+ "定价": 19018,
+ "夏令时": 19019,
+ "揭示": 19020,
+ "船长": 19021,
+ "机长": 19022,
+ "水手": 19023,
+ "防风": 19024,
+ "愉悦": 19025,
+ "offer": 19026,
+ "don": 19027,
+ "they": 19028,
+ "check": 19029,
+ "繁重": 19030,
+ "另一类": 19031,
+ "实则": 19032,
+ "拘留": 19033,
+ "官场": 19034,
+ "奉献": 19035,
+ "市委书记": 19036,
+ "王安石": 19037,
+ "伺候": 19038,
+ "看望": 19039,
+ "落差": 19040,
+ "热衷于": 19041,
+ "帕金森": 19042,
+ "脑出血": 19043,
+ "多巴胺": 19044,
+ "特效药": 19045,
+ "帕金森病": 19046,
+ "复古": 19047,
+ "去处": 19048,
+ "hcg": 19049,
+ "卵巢囊肿": 19050,
+ "咋办": 19051,
+ "脑血管病": 19052,
+ "买单": 19053,
+ "算术": 19054,
+ "党委书记": 19055,
+ "想必": 19056,
+ "松树": 19057,
+ "压缩机": 19058,
+ "供水": 19059,
+ "五月天": 19060,
+ "风筝": 19061,
+ "防弹": 19062,
+ "轿车": 19063,
+ "人想": 19064,
+ "Big": 19065,
+ "World": 19066,
+ "Me": 19067,
+ "because": 19068,
+ "come": 19069,
+ "Don": 19070,
+ "original": 19071,
+ "ll": 19072,
+ "Your": 19073,
+ "heart": 19074,
+ "Day": 19075,
+ "went": 19076,
+ "after": 19077,
+ "合唱": 19078,
+ "ing": 19079,
+ "あ": 19080,
+ "と": 19081,
+ "深海": 19082,
+ "ù": 19083,
+ "islike": 19084,
+ "Home": 19085,
+ "も": 19086,
+ "で": 19087,
+ "に": 19088,
+ "そ": 19089,
+ "れ": 19090,
+ "EVA": 19091,
+ "can": 19092,
+ "イ": 19093,
+ "ア": 19094,
+ "Life": 19095,
+ "去向": 19096,
+ "せ": 19097,
+ "暴风雨": 19098,
+ "一阵子": 19099,
+ "从那以后": 19100,
+ "师姐": 19101,
+ "赔钱": 19102,
+ "债权": 19103,
+ "征求": 19104,
+ "广告语": 19105,
+ "坏人": 19106,
+ "深入人心": 19107,
+ "中华民族": 19108,
+ "热潮": 19109,
+ "承载": 19110,
+ "科学知识": 19111,
+ "摘录": 19112,
+ "热力学": 19113,
+ "态": 19114,
+ "电极": 19115,
+ "涵盖": 19116,
+ "物流": 19117,
+ "低成本": 19118,
+ "不值钱": 19119,
+ "说点": 19120,
+ "血腥": 19121,
+ "本地人": 19122,
+ "我姐": 19123,
+ "退役": 19124,
+ "我查": 19125,
+ "干吗": 19126,
+ "本赛季": 19127,
+ "柏林": 19128,
+ "少林": 19129,
+ "巨星": 19130,
+ "嘉宾": 19131,
+ "新专辑": 19132,
+ "回馈": 19133,
+ "拼图": 19134,
+ "亮相": 19135,
+ "彩妆": 19136,
+ "业余": 19137,
+ "粉底": 19138,
+ "贴合": 19139,
+ "遮": 19140,
+ "遮住": 19141,
+ "卸妆": 19142,
+ "印记": 19143,
+ "眼影": 19144,
+ "淡淡的": 19145,
+ "眼线": 19146,
+ "尾部": 19147,
+ "吃完饭": 19148,
+ "海绵": 19149,
+ "骨架": 19150,
+ "黑洞": 19151,
+ "具体地说": 19152,
+ "恒星": 19153,
+ "天体": 19154,
+ "稀薄": 19155,
+ "腰酸背痛": 19156,
+ "妇科炎症": 19157,
+ "一章": 19158,
+ "作物": 19159,
+ "救治": 19160,
+ "液化": 19161,
+ "流动": 19162,
+ "单反": 19163,
+ "微单": 19164,
+ "感光": 19165,
+ "夜景": 19166,
+ "触摸": 19167,
+ "对焦": 19168,
+ "快门": 19169,
+ "全景": 19170,
+ "手持": 19171,
+ "提了": 19172,
+ "配送": 19173,
+ "333": 19174,
+ "转自": 19175,
+ "圣殿": 19176,
+ "初入": 19177,
+ "兵器": 19178,
+ "连环": 19179,
+ "猥琐": 19180,
+ "第三种": 19181,
+ "琴": 19182,
+ "平均分": 19183,
+ "办公桌": 19184,
+ "供血": 19185,
+ "绝大部分": 19186,
+ "胰腺": 19187,
+ "胖子": 19188,
+ "萨尔": 19189,
+ "绕过": 19190,
+ "走近": 19191,
+ "印章": 19192,
+ "皂": 19193,
+ "大二": 19194,
+ "吹牛": 19195,
+ "端午节": 19196,
+ "粽子": 19197,
+ "下课": 19198,
+ "一节": 19199,
+ "嫌疑": 19200,
+ "张扬": 19201,
+ "甘心": 19202,
+ "无望": 19203,
+ "不妥": 19204,
+ "一头": 19205,
+ "共勉": 19206,
+ "休": 19207,
+ "变暖": 19208,
+ "未找到": 19209,
+ "穿过": 19210,
+ "仓储": 19211,
+ "着装": 19212,
+ "产品质量": 19213,
+ "泛滥": 19214,
+ "管理工具": 19215,
+ "调配": 19216,
+ "独占": 19217,
+ "该值": 19218,
+ "第一份": 19219,
+ "自信心": 19220,
+ "适配": 19221,
+ "计算机网络": 19222,
+ "搭建": 19223,
+ "桌面上": 19224,
+ "值得一提的是": 19225,
+ "Machine": 19226,
+ "克隆": 19227,
+ "离异": 19228,
+ "体谅": 19229,
+ "伴侣": 19230,
+ "春晚": 19231,
+ "舱": 19232,
+ "身分": 19233,
+ "开元": 19234,
+ "唐玄宗": 19235,
+ "绣": 19236,
+ "玄": 19237,
+ "画家": 19238,
+ "司": 19239,
+ "印刷": 19240,
+ "进士": 19241,
+ "画像": 19242,
+ "敦煌": 19243,
+ "金陵": 19244,
+ "南朝": 19245,
+ "方言": 19246,
+ "天子": 19247,
+ "音节": 19248,
+ "明清": 19249,
+ "职能": 19250,
+ "改称": 19251,
+ "芒": 19252,
+ "磨擦": 19253,
+ "洗剂": 19254,
+ "揉搓": 19255,
+ "分叉": 19256,
+ "污迹": 19257,
+ "鼻孔": 19258,
+ "货币基金": 19259,
+ "闰年": 19260,
+ "县级": 19261,
+ "影院": 19262,
+ "我俩": 19263,
+ "紫癜": 19264,
+ "肾炎": 19265,
+ "不比": 19266,
+ "抛砖引玉": 19267,
+ "脑脊液": 19268,
+ "衰退": 19269,
+ "宣": 19270,
+ "专员": 19271,
+ "负数": 19272,
+ "教书": 19273,
+ "商业活动": 19274,
+ "注视": 19275,
+ "无与伦比": 19276,
+ "省去": 19277,
+ "能耗": 19278,
+ "满足用户": 19279,
+ "沉闷": 19280,
+ "相间": 19281,
+ "配色": 19282,
+ "卖点": 19283,
+ "分子式": 19284,
+ "容许": 19285,
+ "穿戴": 19286,
+ "国庆节": 19287,
+ "古巴": 19288,
+ "柬埔寨": 19289,
+ "拿破仑": 19290,
+ "加纳": 19291,
+ "共产党": 19292,
+ "1944": 19293,
+ "专制": 19294,
+ "天皇": 19295,
+ "尼泊尔": 19296,
+ "大革命": 19297,
+ "1789": 19298,
+ "监狱": 19299,
+ "1926": 19300,
+ "废除": 19301,
+ "大韩民国": 19302,
+ "纽西兰": 19303,
+ "孟加拉": 19304,
+ "尼亚": 19305,
+ "义大利": 19306,
+ "古斯塔夫": 19307,
+ "马达加斯加": 19308,
+ "委内瑞拉": 19309,
+ "伊拉克": 19310,
+ "哥伦比亚": 19311,
+ "玻利维亚": 19312,
+ "叙利亚": 19313,
+ "中华民国": 19314,
+ "巴拿马": 19315,
+ "黎巴嫩": 19316,
+ "阿拉伯": 19317,
+ "哈萨克": 19318,
+ "不丹": 19319,
+ "腹中": 19320,
+ "脑炎": 19321,
+ "变相": 19322,
+ "心理咨询": 19323,
+ "援助": 19324,
+ "病态": 19325,
+ "五次": 19326,
+ "辗转": 19327,
+ "那一刻": 19328,
+ "简约": 19329,
+ "神情": 19330,
+ "性命": 19331,
+ "通透": 19332,
+ "不忍": 19333,
+ "倾": 19334,
+ "无畏": 19335,
+ "流体": 19336,
+ "决定性": 19337,
+ "晕厥": 19338,
+ "震颤": 19339,
+ "苍白": 19340,
+ "口吃": 19341,
+ "韩语": 19342,
+ "时为": 19343,
+ "公顷": 19344,
+ "宫殿": 19345,
+ "杰出": 19346,
+ "斋": 19347,
+ "宫中": 19348,
+ "乾隆": 19349,
+ "古装": 19350,
+ "游乐场": 19351,
+ "一般性": 19352,
+ "大肠杆菌": 19353,
+ "高等教育": 19354,
+ "获得者": 19355,
+ "弱势群体": 19356,
+ "诚然": 19357,
+ "数百万": 19358,
+ "认可度": 19359,
+ "重庆市": 19360,
+ "市政府": 19361,
+ "本科毕业": 19362,
+ "读完": 19363,
+ "答辩": 19364,
+ "整整": 19365,
+ "年头": 19366,
+ "高得": 19367,
+ "出题": 19368,
+ "象征性": 19369,
+ "不及格": 19370,
+ "营业部": 19371,
+ "兴业": 19372,
+ "科比": 19373,
+ "小熊": 19374,
+ "睡衣": 19375,
+ "Nike": 19376,
+ "球场": 19377,
+ "低密度": 19378,
+ "橄榄球": 19379,
+ "绿色植物": 19380,
+ "主人公": 19381,
+ "赵国": 19382,
+ "260": 19383,
+ "保持联系": 19384,
+ "成天": 19385,
+ "ee": 19386,
+ "which": 19387,
+ "角色扮演": 19388,
+ "户外运动": 19389,
+ "主食": 19390,
+ "贝壳": 19391,
+ "甲状腺素": 19392,
+ "甲基": 19393,
+ "乳制品": 19394,
+ "小编": 19395,
+ "多地": 19396,
+ "顺应": 19397,
+ "由此可见": 19398,
+ "逻辑": 19399,
+ "削弱": 19400,
+ "奶制品": 19401,
+ "二进制": 19402,
+ "TCP": 19403,
+ "推断": 19404,
+ "雨水": 19405,
+ "三四": 19406,
+ "饥荒": 19407,
+ "古龙": 19408,
+ "郭靖": 19409,
+ "杨过": 19410,
+ "张无忌": 19411,
+ "可比性": 19412,
+ "招式": 19413,
+ "功力": 19414,
+ "倚天": 19415,
+ "自如": 19416,
+ "寻常": 19417,
+ "换言之": 19418,
+ "接任": 19419,
+ "功劳": 19420,
+ "射雕": 19421,
+ "六大": 19422,
+ "救人": 19423,
+ "至极": 19424,
+ "好孩子": 19425,
+ "颓废": 19426,
+ "体中": 19427,
+ "佼佼者": 19428,
+ "机灵": 19429,
+ "自小": 19430,
+ "近乎": 19431,
+ "飞跃": 19432,
+ "隐居": 19433,
+ "荒废": 19434,
+ "总分": 19435,
+ "71": 19436,
+ "天下第一": 19437,
+ "水母": 19438,
+ "诸葛": 19439,
+ "流星": 19440,
+ "华山": 19441,
+ "游荡": 19442,
+ "药师": 19443,
+ "深沉": 19444,
+ "倔强": 19445,
+ "劫": 19446,
+ "慕容": 19447,
+ "梦中": 19448,
+ "杂质": 19449,
+ "隐隐": 19450,
+ "救助": 19451,
+ "解惑": 19452,
+ "好学": 19453,
+ "鄙人": 19454,
+ "痴迷": 19455,
+ "钢板": 19456,
+ "第一家": 19457,
+ "产业链": 19458,
+ "技术含量": 19459,
+ "高精度": 19460,
+ "知识产权": 19461,
+ "价格便宜": 19462,
+ "宽敞": 19463,
+ "架子": 19464,
+ "好感度": 19465,
+ "何在": 19466,
+ "钞票": 19467,
+ "置换": 19468,
+ "伊万": 19469,
+ "兵力": 19470,
+ "赚取": 19471,
+ "isa": 19472,
+ "交通安全": 19473,
+ "标语": 19474,
+ "气态": 19475,
+ "混合物": 19476,
+ "水蒸气": 19477,
+ "一束": 19478,
+ "南边": 19479,
+ "民航": 19480,
+ "省市": 19481,
+ "壬辰": 19482,
+ "二十一": 19483,
+ "辛卯": 19484,
+ "小子": 19485,
+ "心肺": 19486,
+ "超标": 19487,
+ "举重": 19488,
+ "急促": 19489,
+ "健身运动": 19490,
+ "女性朋友": 19491,
+ "西山": 19492,
+ "缠绵": 19493,
+ "校区": 19494,
+ "海淀区": 19495,
+ "朝阳区": 19496,
+ "斗": 19497,
+ "亮度": 19498,
+ "贪污": 19499,
+ "板子": 19500,
+ "总计": 19501,
+ "137": 19502,
+ "名著": 19503,
+ "臣": 19504,
+ "泻药": 19505,
+ "药材": 19506,
+ "制药": 19507,
+ "其所": 19508,
+ "承": 19509,
+ "含糖": 19510,
+ "圆心": 19511,
+ "2k": 19512,
+ "|": 19513,
+ "连胜": 19514,
+ "本场": 19515,
+ "公安部": 19516,
+ "执照": 19517,
+ "同班同学": 19518,
+ "省份": 19519,
+ "强制性": 19520,
+ "丹参": 19521,
+ "临床实践": 19522,
+ "附上": 19523,
+ "传球": 19524,
+ "所能": 19525,
+ "化为": 19526,
+ "士气": 19527,
+ "指明": 19528,
+ "道路": 19529,
+ "烤鸡": 19530,
+ "老王": 19531,
+ "退还": 19532,
+ "案件": 19533,
+ "出具": 19534,
+ "must": 19535,
+ "阶": 19536,
+ "托运": 19537,
+ "安检": 19538,
+ "试管婴儿": 19539,
+ "5G": 19540,
+ "关键字": 19541,
+ "限额": 19542,
+ "物件": 19543,
+ "念佛": 19544,
+ "喝醉": 19545,
+ "税务机关": 19546,
+ "滞留": 19547,
+ "信号灯": 19548,
+ "堵车": 19549,
+ "玩耍": 19550,
+ "草丛": 19551,
+ "尖锐": 19552,
+ "超车": 19553,
+ "增压": 19554,
+ "高品质": 19555,
+ "经济性": 19556,
+ "大王": 19557,
+ "大巴": 19558,
+ "文化遗产": 19559,
+ "名录": 19560,
+ "喷泉": 19561,
+ "川菜": 19562,
+ "逛逛": 19563,
+ "西晋": 19564,
+ "避": 19565,
+ "导游": 19566,
+ "南宋": 19567,
+ "古建筑": 19568,
+ "禅师": 19569,
+ "弟子": 19570,
+ "卧": 19571,
+ "钱币": 19572,
+ "正德": 19573,
+ "监察": 19574,
+ "御史": 19575,
+ "自然风景": 19576,
+ "民居": 19577,
+ "四面": 19578,
+ "标志性": 19579,
+ "郊外": 19580,
+ "山庄": 19581,
+ "子弟": 19582,
+ "起兵": 19583,
+ "白居易": 19584,
+ "刺史": 19585,
+ "八角": 19586,
+ "地基": 19587,
+ "夹层": 19588,
+ "书法家": 19589,
+ "陡峭": 19590,
+ "著作": 19591,
+ "之谜": 19592,
+ "刷洗": 19593,
+ "东侧": 19594,
+ "西面": 19595,
+ "欢乐": 19596,
+ "高空": 19597,
+ "魔幻": 19598,
+ "充气": 19599,
+ "侏罗纪": 19600,
+ "89": 19601,
+ "辱骂": 19602,
+ "驾校": 19603,
+ "班车": 19604,
+ "我妈": 19605,
+ "聊到": 19606,
+ "妥协": 19607,
+ "读写": 19608,
+ "读取": 19609,
+ "音乐学院": 19610,
+ "播音": 19611,
+ "即兴": 19612,
+ "鲜为人知": 19613,
+ "拥": 19614,
+ "用地": 19615,
+ "这支": 19616,
+ "今生": 19617,
+ "仍为": 19618,
+ "点亮": 19619,
+ "回老家": 19620,
+ "001": 19621,
+ "173": 19622,
+ "异": 19623,
+ "笔画": 19624,
+ "系主任": 19625,
+ "赵薇": 19626,
+ "绘制": 19627,
+ "绘图": 19628,
+ "found": 19629,
+ "any": 19630,
+ "operation": 19631,
+ "case": 19632,
+ "卖方": 19633,
+ "买方": 19634,
+ "勤劳": 19635,
+ "GDP": 19636,
+ "排名第": 19637,
+ "占地": 19638,
+ "麒麟": 19639,
+ "犯错": 19640,
+ "沉浸": 19641,
+ "今天天气": 19642,
+ "雨伞": 19643,
+ "雷电": 19644,
+ "解决不了": 19645,
+ "强迫症": 19646,
+ "两件": 19647,
+ "紧迫": 19648,
+ "彩票": 19649,
+ "能活": 19650,
+ "承受能力": 19651,
+ "唔": 19652,
+ "环境污染": 19653,
+ "科学实验": 19654,
+ "喝奶": 19655,
+ "三倍": 19656,
+ "末尾": 19657,
+ "个位数": 19658,
+ "相加": 19659,
+ "三位": 19660,
+ "立足": 19661,
+ "一出": 19662,
+ "出生日期": 19663,
+ "国籍": 19664,
+ "曾效力": 19665,
+ "甲级联赛": 19666,
+ "南美": 19667,
+ "词来": 19668,
+ "百年孤独": 19669,
+ "卡洛斯": 19670,
+ "不经意": 19671,
+ "称作": 19672,
+ "截然不同": 19673,
+ "中产阶级": 19674,
+ "路易斯": 19675,
+ "固执": 19676,
+ "球衣": 19677,
+ "奢侈": 19678,
+ "袖子": 19679,
+ "莱昂纳多": 19680,
+ "忠实": 19681,
+ "博": 19682,
+ "球星": 19683,
+ "霍": 19684,
+ "出战": 19685,
+ "举起": 19686,
+ "口吐白沫": 19687,
+ "补液": 19688,
+ "瘤": 19689,
+ "体长": 19690,
+ "肛周": 19691,
+ "HPV": 19692,
+ "发白": 19693,
+ "击剑": 19694,
+ "倒退": 19695,
+ "何去何从": 19696,
+ "腋下": 19697,
+ "看不出": 19698,
+ "膝关节": 19699,
+ "因子": 19700,
+ "侵权": 19701,
+ "网络小说": 19702,
+ "创作者": 19703,
+ "单选": 19704,
+ "再点": 19705,
+ "灌肠": 19706,
+ "适用范围": 19707,
+ "电量": 19708,
+ "树上": 19709,
+ "维基百科": 19710,
+ "百科全书": 19711,
+ "植物学": 19712,
+ "琅": 19713,
+ "人身攻击": 19714,
+ "松下": 19715,
+ "镜头": 19716,
+ "焦距": 19717,
+ "粉底液": 19718,
+ "7.8": 19719,
+ "血管瘤": 19720,
+ "良性肿瘤": 19721,
+ "充盈": 19722,
+ "磁共振": 19723,
+ "电磁炉": 19724,
+ "微波炉": 19725,
+ "全愈": 19726,
+ "渗出": 19727,
+ "连带": 19728,
+ "结肠炎": 19729,
+ "承接": 19730,
+ "转帐": 19731,
+ "365": 19732,
+ "Data": 19733,
+ "dot": 19734,
+ "功课": 19735,
+ "YJ": 19736,
+ "zip": 19737,
+ "老牌": 19738,
+ "文件格式": 19739,
+ "政府部门": 19740,
+ "私家车": 19741,
+ "所在城市": 19742,
+ "谈过": 19743,
+ "咖啡厅": 19744,
+ "仅限于": 19745,
+ "没太大": 19746,
+ "市里": 19747,
+ "要来": 19748,
+ "厌烦": 19749,
+ "长发": 19750,
+ "甲方": 19751,
+ "乙方": 19752,
+ "け": 19753,
+ "馆长": 19754,
+ "1981": 19755,
+ "年时": 19756,
+ "非常少": 19757,
+ "央行": 19758,
+ "温顺": 19759,
+ "可追溯": 19760,
+ "1935": 19761,
+ "下水": 19762,
+ "胀": 19763,
+ "预产期": 19764,
+ "无耻": 19765,
+ "止步": 19766,
+ "寂静": 19767,
+ "佛陀": 19768,
+ "冠": 19769,
+ "侦察": 19770,
+ "轰炸": 19771,
+ "鱼雷": 19772,
+ "轰炸机": 19773,
+ "蛾": 19774,
+ "长尾": 19775,
+ "川崎": 19776,
+ "单侧": 19777,
+ "过劳": 19778,
+ "贝尔": 19779,
+ "劈": 19780,
+ "暖": 19781,
+ "侧重于": 19782,
+ "无名指": 19783,
+ "眼眶": 19784,
+ "淋巴": 19785,
+ "积水": 19786,
+ "家住": 19787,
+ "国企": 19788,
+ "ま": 19789,
+ "だ": 19790,
+ "く": 19791,
+ "ど": 19792,
+ "C语言": 19793,
+ "赋值": 19794,
+ "穆斯林": 19795,
+ "阿拉伯人": 19796,
+ "突厥": 19797,
+ "原著": 19798,
+ "远古": 19799,
+ "讲故事": 19800,
+ "体裁": 19801,
+ "消遣": 19802,
+ "前人": 19803,
+ "行文": 19804,
+ "偏重": 19805,
+ "宽泛": 19806,
+ "包容性": 19807,
+ "语录": 19808,
+ "倡导": 19809,
+ "末年": 19810,
+ "古今": 19811,
+ "流派": 19812,
+ "е": 19813,
+ "亚里士多德": 19814,
+ "容纳": 19815,
+ "小品": 19816,
+ "互不": 19817,
+ "八卦": 19818,
+ "巴特": 19819,
+ "撰写": 19820,
+ "汇编": 19821,
+ "与非": 19822,
+ "多条": 19823,
+ "詹": 19824,
+ "遗留": 19825,
+ "排版": 19826,
+ "上手": 19827,
+ "LG": 19828,
+ "光纤": 19829,
+ "交换机": 19830,
+ "下行": 19831,
+ "老式": 19832,
+ "驻地": 19833,
+ "最靠近": 19834,
+ "path": 19835,
+ "App": 19836,
+ "Input": 19837,
+ "战败": 19838,
+ "整容": 19839,
+ "弯腰": 19840,
+ "旅店": 19841,
+ "开销": 19842,
+ "交通状况": 19843,
+ "薄弱": 19844,
+ "白白": 19845,
+ "东海岸": 19846,
+ "粮食": 19847,
+ "潜艇": 19848,
+ "小规模": 19849,
+ "外文": 19850,
+ "混杂": 19851,
+ "z0": 19852,
+ "新书": 19853,
+ "新歌": 19854,
+ "四项": 19855,
+ "六项": 19856,
+ "封顶": 19857,
+ "有家": 19858,
+ "发电": 19859,
+ "几百块": 19860,
+ "彼此之间": 19861,
+ "感叹": 19862,
+ "玄学": 19863,
+ "三角函数": 19864,
+ "根号": 19865,
+ "动感": 19866,
+ "人像": 19867,
+ "人到": 19868,
+ "大力支持": 19869,
+ "计算方法": 19870,
+ "除数": 19871,
+ "余数": 19872,
+ "要花": 19873,
+ "停育": 19874,
+ "免疫性": 19875,
+ "保胎": 19876,
+ "挑衅": 19877,
+ "罪行": 19878,
+ "肉食动物": 19879,
+ "第一类": 19880,
+ "破溃": 19881,
+ "肌腱": 19882,
+ "监理": 19883,
+ "2018": 19884,
+ "辛未": 19885,
+ "同性": 19886,
+ "运": 19887,
+ "从头": 19888,
+ "学士学位": 19889,
+ "涨幅": 19890,
+ "中山大学": 19891,
+ "ASCII": 19892,
+ "微循环": 19893,
+ "确信": 19894,
+ "等同": 19895,
+ "SQL": 19896,
+ "Java": 19897,
+ "面向对象": 19898,
+ "程序设计": 19899,
+ "露营": 19900,
+ "户外活动": 19901,
+ "内蒙": 19902,
+ "出血性": 19903,
+ "深蓝色": 19904,
+ "尖端": 19905,
+ "内陷": 19906,
+ "黑点": 19907,
+ "皮肤癌": 19908,
+ "基部": 19909,
+ "交错": 19910,
+ "白点": 19911,
+ "块状": 19912,
+ "学名": 19913,
+ "奇数": 19914,
+ "钝": 19915,
+ "树皮": 19916,
+ "幼时": 19917,
+ "长约": 19918,
+ "花萼": 19919,
+ "干旱": 19920,
+ "绿化": 19921,
+ "账单": 19922,
+ "好开心": 19923,
+ "Mark": 19924,
+ "He": 19925,
+ "before": 19926,
+ "chool": 19927,
+ "would": 19928,
+ "keep": 19929,
+ "where": 19930,
+ "序": 19931,
+ "汉语拼音": 19932,
+ "详见": 19933,
+ "潜伏": 19934,
+ "д": 19935,
+ "陪同": 19936,
+ "白领": 19937,
+ "海王星": 19938,
+ "旋风": 19939,
+ "福特": 19940,
+ "螺旋": 19941,
+ "转折": 19942,
+ "转好": 19943,
+ "担忧": 19944,
+ "下文": 19945,
+ "1977": 19946,
+ "东路": 19947,
+ "洗牙": 19948,
+ "流行性": 19949,
+ "风热": 19950,
+ "流涕": 19951,
+ "正气": 19952,
+ "Enter": 19953,
+ "施展": 19954,
+ "侦测": 19955,
+ "第一句": 19956,
+ "次级": 19957,
+ "第一行": 19958,
+ "节省时间": 19959,
+ "第二句": 19960,
+ "窗外": 19961,
+ "文具": 19962,
+ "胶水": 19963,
+ "自大": 19964,
+ "几百万": 19965,
+ "十字军": 19966,
+ "斯塔": 19967,
+ "当真": 19968,
+ "俯瞰": 19969,
+ "暗淡": 19970,
+ "投射": 19971,
+ "脑力": 19972,
+ "带点": 19973,
+ "红豆": 19974,
+ "花生米": 19975,
+ "呼吁": 19976,
+ "谷物": 19977,
+ "煎蛋": 19978,
+ "消融": 19979,
+ "二本": 19980,
+ "梯度": 19981,
+ "偏瘫": 19982,
+ "剌": 19983,
+ "阿姨": 19984,
+ "优惠活动": 19985,
+ "交会": 19986,
+ "写日记": 19987,
+ "赌博": 19988,
+ "酒后": 19989,
+ "命理": 19990,
+ "梅花": 19991,
+ "水生": 19992,
+ "女巫": 19993,
+ "赖": 19994,
+ "指以": 19995,
+ "本金": 19996,
+ "择偶": 19997,
+ "盔甲": 19998,
+ "一夜之间": 19999,
+ "招呼": 20000,
+ "知识分子": 20001,
+ "谋生": 20002,
+ "各行各业": 20003,
+ "内线": 20004,
+ "句式": 20005,
+ "填词": 20006,
+ "结痂": 20007,
+ "勤换": 20008,
+ "非主流": 20009,
+ "打游戏": 20010,
+ "天平": 20011,
+ "遍地": 20012,
+ "潮汐": 20013,
+ "月球": 20014,
+ "公转": 20015,
+ "最远": 20016,
+ "腺嘌呤": 20017,
+ "多发性": 20018,
+ "三叉神经痛": 20019,
+ "坐骨神经": 20020,
+ "放射线": 20021,
+ "氨基": 20022,
+ "动力学": 20023,
+ "血浆": 20024,
+ "峰值": 20025,
+ "英文名称": 20026,
+ "尼克": 20027,
+ "ATP": 20028,
+ "试剂": 20029,
+ "精密": 20030,
+ "准确度": 20031,
+ "年版": 20032,
+ "伴发": 20033,
+ "阻滞": 20034,
+ "提取物": 20035,
+ "二甲": 20036,
+ "自由基": 20037,
+ "胶原蛋白": 20038,
+ "秋冬": 20039,
+ "宣称": 20040,
+ "发挥作用": 20041,
+ "自发性": 20042,
+ "性皮炎": 20043,
+ "磨合": 20044,
+ "高速公路": 20045,
+ "提速": 20046,
+ "胃痛": 20047,
+ "辖区": 20048,
+ "信封": 20049,
+ "拔出": 20050,
+ "电荷": 20051,
+ "门将": 20052,
+ "续约": 20053,
+ "木制": 20054,
+ "耐用": 20055,
+ "安装程序": 20056,
+ "被困": 20057,
+ "屋子里": 20058,
+ "一通": 20059,
+ "桃园": 20060,
+ "泡茶": 20061,
+ "房东": 20062,
+ "发散": 20063,
+ "扇子": 20064,
+ "互换": 20065,
+ "浮力": 20066,
+ "试管": 20067,
+ "漂浮": 20068,
+ "中队": 20069,
+ "法军": 20070,
+ "宣战": 20071,
+ "实际行动": 20072,
+ "希特勒": 20073,
+ "从容": 20074,
+ "战事": 20075,
+ "上空": 20076,
+ "苏军": 20077,
+ "东欧": 20078,
+ "衰弱": 20079,
+ "国力": 20080,
+ "外用药": 20081,
+ "纳米": 20082,
+ "流水线": 20083,
+ "渲染": 20084,
+ "至尊": 20085,
+ "手术室": 20086,
+ "大大降低": 20087,
+ "惊吓": 20088,
+ "体格": 20089,
+ "不洁": 20090,
+ "冠状病毒": 20091,
+ "滥用": 20092,
+ "炎症性": 20093,
+ "淋巴瘤": 20094,
+ "结肠癌": 20095,
+ "直肠癌": 20096,
+ "胃癌": 20097,
+ "阻塞性": 20098,
+ "质感": 20099,
+ "对齐": 20100,
+ "不齐": 20101,
+ "人头": 20102,
+ "计算器": 20103,
+ "Adobe": 20104,
+ "所处": 20105,
+ "现时": 20106,
+ "提高效率": 20107,
+ "三维": 20108,
+ "灾区": 20109,
+ "汶川": 20110,
+ "判刑": 20111,
+ "判处": 20112,
+ "刑事": 20113,
+ "民事": 20114,
+ "被判": 20115,
+ "判决": 20116,
+ "及时处理": 20117,
+ "旋律": 20118,
+ "蜀": 20119,
+ "州府": 20120,
+ "引人入胜": 20121,
+ "动物园": 20122,
+ "画廊": 20123,
+ "春日": 20124,
+ "高新技术": 20125,
+ "卡里": 20126,
+ "远高于": 20127,
+ "器件": 20128,
+ "同属": 20129,
+ "鲨": 20130,
+ "池": 20131,
+ "存储器": 20132,
+ "很烂": 20133,
+ "在实践中": 20134,
+ "语境": 20135,
+ "笔试": 20136,
+ "归类": 20137,
+ "元音": 20138,
+ "ad": 20139,
+ "et": 20140,
+ "tep": 20141,
+ "nice": 20142,
+ "hot": 20143,
+ "辅音": 20144,
+ "information": 20145,
+ "ma": 20146,
+ "orange": 20147,
+ "同义词": 20148,
+ "learn": 20149,
+ "great": 20150,
+ "watch": 20151,
+ "enjoy": 20152,
+ "quick": 20153,
+ "two": 20154,
+ "blue": 20155,
+ "happy": 20156,
+ "Tree": 20157,
+ "open": 20158,
+ "词根": 20159,
+ "care": 20160,
+ "迷路": 20161,
+ "降落": 20162,
+ "参考书": 20163,
+ "写法": 20164,
+ "透气性": 20165,
+ "拱": 20166,
+ "老爷子": 20167,
+ "扭动": 20168,
+ "坠毁": 20169,
+ "失控": 20170,
+ "跳伞": 20171,
+ "挽救": 20172,
+ "事迹": 20173,
+ "制订": 20174,
+ "戏剧": 20175,
+ "字符串": 20176,
+ "坐落": 20177,
+ "天津市": 20178,
+ "内幕": 20179,
+ "狡猾": 20180,
+ "事发": 20181,
+ "捐款": 20182,
+ "CNN": 20183,
+ "解为": 20184,
+ "慈善机构": 20185,
+ "捐": 20186,
+ "万科": 20187,
+ "拉萨": 20188,
+ "募集": 20189,
+ "爱心": 20190,
+ "款项": 20191,
+ "海啸": 20192,
+ "职": 20193,
+ "党委": 20194,
+ "倡议": 20195,
+ "奖学金": 20196,
+ "该校": 20197,
+ "领养": 20198,
+ "贵州省": 20199,
+ "基金会": 20200,
+ "企业家": 20201,
+ "多样性": 20202,
+ "水杯": 20203,
+ "维度": 20204,
+ "宜居": 20205,
+ "自然环境": 20206,
+ "据悉": 20207,
+ "广深": 20208,
+ "第二届": 20209,
+ "号召": 20210,
+ "物种": 20211,
+ "白头": 20212,
+ "周边地区": 20213,
+ "贫困": 20214,
+ "抵达": 20215,
+ "意为": 20216,
+ "下颌": 20217,
+ "正经": 20218,
+ "雇主": 20219,
+ "发布会": 20220,
+ "戴着": 20221,
+ "一封": 20222,
+ "立案": 20223,
+ "阐述": 20224,
+ "咪": 20225,
+ "咒语": 20226,
+ "庙宇": 20227,
+ "恕": 20228,
+ "胍": 20229,
+ "坎": 20230,
+ "健": 20231,
+ "假名": 20232,
+ "五十": 20233,
+ "波音": 20234,
+ "小写": 20235,
+ "醉酒": 20236,
+ "脏器": 20237,
+ "食管": 20238,
+ "酒精肝": 20239,
+ "脑神经": 20240,
+ "低血糖": 20241,
+ "很帅": 20242,
+ "138": 20243,
+ "124": 20244,
+ "伏": 20245,
+ "纳": 20246,
+ "压榨": 20247,
+ "火鸡": 20248,
+ "近似": 20249,
+ "烟台": 20250,
+ "中西": 20251,
+ "法文": 20252,
+ "蕴含": 20253,
+ "摄氏": 20254,
+ "可乐": 20255,
+ "冰块": 20256,
+ "口音": 20257,
+ "珠": 20258,
+ "DD": 20259,
+ "英语翻译": 20260,
+ "even": 20261,
+ "little": 20262,
+ "leep": 20263,
+ "Facebook": 20264,
+ "网路": 20265,
+ "三千": 20266,
+ "自驾游": 20267,
+ "几十万": 20268,
+ "大涨": 20269,
+ "思绪": 20270,
+ "搁": 20271,
+ "短短的": 20272,
+ "牵手": 20273,
+ "英文翻译": 20274,
+ "入学": 20275,
+ "华人": 20276,
+ "多种语言": 20277,
+ "普通话": 20278,
+ "蚯蚓": 20279,
+ "鸭子": 20280,
+ "反转": 20281,
+ "购车": 20282,
+ "高斯": 20283,
+ "烧毁": 20284,
+ "左眼": 20285,
+ "眨眼": 20286,
+ "病历": 20287,
+ "CG": 20288,
+ "地址栏": 20289,
+ "性爱": 20290,
+ "契合": 20291,
+ "82": 20292,
+ "年末": 20293,
+ "调控": 20294,
+ "│": 20295,
+ "果": 20296,
+ "野心": 20297,
+ "恰": 20298,
+ "虐": 20299,
+ "故此": 20300,
+ "链条": 20301,
+ "掐": 20302,
+ "网购": 20303,
+ "大本营": 20304,
+ "丑": 20305,
+ "页码": 20306,
+ "头条": 20307,
+ "实习生": 20308,
+ "再度": 20309,
+ "一季度": 20310,
+ "午后": 20311,
+ "绝地": 20312,
+ "全线": 20313,
+ "人寿": 20314,
+ "净利润": 20315,
+ "同比": 20316,
+ "加息": 20317,
+ "借钱": 20318,
+ "市盈率": 20319,
+ "风速": 20320,
+ "嗓子疼": 20321,
+ "ó": 20322,
+ "è": 20323,
+ "eat": 20324,
+ "孟子": 20325,
+ "第四次": 20326,
+ "今早": 20327,
+ "店家": 20328,
+ "core": 20329,
+ "水是": 20330,
+ "回报率": 20331,
+ "基因突变": 20332,
+ "儿科": 20333,
+ "溶血性": 20334,
+ "长篇小说": 20335,
+ "书评": 20336,
+ "书架": 20337,
+ "访谈": 20338,
+ "气管炎": 20339,
+ "施治": 20340,
+ "穿行": 20341,
+ "喧嚣": 20342,
+ "岭南": 20343,
+ "跑鞋": 20344,
+ "索": 20345,
+ "极为重要": 20346,
+ "禁区": 20347,
+ "灯泡": 20348,
+ "制式": 20349,
+ "求生": 20350,
+ "刀具": 20351,
+ "囊括": 20352,
+ "巴克": 20353,
+ "原厂": 20354,
+ "远足": 20355,
+ "帐篷": 20356,
+ "双层": 20357,
+ "政治家": 20358,
+ "望远镜": 20359,
+ "阳光明媚": 20360,
+ "出行": 20361,
+ "传出": 20362,
+ "AM": 20363,
+ "美好时光": 20364,
+ "步枪": 20365,
+ "敬畏": 20366,
+ "顺利进行": 20367,
+ "精力充沛": 20368,
+ "猪蹄": 20369,
+ "飓风": 20370,
+ "吸血鬼": 20371,
+ "复仇": 20372,
+ "唤醒": 20373,
+ "钉": 20374,
+ "审判": 20375,
+ "发誓": 20376,
+ "麻药": 20377,
+ "呜": 20378,
+ "没劲": 20379,
+ "跳槽": 20380,
+ "求职者": 20381,
+ "乔布斯": 20382,
+ "SD": 20383,
+ "头皮屑": 20384,
+ "端点": 20385,
+ "茎": 20386,
+ "太阳光": 20387,
+ "大病": 20388,
+ "远超": 20389,
+ "mc": 20390,
+ "abc": 20391,
+ "摄影师": 20392,
+ "日系": 20393,
+ "单次": 20394,
+ "让步": 20395,
+ "短篇小说": 20396,
+ "几篇": 20397,
+ "佐料": 20398,
+ "邮寄": 20399,
+ "写个": 20400,
+ "演讲稿": 20401,
+ "文案": 20402,
+ "散文": 20403,
+ "字词": 20404,
+ "修辞": 20405,
+ "语言表达": 20406,
+ "写作技巧": 20407,
+ "记录下来": 20408,
+ "推崇": 20409,
+ "源泉": 20410,
+ "书包": 20411,
+ "课上": 20412,
+ "引诱": 20413,
+ "第二位": 20414,
+ "长毛": 20415,
+ "夏令营": 20416,
+ "天际": 20417,
+ "马路上": 20418,
+ "怀抱": 20419,
+ "难闻": 20420,
+ "河岸": 20421,
+ "图画": 20422,
+ "小姑娘": 20423,
+ "美景": 20424,
+ "金华": 20425,
+ "院子": 20426,
+ "摔跤": 20427,
+ "得益于": 20428,
+ "阵地": 20429,
+ "知识面": 20430,
+ "小伙伴": 20431,
+ "看个": 20432,
+ "驾驶证": 20433,
+ "大队": 20434,
+ "圣诞": 20435,
+ "少儿": 20436,
+ "城堡": 20437,
+ "万千": 20438,
+ "文法": 20439,
+ "咖啡馆": 20440,
+ "莎士比亚": 20441,
+ "联合国": 20442,
+ "环球": 20443,
+ "哈利": 20444,
+ "li": 20445,
+ "Lily": 20446,
+ "天龙八部": 20447,
+ "鹿": 20448,
+ "签约": 20449,
+ "业务范围": 20450,
+ "索取": 20451,
+ "煤气": 20452,
+ "竣工": 20453,
+ "婚纱照": 20454,
+ "code": 20455,
+ "临产": 20456,
+ "高浓度": 20457,
+ "步入": 20458,
+ "北半球": 20459,
+ "南半球": 20460,
+ "沿海地区": 20461,
+ "降水": 20462,
+ "拉布拉多": 20463,
+ "单场": 20464,
+ "肝腹水": 20465,
+ "丙肝": 20466,
+ "辨证论治": 20467,
+ "农药": 20468,
+ "农产品": 20469,
+ "销售收入": 20470,
+ "脑外伤": 20471,
+ "埋": 20472,
+ "嵌入式": 20473,
+ "雨林": 20474,
+ "难听": 20475,
+ "泄露": 20476,
+ "扯淡": 20477,
+ "龙虾": 20478,
+ "尸": 20479,
+ "上长": 20480,
+ "铅笔": 20481,
+ "巴比伦": 20482,
+ "巴勒斯坦": 20483,
+ "版图": 20484,
+ "雕像": 20485,
+ "以北": 20486,
+ "大大小小": 20487,
+ "藏书": 20488,
+ "成千上万": 20489,
+ "兴衰": 20490,
+ "七大": 20491,
+ "猫猫": 20492,
+ "好动": 20493,
+ "肚脐": 20494,
+ "腹股沟": 20495,
+ "化脓性": 20496,
+ "腮腺炎": 20497,
+ "相见恨晚": 20498,
+ "脸颊": 20499,
+ "我生": 20500,
+ "当月": 20501,
+ "解密": 20502,
+ "专栏": 20503,
+ "录用": 20504,
+ "搬运": 20505,
+ "福克斯": 20506,
+ "召回": 20507,
+ "代偿": 20508,
+ "R2": 20509,
+ "鲸": 20510,
+ "聚在一起": 20511,
+ "几段": 20512,
+ "真能": 20513,
+ "IBM": 20514,
+ "三十岁": 20515,
+ "橄榄": 20516,
+ "杆菌": 20517,
+ "洗礼": 20518,
+ "徒步": 20519,
+ "阶梯": 20520,
+ "武汉市": 20521,
+ "心底": 20522,
+ "碎石": 20523,
+ "郁金香": 20524,
+ "迟迟": 20525,
+ "冠军联赛": 20526,
+ "灾难性": 20527,
+ "葬礼": 20528,
+ "声称": 20529,
+ "闭嘴": 20530,
+ "新秀": 20531,
+ "首发": 20532,
+ "转会": 20533,
+ "激进": 20534,
+ "满满": 20535,
+ "罗斯": 20536,
+ "强硬": 20537,
+ "口号": 20538,
+ "本届": 20539,
+ "防线": 20540,
+ "打进": 20541,
+ "当有": 20542,
+ "输掉": 20543,
+ "球场上": 20544,
+ "智齿": 20545,
+ "JR": 20546,
+ "冰凉": 20547,
+ "我方": 20548,
+ "新东方": 20549,
+ "不容忽视": 20550,
+ "惊险": 20551,
+ "增速": 20552,
+ "红斑狼疮": 20553,
+ "梅毒": 20554,
+ "肾病": 20555,
+ "风湿病": 20556,
+ "抗炎药": 20557,
+ "她家": 20558,
+ "吉林": 20559,
+ "顿时": 20560,
+ "寒假": 20561,
+ "邯郸": 20562,
+ "瓜子": 20563,
+ "当着": 20564,
+ "隐含": 20565,
+ "最大公约数": 20566,
+ "公倍数": 20567,
+ "input": 20568,
+ "num": 20569,
+ "Model": 20570,
+ "保全": 20571,
+ "自动检测": 20572,
+ "吐奶": 20573,
+ "肛裂": 20574,
+ "MC": 20575,
+ "回民": 20576,
+ "神器": 20577,
+ "12%": 20578,
+ "英勇": 20579,
+ "木地板": 20580,
+ "童年": 20581,
+ "纯真": 20582,
+ "高中生": 20583,
+ "严峻": 20584,
+ "名号": 20585,
+ "私处": 20586,
+ "逃离": 20587,
+ "巫师": 20588,
+ "棍子": 20589,
+ "过来人": 20590,
+ "一想": 20591,
+ "动机": 20592,
+ "脚底": 20593,
+ "准确性": 20594,
+ "没上": 20595,
+ "自闭症": 20596,
+ "出对": 20597,
+ "几岁": 20598,
+ "音调": 20599,
+ "摇晃": 20600,
+ "虚幻": 20601,
+ "圈子": 20602,
+ "color": 20603,
+ "align": 20604,
+ "left": 20605,
+ "middle": 20606,
+ "春秋时期": 20607,
+ "水草": 20608,
+ "成吉思汗": 20609,
+ "封为": 20610,
+ "蒙古族": 20611,
+ "蒸馏": 20612,
+ "失明": 20613,
+ "汞": 20614,
+ "鸡尾酒": 20615,
+ "无穷": 20616,
+ "独特性": 20617,
+ "骆驼": 20618,
+ "撞击": 20619,
+ "迁徙": 20620,
+ "随身携带": 20621,
+ "颤动": 20622,
+ "下沉": 20623,
+ "半透明": 20624,
+ "圆润": 20625,
+ "解冻": 20626,
+ "刷屏": 20627,
+ "西兰花": 20628,
+ "猕猴桃": 20629,
+ "三文鱼": 20630,
+ "伽": 20631,
+ "没事儿": 20632,
+ "进位": 20633,
+ "阿波罗": 20634,
+ "劳": 20635,
+ "马达": 20636,
+ "签发": 20637,
+ "出境": 20638,
+ "嫌疑人": 20639,
+ "斯坦福大学": 20640,
+ "优酷": 20641,
+ "两门": 20642,
+ "病发": 20643,
+ "不孕症": 20644,
+ "家畜": 20645,
+ "食肉动物": 20646,
+ "灌木": 20647,
+ "捕食": 20648,
+ "天敌": 20649,
+ "驯化": 20650,
+ "驴": 20651,
+ "蛀牙": 20652,
+ "牙周炎": 20653,
+ "环形山": 20654,
+ "天文学家": 20655,
+ "右腿": 20656,
+ "两三次": 20657,
+ "机器人": 20658,
+ "售票机": 20659,
+ "世界卫生组织": 20660,
+ "漏": 20661,
+ "集资": 20662,
+ "分析方法": 20663,
+ "乌鸦": 20664,
+ "弥漫": 20665,
+ "冤枉": 20666,
+ "两三年": 20667,
+ "没戏": 20668,
+ "链上": 20669,
+ "弱势": 20670,
+ "赢家": 20671,
+ "贴身": 20672,
+ "隔绝": 20673,
+ "调到": 20674,
+ "判别": 20675,
+ "O型": 20676,
+ "一如既往": 20677,
+ "文笔": 20678,
+ "外教": 20679,
+ "垂体": 20680,
+ "第三天": 20681,
+ "街上": 20682,
+ "拉丁美洲": 20683,
+ "厄瓜多尔": 20684,
+ "生物学家": 20685,
+ "栖息地": 20686,
+ "外围": 20687,
+ "食物链": 20688,
+ "短缺": 20689,
+ "替代品": 20690,
+ "严重威胁": 20691,
+ "骚扰": 20692,
+ "填报": 20693,
+ "批次": 20694,
+ "电磁": 20695,
+ "疤": 20696,
+ "没准": 20697,
+ "看不惯": 20698,
+ "不进": 20699,
+ "簇": 20700,
+ "果壳": 20701,
+ "选举": 20702,
+ "赏识": 20703,
+ "乐坛": 20704,
+ "恶臭": 20705,
+ "路易": 20706,
+ "法国巴黎": 20707,
+ "1968": 20708,
+ "美国纽约": 20709,
+ "1970": 20710,
+ "1923": 20711,
+ "佛罗伦萨": 20712,
+ "伊夫": 20713,
+ "混合型": 20714,
+ "工具栏": 20715,
+ "教导": 20716,
+ "班里": 20717,
+ "社交圈": 20718,
+ "黄山": 20719,
+ "常州": 20720,
+ "绍兴": 20721,
+ "始": 20722,
+ "新月": 20723,
+ "す": 20724,
+ "几周": 20725,
+ "相对而言": 20726,
+ "金银": 20727,
+ "文化底蕴": 20728,
+ "一国": 20729,
+ "辖": 20730,
+ "元首": 20731,
+ "1961": 20732,
+ "外交关系": 20733,
+ "公约": 20734,
+ "检查和": 20735,
+ "红辣椒": 20736,
+ "淹没": 20737,
+ "之日起": 20738,
+ "先后顺序": 20739,
+ "冷酷": 20740,
+ "专业课": 20741,
+ "时辰": 20742,
+ "巳": 20743,
+ "日晚": 20744,
+ "朦胧": 20745,
+ "约等于": 20746,
+ "时间差": 20747,
+ "年月日": 20748,
+ "正月": 20749,
+ "传入": 20750,
+ "数学家": 20751,
+ "大写字母": 20752,
+ "小写字母": 20753,
+ "Mr": 20754,
+ "Lee": 20755,
+ "降噪": 20756,
+ "流域": 20757,
+ "归并": 20758,
+ "省级": 20759,
+ "ji": 20760,
+ "候选": 20761,
+ "ち": 20762,
+ "偶数": 20763,
+ "自然数": 20764,
+ "好消息": 20765,
+ "夫妻生活": 20766,
+ "木质": 20767,
+ "点上": 20768,
+ "平底锅": 20769,
+ "肉酱": 20770,
+ "聪明人": 20771,
+ "闹肚子": 20772,
+ "Thisisa": 20773,
+ "how": 20774,
+ "morning": 20775,
+ "natural": 20776,
+ "老爷爷": 20777,
+ "孙女": 20778,
+ "蛙": 20779,
+ "太阳系": 20780,
+ "大行星": 20781,
+ "天文单位": 20782,
+ "希腊语": 20783,
+ "最亮": 20784,
+ "异议": 20785,
+ "伽利略": 20786,
+ "1962": 20787,
+ "深层次": 20788,
+ "温室效应": 20789,
+ "表面温度": 20790,
+ "山脉": 20791,
+ "巨型": 20792,
+ "夏威夷": 20793,
+ "小行星": 20794,
+ "大气层": 20795,
+ "亿年": 20796,
+ "211": 20797,
+ "闭眼": 20798,
+ "弗": 20799,
+ "魏国": 20800,
+ "洪": 20801,
+ "迈": 20802,
+ "孤单": 20803,
+ "加薪": 20804,
+ "升职": 20805,
+ "脑海中": 20806,
+ "中美": 20807,
+ "欧盟": 20808,
+ "插手": 20809,
+ "领先地位": 20810,
+ "节点": 20811,
+ "张嘴": 20812,
+ "毛皮": 20813,
+ "简单句": 20814,
+ "Tom": 20815,
+ "一无所知": 20816,
+ "南方人": 20817,
+ "主句": 20818,
+ "往外": 20819,
+ "耳塞": 20820,
+ "侧重": 20821,
+ "2.8": 20822,
+ "遥控器": 20823,
+ "日产": 20824,
+ "信息系统": 20825,
+ "提神": 20826,
+ "太阳穴": 20827,
+ "他出": 20828,
+ "太监": 20829,
+ "博学": 20830,
+ "秃": 20831,
+ "蚂蚁": 20832,
+ "运送": 20833,
+ "乱七八糟": 20834,
+ "辛亥革命": 20835,
+ "都督": 20836,
+ "满清": 20837,
+ "隐喻": 20838,
+ "处决": 20839,
+ "梁": 20840,
+ "苷": 20841,
+ "脾虚": 20842,
+ "降血压": 20843,
+ "金融学": 20844,
+ "复旦大学": 20845,
+ "中国科学院": 20846,
+ "IPO": 20847,
+ "public": 20848,
+ "生冷食物": 20849,
+ "向日葵": 20850,
+ "高数": 20851,
+ "太阳镜": 20852,
+ "参观": 20853,
+ "押金": 20854,
+ "长袖": 20855,
+ "押": 20856,
+ "冒犯": 20857,
+ "优劣": 20858,
+ "好笑": 20859,
+ "歌剧院": 20860,
+ "特许": 20861,
+ "湖北省": 20862,
+ "万人": 20863,
+ "级数": 20864,
+ "魔方": 20865,
+ "黄牛": 20866,
+ "喙": 20867,
+ "文中": 20868,
+ "交通堵塞": 20869,
+ "珍藏": 20870,
+ "录影带": 20871,
+ "一卷": 20872,
+ "画作": 20873,
+ "相似之处": 20874,
+ "文化交流": 20875,
+ "核心内容": 20876,
+ "灌输": 20877,
+ "哲理": 20878,
+ "嗓音": 20879,
+ "逆转": 20880,
+ "吸气": 20881,
+ "呼气": 20882,
+ "脑内": 20883,
+ "左转": 20884,
+ "左脚": 20885,
+ "走动": 20886,
+ "茫茫": 20887,
+ "协同": 20888,
+ "评委": 20889,
+ "钓鱼": 20890,
+ "基本知识": 20891,
+ "伤残": 20892,
+ "闭合": 20893,
+ "鳃": 20894,
+ "水体": 20895,
+ "棉": 20896,
+ "斑纹": 20897,
+ "受寒": 20898,
+ "助消化": 20899,
+ "胃疼": 20900,
+ "咯血": 20901,
+ "拉肚子": 20902,
+ "递减": 20903,
+ "肾阳虚": 20904,
+ "稀饭": 20905,
+ "薏苡仁": 20906,
+ "关注度": 20907,
+ "升降": 20908,
+ "生态平衡": 20909,
+ "有序": 20910,
+ "迫不及待": 20911,
+ "织物": 20912,
+ "交织": 20913,
+ "某天": 20914,
+ "甲亢": 20915,
+ "表姐": 20916,
+ "原装": 20917,
+ "银屑病": 20918,
+ "湖水": 20919,
+ "接连": 20920,
+ "很爽": 20921,
+ "普通用户": 20922,
+ "大理石": 20923,
+ "门窗": 20924,
+ "堵住": 20925,
+ "火灾": 20926,
+ "瓷砖": 20927,
+ "木工": 20928,
+ "床垫": 20929,
+ "用纸": 20930,
+ "水电": 20931,
+ "每一项": 20932,
+ "缺口": 20933,
+ "增减": 20934,
+ "吃火锅": 20935,
+ "台面": 20936,
+ "两遍": 20937,
+ "衣柜": 20938,
+ "书桌": 20939,
+ "个性化": 20940,
+ "店面": 20941,
+ "垃圾桶": 20942,
+ "马赛克": 20943,
+ "统统": 20944,
+ "洗碗": 20945,
+ "闲着": 20946,
+ "三遍": 20947,
+ "入场": 20948,
+ "4.0": 20949,
+ "第一遍": 20950,
+ "遮盖": 20951,
+ "责任心": 20952,
+ "一不小心": 20953,
+ "充电器": 20954,
+ "几本书": 20955,
+ "些许": 20956,
+ "生日快乐": 20957,
+ "三度": 20958,
+ "说了算": 20959,
+ "连通": 20960,
+ "摩纳哥": 20961,
+ "我以": 20962,
+ "起个": 20963,
+ "order": 20964,
+ "闭经": 20965,
+ "隐痛": 20966,
+ "花蜜": 20967,
+ "非常复杂": 20968,
+ "常量": 20969,
+ "白蛋白": 20970,
+ "退行性": 20971,
+ "嗅": 20972,
+ "辣味": 20973,
+ "ppt": 20974,
+ "hu": 20975,
+ "舍弃": 20976,
+ "现金流": 20977,
+ "屡次": 20978,
+ "车牌": 20979,
+ "催化": 20980,
+ "制造业": 20981,
+ "company": 20982,
+ "product": 20983,
+ "hard": 20984,
+ "need": 20985,
+ "part": 20986,
+ "P2P": 20987,
+ "召集": 20988,
+ "规章制度": 20989,
+ "可信度": 20990,
+ "亿人": 20991,
+ "珊瑚礁": 20992,
+ "轮船": 20993,
+ "具体内容": 20994,
+ "睾酮": 20995,
+ "经量": 20996,
+ "精神病": 20997,
+ "发育不全": 20998,
+ "拜访": 20999,
+ "正值": 21000,
+ "冰激凌": 21001,
+ "卵巢功能": 21002,
+ "过频": 21003,
+ "快餐店": 21004,
+ "腰痛": 21005,
+ "惊奇": 21006,
+ "生育能力": 21007,
+ "光顾": 21008,
+ "葡萄柚": 21009,
+ "◎": 21010,
+ "布丁": 21011,
+ "吹风": 21012,
+ "林肯": 21013,
+ "自传": 21014,
+ "传记": 21015,
+ "三国志": 21016,
+ "围城": 21017,
+ "臀": 21018,
+ "三分钟": 21019,
+ "摩擦力": 21020,
+ "辨认": 21021,
+ "個": 21022,
+ "沒有": 21023,
+ "武昌": 21024,
+ "我养": 21025,
+ "仓鼠": 21026,
+ "国民政府": 21027,
+ "同胞": 21028,
+ "政客": 21029,
+ "围观": 21030,
+ "1933": 21031,
+ "1941": 21032,
+ "一无所有": 21033,
+ "桥本": 21034,
+ "结节性": 21035,
+ "吞咽": 21036,
+ "继而": 21037,
+ "甲减": 21038,
+ "亚急性": 21039,
+ "甲状腺炎": 21040,
+ "淋巴细胞": 21041,
+ "新兵": 21042,
+ "第一批": 21043,
+ "次子": 21044,
+ "视图": 21045,
+ "伤病": 21046,
+ "豪门": 21047,
+ "沉迷": 21048,
+ "英式": 21049,
+ "冲击力": 21050,
+ "发烫": 21051,
+ "打赢": 21052,
+ "攻城": 21053,
+ "库尔": 21054,
+ "攻入": 21055,
+ "隐性": 21056,
+ "不适感": 21057,
+ "蹦": 21058,
+ "极差": 21059,
+ "太阳辐射": 21060,
+ "环状": 21061,
+ "电离": 21062,
+ "打点": 21063,
+ "爹": 21064,
+ "变量名": 21065,
+ "平均工资": 21066,
+ "私": 21067,
+ "菜谱": 21068,
+ "肥肉": 21069,
+ "五花肉": 21070,
+ "哪一天": 21071,
+ "情绪稳定": 21072,
+ "高层次": 21073,
+ "合同法": 21074,
+ "高中毕业": 21075,
+ "短距离": 21076,
+ "错觉": 21077,
+ "车程": 21078,
+ "法式": 21079,
+ "推拿": 21080,
+ "巨头": 21081,
+ "特区": 21082,
+ "ct": 21083,
+ "务实": 21084,
+ "权重": 21085,
+ "回升": 21086,
+ "踹": 21087,
+ "纳闷": 21088,
+ "闲聊": 21089,
+ "里斯本": 21090,
+ "贝": 21091,
+ "普尔": 21092,
+ "挑战者": 21093,
+ "坦": 21094,
+ "战后": 21095,
+ "快节奏": 21096,
+ "负面影响": 21097,
+ "年少": 21098,
+ "触动": 21099,
+ "接纳": 21100,
+ "塞纳": 21101,
+ "里奥": 21102,
+ "没好": 21103,
+ "激素类": 21104,
+ "在建": 21105,
+ "雇佣": 21106,
+ "所长": 21107,
+ "456": 21108,
+ "第二行": 21109,
+ "鲜红色": 21110,
+ "换洗": 21111,
+ "eq": 21112,
+ "疑问句": 21113,
+ "问句": 21114,
+ "陈述句": 21115,
+ "第三人称": 21116,
+ "She": 21117,
+ "◇": 21118,
+ "历史背景": 21119,
+ "改组": 21120,
+ "生态环境": 21121,
+ "续": 21122,
+ "产品价格": 21123,
+ "预见": 21124,
+ "不确定性": 21125,
+ "多种形式": 21126,
+ "工业化": 21127,
+ "控股": 21128,
+ "产品销售": 21129,
+ "优惠政策": 21130,
+ "迁入": 21131,
+ "煤矿": 21132,
+ "林业": 21133,
+ "废弃": 21134,
+ "中兴": 21135,
+ "高能": 21136,
+ "瓦斯": 21137,
+ "充分发挥": 21138,
+ "转型": 21139,
+ "招标": 21140,
+ "彻底改变": 21141,
+ "通勤": 21142,
+ "居民点": 21143,
+ "较近": 21144,
+ "雇员": 21145,
+ "招募": 21146,
+ "下游": 21147,
+ "诸葛亮": 21148,
+ "孙权": 21149,
+ "疯子": 21150,
+ "问到": 21151,
+ "よ": 21152,
+ "お": 21153,
+ "み": 21154,
+ "長": 21155,
+ "残": 21156,
+ "契机": 21157,
+ "蔬果": 21158,
+ "土著": 21159,
+ "环切": 21160,
+ "点选": 21161,
+ "一脸": 21162,
+ "豆腐渣": 21163,
+ "性伴侣": 21164,
+ "版面": 21165,
+ "痔疮膏": 21166,
+ "结扎": 21167,
+ "黑龙江": 21168,
+ "瘀血": 21169,
+ "网民": 21170,
+ "抗议": 21171,
+ "冻": 21172,
+ "图样": 21173,
+ "借款人": 21174,
+ "划入": 21175,
+ "名下": 21176,
+ "开立": 21177,
+ "ol": 21178,
+ "滴虫性": 21179,
+ "镜检查": 21180,
+ "这颗": 21181,
+ "逃脱": 21182,
+ "耕地": 21183,
+ "逝世": 21184,
+ "亚洲杯": 21185,
+ "开幕式": 21186,
+ "阿联酋": 21187,
+ "巴林": 21188,
+ "组别": 21189,
+ "异常情况": 21190,
+ "花香": 21191,
+ "TVB": 21192,
+ "主唱": 21193,
+ "闯入": 21194,
+ "计算机硬件": 21195,
+ "灵芝": 21196,
+ "中科院": 21197,
+ "告终": 21198,
+ "做作": 21199,
+ "刘海": 21200,
+ "男女朋友": 21201,
+ "场馆": 21202,
+ "皮层": 21203,
+ "史诗": 21204,
+ "江": 21205,
+ "污水": 21206,
+ "下水道": 21207,
+ "性知识": 21208,
+ "厌倦": 21209,
+ "大麻": 21210,
+ "情愿": 21211,
+ "性交时": 21212,
+ "壮阳": 21213,
+ "钉子": 21214,
+ "检讨": 21215,
+ "达到最佳": 21216,
+ "时报": 21217,
+ "桌": 21218,
+ "command": 21219,
+ "普遍认为": 21220,
+ "证监会": 21221,
+ "万亿": 21222,
+ "源源不断": 21223,
+ "阶段性": 21224,
+ "凶猛": 21225,
+ "足球赛": 21226,
+ "201": 21227,
+ "倒车": 21228,
+ "高雄": 21229,
+ "Apple": 21230,
+ "Bonjour": 21231,
+ "星体": 21232,
+ "互": 21233,
+ "友": 21234,
+ "宇": 21235,
+ "─": 21236,
+ "象牙": 21237,
+ "XL": 21238,
+ "复苏": 21239,
+ "横扫": 21240,
+ "追着": 21241,
+ "装扮": 21242,
+ "被告": 21243,
+ "原告": 21244,
+ "体重减轻": 21245,
+ "连贯性": 21246,
+ "小船": 21247,
+ "船上": 21248,
+ "鸟儿": 21249,
+ "乖": 21250,
+ "地问": 21251,
+ "晃": 21252,
+ "逃出": 21253,
+ "气球": 21254,
+ "紧紧": 21255,
+ "非常高兴": 21256,
+ "绩效": 21257,
+ "老人家": 21258,
+ "嘱咐": 21259,
+ "架空": 21260,
+ "王妃": 21261,
+ "栖息": 21262,
+ "女主": 21263,
+ "嬉戏": 21264,
+ "傻子": 21265,
+ "轻视": 21266,
+ "在手": 21267,
+ "识": 21268,
+ "秦国": 21269,
+ "交锋": 21270,
+ "令人惊叹": 21271,
+ "奇幻": 21272,
+ "直视": 21273,
+ "纷争": 21274,
+ "一幕": 21275,
+ "犀利": 21276,
+ "触觉": 21277,
+ "武汉大学": 21278,
+ "清华大学": 21279,
+ "浙江大学": 21280,
+ "上海交通大学": 21281,
+ "短小": 21282,
+ "莆田": 21283,
+ "m": 21284,
+ "不失": 21285,
+ "反应速度": 21286,
+ "显眼": 21287,
+ "个案": 21288,
+ "When": 21289,
+ "め": 21290,
+ "わ": 21291,
+ "研讨会": 21292,
+ "迄今为止": 21293,
+ "尿失禁": 21294,
+ "脑积水": 21295,
+ "1917": 21296,
+ "假性": 21297,
+ "蛛网膜": 21298,
+ "基底": 21299,
+ "饱满": 21300,
+ "脑膜炎": 21301,
+ "脑萎缩": 21302,
+ "儿童医院": 21303,
+ "神经内科": 21304,
+ "脑瘫": 21305,
+ "用药治疗": 21306,
+ "不听话": 21307,
+ "梦里": 21308,
+ "矿石": 21309,
+ "对准": 21310,
+ "2020": 21311,
+ "据此": 21312,
+ "年均": 21313,
+ "退税": 21314,
+ "逐年": 21315,
+ "国际贸易": 21316,
+ "拉动": 21317,
+ "对外开放": 21318,
+ "可持续性": 21319,
+ "银联": 21320,
+ "邮局": 21321,
+ "入库": 21322,
+ "help": 21323,
+ "自旋": 21324,
+ "氢原子": 21325,
+ "简明": 21326,
+ "重新组合": 21327,
+ "互为": 21328,
+ "极性": 21329,
+ "拿个": 21330,
+ "过滤器": 21331,
+ "鱼缸": 21332,
+ "扎": 21333,
+ "角落里": 21334,
+ "大鱼": 21335,
+ "合影": 21336,
+ "用不着": 21337,
+ "昨天下午": 21338,
+ "肠胃炎": 21339,
+ "抗感染": 21340,
+ "庆大霉素": 21341,
+ "流质": 21342,
+ "选址": 21343,
+ "山川": 21344,
+ "东面": 21345,
+ "朝向": 21346,
+ "小巷": 21347,
+ "自然景观": 21348,
+ "航班": 21349,
+ "客车": 21350,
+ "往返": 21351,
+ "走廊": 21352,
+ "注意安全": 21353,
+ "旅游业": 21354,
+ "房租": 21355,
+ "缺损": 21356,
+ "全部都是": 21357,
+ "全集": 21358,
+ "李白": 21359,
+ "老娘": 21360,
+ "丫": 21361,
+ "阴暗": 21362,
+ "三句话": 21363,
+ "基石": 21364,
+ "行政部门": 21365,
+ "假定": 21366,
+ "工作岗位": 21367,
+ "解雇": 21368,
+ "电影史": 21369,
+ "本片": 21370,
+ "巴伐利亚": 21371,
+ "约瑟夫": 21372,
+ "苏菲": 21373,
+ "驱逐": 21374,
+ "学术研究": 21375,
+ "三四个": 21376,
+ "不耐烦": 21377,
+ "丹尼": 21378,
+ "但愿": 21379,
+ "地处": 21380,
+ "物料": 21381,
+ "数为": 21382,
+ "555": 21383,
+ "成绩单": 21384,
+ "籍贯": 21385,
+ "run": 21386,
+ "静音": 21387,
+ "古董": 21388,
+ "一枚": 21389,
+ "几十年": 21390,
+ "几百年": 21391,
+ "夸": 21392,
+ "皇室": 21393,
+ "3y": 21394,
+ "相交": 21395,
+ "截距": 21396,
+ "一个半月": 21397,
+ "动手术": 21398,
+ "肿物": 21399,
+ "画笔": 21400,
+ "滤镜": 21401,
+ "划痕": 21402,
+ "完工": 21403,
+ "羊角风": 21404,
+ "央视": 21405,
+ "动听": 21406,
+ "相声": 21407,
+ "照亮": 21408,
+ "夜空": 21409,
+ "扁桃体炎": 21410,
+ "12000": 21411,
+ "phone": 21412,
+ "青藏高原": 21413,
+ "沿线": 21414,
+ "白虎": 21415,
+ "巷": 21416,
+ "三号": 21417,
+ "圆周率": 21418,
+ "扑克牌": 21419,
+ "等候": 21420,
+ "巡洋舰": 21421,
+ "纳粹德国": 21422,
+ "投入使用": 21423,
+ "纳粹": 21424,
+ "上台": 21425,
+ "和约": 21426,
+ "战列舰": 21427,
+ "抗击": 21428,
+ "排水量": 21429,
+ "基尔": 21430,
+ "签署": 21431,
+ "焊接": 21432,
+ "强有力": 21433,
+ "炸药": 21434,
+ "杀伤": 21435,
+ "驱逐舰": 21436,
+ "科隆": 21437,
+ "航空母舰": 21438,
+ "意向": 21439,
+ "并称": 21440,
+ "电报": 21441,
+ "官兵": 21442,
+ "趁机": 21443,
+ "炮台": 21444,
+ "通向": 21445,
+ "誓言": 21446,
+ "一任": 21447,
+ "推向": 21448,
+ "沉没": 21449,
+ "知觉": 21450,
+ "幸存": 21451,
+ "国防部": 21452,
+ "货车": 21453,
+ "岳父": 21454,
+ "度量": 21455,
+ "惯": 21456,
+ "装作": 21457,
+ "新鲜空气": 21458,
+ "意识形态": 21459,
+ "不断改进": 21460,
+ "书中": 21461,
+ "值来": 21462,
+ "走入": 21463,
+ "极有": 21464,
+ "辜负": 21465,
+ "结识": 21466,
+ "逝去": 21467,
+ "侵袭": 21468,
+ "鸣": 21469,
+ "考不上": 21470,
+ "签": 21471,
+ "达标": 21472,
+ "觉悟": 21473,
+ "朝鲜战争": 21474,
+ "挫败": 21475,
+ "中共中央": 21476,
+ "政治委员": 21477,
+ "中国共产党": 21478,
+ "1951": 21479,
+ "1953": 21480,
+ "攻势": 21481,
+ "漏斗": 21482,
+ "曝光率": 21483,
+ "自由度": 21484,
+ "自主性": 21485,
+ "提成": 21486,
+ "点击率": 21487,
+ "做广告": 21488,
+ "安全可靠": 21489,
+ "校内": 21490,
+ "医护人员": 21491,
+ "照着": 21492,
+ "红星": 21493,
+ "团聚": 21494,
+ "重新排列": 21495,
+ "甚至于": 21496,
+ "不切实际": 21497,
+ "浮夸": 21498,
+ "杯赛": 21499,
+ "math": 21500,
+ "注册资本": 21501,
+ "清算": 21502,
+ "教育资源": 21503,
+ "极少数": 21504,
+ "教父": 21505,
+ "余生": 21506,
+ "减肥法": 21507,
+ "喝啤酒": 21508,
+ "配搭": 21509,
+ "◆": 21510,
+ "胶质": 21511,
+ "柠檬酸": 21512,
+ "减脂": 21513,
+ "抗癌": 21514,
+ "口服药物": 21515,
+ "腻": 21516,
+ "举例来说": 21517,
+ "第四天": 21518,
+ "借着": 21519,
+ "老旧": 21520,
+ "千卡": 21521,
+ "祖宗": 21522,
+ "运算符": 21523,
+ "计算结果": 21524,
+ "圣地": 21525,
+ "打分": 21526,
+ "凯": 21527,
+ "bird": 21528,
+ "天河": 21529,
+ "文胸": 21530,
+ "尺码": 21531,
+ "棉质": 21532,
+ "产前检查": 21533,
+ "漂洗": 21534,
+ "晾晒": 21535,
+ "发言权": 21536,
+ "食肉": 21537,
+ "银币": 21538,
+ "概况": 21539,
+ "山羊": 21540,
+ "牧场": 21541,
+ "吉他手": 21542,
+ "鼓手": 21543,
+ "Michael": 21544,
+ "舞曲": 21545,
+ "上班族": 21546,
+ "出道": 21547,
+ "影像学": 21548,
+ "鉴于": 21549,
+ "肥胖症": 21550,
+ "处置": 21551,
+ "独生子女": 21552,
+ "静脉炎": 21553,
+ "门静脉": 21554,
+ "肝内": 21555,
+ "肝细胞": 21556,
+ "百花": 21557,
+ "爷": 21558,
+ "唐朝": 21559,
+ "晴": 21560,
+ "满洲": 21561,
+ "温带": 21562,
+ "水银": 21563,
+ "巴萨": 21564,
+ "赛后": 21565,
+ "心理疾病": 21566,
+ "理事": 21567,
+ "决议": 21568,
+ "公差": 21569,
+ "第二张": 21570,
+ "性传播": 21571,
+ "感染者": 21572,
+ "同桌": 21573,
+ "蚊虫": 21574,
+ "4G": 21575,
+ "私募": 21576,
+ "一秒": 21577,
+ "涨跌": 21578,
+ "temp": 21579,
+ "所作": 21580,
+ "Dr": 21581,
+ "程式": 21582,
+ "click": 21583,
+ "具体操作": 21584,
+ "获得最佳": 21585,
+ "用户界面": 21586,
+ "拉伸": 21587,
+ "ta": 21588,
+ "骨头汤": 21589,
+ "温室": 21590,
+ "汇集": 21591,
+ "秀才": 21592,
+ "感触": 21593,
+ "学派": 21594,
+ "农": 21595,
+ "归于": 21596,
+ "意式": 21597,
+ "曲面": 21598,
+ "常驻": 21599,
+ "津": 21600,
+ "法制": 21601,
+ "温度计": 21602,
+ "引号": 21603,
+ "亚军": 21604,
+ "两旁": 21605,
+ "直射": 21606,
+ "忘却": 21607,
+ "粪": 21608,
+ "溃烂": 21609,
+ "侏儒": 21610,
+ "高等学校": 21611,
+ "财政": 21612,
+ "学位": 21613,
+ "核准": 21614,
+ "审计": 21615,
+ "事务所": 21616,
+ "财务报告": 21617,
+ "辅导员": 21618,
+ "通知书": 21619,
+ "退学": 21620,
+ "本校": 21621,
+ "全校": 21622,
+ "合法性": 21623,
+ "载入": 21624,
+ "校方": 21625,
+ "人民日报": 21626,
+ "负责管理": 21627,
+ "挽留": 21628,
+ "标本": 21629,
+ "非专业": 21630,
+ "妆容": 21631,
+ "_": 21632,
+ "取暖": 21633,
+ "被窝": 21634,
+ "奇葩": 21635,
+ "长者": 21636,
+ "女主人": 21637,
+ "宾客": 21638,
+ "油渍": 21639,
+ "西装": 21640,
+ "匆忙": 21641,
+ "予": 21642,
+ "轻轨": 21643,
+ "中央公园": 21644,
+ "计数器": 21645,
+ "长春": 21646,
+ "解酒": 21647,
+ "1972": 21648,
+ "国家级": 21649,
+ "新药": 21650,
+ "医疗保健": 21651,
+ "报导": 21652,
+ "叶绿素": 21653,
+ "一个碗": 21654,
+ "核电站": 21655,
+ "中多": 21656,
+ "低估": 21657,
+ "抗肿瘤": 21658,
+ "辅导班": 21659,
+ "不公": 21660,
+ "网恋": 21661,
+ "里拉": 21662,
+ "无从": 21663,
+ "所著": 21664,
+ "大龄": 21665,
+ "谈起": 21666,
+ "苦难": 21667,
+ "156": 21668,
+ "雷德": 21669,
+ "天启": 21670,
+ "1908": 21671,
+ "忽": 21672,
+ "刑部": 21673,
+ "宦官": 21674,
+ "中外": 21675,
+ "上书": 21676,
+ "借此": 21677,
+ "大明": 21678,
+ "辽东": 21679,
+ "万历": 21680,
+ "争端": 21681,
+ "掌管": 21682,
+ "意图": 21683,
+ "心机": 21684,
+ "长子": 21685,
+ "书院": 21686,
+ "壮大": 21687,
+ "羽绒服": 21688,
+ "后仰": 21689,
+ "戒掉": 21690,
+ "志向": 21691,
+ "发火": 21692,
+ "会以": 21693,
+ "微不足道": 21694,
+ "转头": 21695,
+ "库克": 21696,
+ "随口": 21697,
+ "期刊": 21698,
+ "来电": 21699,
+ "骗局": 21700,
+ "含金量": 21701,
+ "宁愿": 21702,
+ "海报": 21703,
+ "留住": 21704,
+ "闰": 21705,
+ "西站": 21706,
+ "薪资": 21707,
+ "明智": 21708,
+ "争": 21709,
+ "孝": 21710,
+ "匈奴": 21711,
+ "子孙": 21712,
+ "秦王": 21713,
+ "转而": 21714,
+ "棘": 21715,
+ "ü": 21716,
+ "厝": 21717,
+ "集会": 21718,
+ "齐国": 21719,
+ "敞开": 21720,
+ "流淌": 21721,
+ "吞并": 21722,
+ "刑罚": 21723,
+ "改设": 21724,
+ "焚烧": 21725,
+ "愚蠢": 21726,
+ "都城": 21727,
+ "平定": 21728,
+ "称帝": 21729,
+ "孔子": 21730,
+ "田野": 21731,
+ "秦朝": 21732,
+ "旗帜": 21733,
+ "裙": 21734,
+ "盛宴": 21735,
+ "google": 21736,
+ "baidu": 21737,
+ "联系电话": 21738,
+ "寿司": 21739,
+ "开药": 21740,
+ "外观设计": 21741,
+ "制止": 21742,
+ "著作权": 21743,
+ "典故": 21744,
+ "青色": 21745,
+ "老一辈": 21746,
+ "不断创新": 21747,
+ "不喜": 21748,
+ "粑": 21749,
+ "暗红色": 21750,
+ "单从": 21751,
+ "St": 21752,
+ "云云": 21753,
+ "物理学": 21754,
+ "多维": 21755,
+ "民生": 21756,
+ "嘌呤": 21757,
+ "汉人": 21758,
+ "东区": 21759,
+ "邮政编码": 21760,
+ "性腺": 21761,
+ "邮政": 21762,
+ "Please": 21763,
+ "羊水": 21764,
+ "菜刀": 21765,
+ "看吧": 21766,
+ "奇": 21767,
+ "布斯": 21768,
+ "东德": 21769,
+ "忌口": 21770,
+ "一文": 21771,
+ "医疗机构": 21772,
+ "定金": 21773,
+ "首付": 21774,
+ "劳工": 21775,
+ "罢工": 21776,
+ "认真思考": 21777,
+ "抑制剂": 21778,
+ "订立": 21779,
+ "三款": 21780,
+ "志愿者": 21781,
+ "交易系统": 21782,
+ "目测": 21783,
+ "投篮": 21784,
+ "起身": 21785,
+ "NASA": 21786,
+ "感同身受": 21787,
+ "相撞": 21788,
+ "生物学": 21789,
+ "荒诞": 21790,
+ "历法": 21791,
+ "安东尼": 21792,
+ "冬至": 21793,
+ "马尔": 21794,
+ "磁性": 21795,
+ "银河系": 21796,
+ "一两年": 21797,
+ "1910": 21798,
+ "1919": 21799,
+ "枪支": 21800,
+ "主义者": 21801,
+ "理查德": 21802,
+ "全球性": 21803,
+ "修道院": 21804,
+ "十几个": 21805,
+ "许久": 21806,
+ "秘书": 21807,
+ "friend": 21808,
+ "CSS": 21809,
+ "模版": 21810,
+ "算得": 21811,
+ "反观": 21812,
+ "巅峰": 21813,
+ "质心": 21814,
+ "莱昂": 21815,
+ "放映": 21816,
+ "当上": 21817,
+ "女演员": 21818,
+ "不俗": 21819,
+ "已久": 21820,
+ "突发事件": 21821,
+ "片中": 21822,
+ "哥伦布": 21823,
+ "怀特": 21824,
+ "洛杉矶": 21825,
+ "亚特兰大": 21826,
+ "蜘蛛侠": 21827,
+ "柯": 21828,
+ "尔斯": 21829,
+ "科幻": 21830,
+ "Fi": 21831,
+ "首映": 21832,
+ "PG": 21833,
+ "加勒比海": 21834,
+ "变形金刚": 21835,
+ "John": 21836,
+ "Johnson": 21837,
+ "Peter": 21838,
+ "芬奇": 21839,
+ "Robert": 21840,
+ "杰克": 21841,
+ "华纳": 21842,
+ "罪犯": 21843,
+ "原作者": 21844,
+ "卡通": 21845,
+ "卡尔": 21846,
+ "原住民": 21847,
+ "Steve": 21848,
+ "罪恶": 21849,
+ "罗伯特": 21850,
+ "克拉克": 21851,
+ "邓肯": 21852,
+ "Live": 21853,
+ "布鲁斯": 21854,
+ "卡梅隆": 21855,
+ "威尔": 21856,
+ "Smith": 21857,
+ "大作": 21858,
+ "主打": 21859,
+ "制片人": 21860,
+ "Harry": 21861,
+ "哈利波": 21862,
+ "丹尼尔": 21863,
+ "克里": 21864,
+ "蒂姆": 21865,
+ "Tim": 21866,
+ "影业": 21867,
+ "艾伦": 21868,
+ "麦克": 21869,
+ "出演": 21870,
+ "族群": 21871,
+ "1954": 21872,
+ "Alex": 21873,
+ "人马": 21874,
+ "讯号": 21875,
+ "迈克": 21876,
+ "亚瑟": 21877,
+ "外公": 21878,
+ "马修": 21879,
+ "汤姆": 21880,
+ "三条": 21881,
+ "国会议员": 21882,
+ "壁纸": 21883,
+ "很傻": 21884,
+ "人名": 21885,
+ "相通": 21886,
+ "译名": 21887,
+ "文学作品": 21888,
+ "语义": 21889,
+ "诗集": 21890,
+ "国语": 21891,
+ "拟定": 21892,
+ "读物": 21893,
+ "拉丁文": 21894,
+ "修饰语": 21895,
+ "中华文化": 21896,
+ "语系": 21897,
+ "驾驭": 21898,
+ "习": 21899,
+ "儒学": 21900,
+ "写道": 21901,
+ "演化": 21902,
+ "学士": 21903,
+ "受过": 21904,
+ "衰落": 21905,
+ "1896": 21906,
+ "实质性": 21907,
+ "朝鲜半岛": 21908,
+ "高丽": 21909,
+ "道路交通": 21910,
+ "语法结构": 21911,
+ "四分": 21912,
+ "十六年": 21913,
+ "日本政府": 21914,
+ "忠诚度": 21915,
+ "马甲": 21916,
+ "水痘": 21917,
+ "乐团": 21918,
+ "体面": 21919,
+ "保护区": 21920,
+ "处理速度": 21921,
+ "漫天": 21922,
+ "之光": 21923,
+ "超人": 21924,
+ "问卷调查": 21925,
+ "应激": 21926,
+ "数天": 21927,
+ "研究者": 21928,
+ "上任": 21929,
+ "竞争者": 21930,
+ "吃素": 21931,
+ "胆囊结石": 21932,
+ "粉碎": 21933,
+ "灌注": 21934,
+ "索尔": 21935,
+ "浴缸": 21936,
+ "法老": 21937,
+ "历史性": 21938,
+ "令人兴奋": 21939,
+ "一扇": 21940,
+ "谜团": 21941,
+ "秘书长": 21942,
+ "这道": 21943,
+ "古埃及": 21944,
+ "病痛": 21945,
+ "dd": 21946,
+ "只见": 21947,
+ "汽车行业": 21948,
+ "魔戒": 21949,
+ "星球大战": 21950,
+ "哈里": 21951,
+ "目睹": 21952,
+ "爱情故事": 21953,
+ "吓死": 21954,
+ "阿斯": 21955,
+ "相逢": 21956,
+ "庶": 21957,
+ "薯条": 21958,
+ "行者": 21959,
+ "招待": 21960,
+ "对白": 21961,
+ "请用": 21962,
+ "念念不忘": 21963,
+ "红楼梦": 21964,
+ "age": 21965,
+ "胶片": 21966,
+ "全能": 21967,
+ "生理学": 21968,
+ "坨": 21969,
+ "班上": 21970,
+ "识字": 21971,
+ "成书": 21972,
+ "主编": 21973,
+ "家庭教育": 21974,
+ "行为习惯": 21975,
+ "书里": 21976,
+ "自我管理": 21977,
+ "脑干": 21978,
+ "降生": 21979,
+ "书目": 21980,
+ "不仅如此": 21981,
+ "计算能力": 21982,
+ "生吃": 21983,
+ "凉拌": 21984,
+ "特拉": 21985,
+ "主义": 21986,
+ "操场": 21987,
+ "乡下": 21988,
+ "唐氏": 21989,
+ "筛查": 21990,
+ "我院": 21991,
+ "免疫系统": 21992,
+ "实际操作": 21993,
+ "社会性": 21994,
+ "含蓄": 21995,
+ "折射": 21996,
+ "意象": 21997,
+ "陈列": 21998,
+ "音乐厅": 21999,
+ "阴唇": 22000,
+ "交汇处": 22001,
+ "小孔": 22002,
+ "挂号": 22003,
+ "深水": 22004,
+ "臭氧": 22005,
+ "评分": 22006,
+ "陶醉": 22007,
+ "生活态度": 22008,
+ "情境": 22009,
+ "游走": 22010,
+ "消极": 22011,
+ "性格特点": 22012,
+ "读懂": 22013,
+ "严重性": 22014,
+ "蠢": 22015,
+ "别问": 22016,
+ "痛恨": 22017,
+ "逻辑思维": 22018,
+ "勾搭": 22019,
+ "瑕疵": 22020,
+ "关键问题": 22021,
+ "应力": 22022,
+ "珍视": 22023,
+ "有幸": 22024,
+ "吃惊": 22025,
+ "旁观者": 22026,
+ "独裁": 22027,
+ "鹰": 22028,
+ "星等": 22029,
+ "施肥": 22030,
+ "观赏鱼": 22031,
+ "具体表现": 22032,
+ "PHP": 22033,
+ "药学": 22034,
+ "肛肠科": 22035,
+ "有机物": 22036,
+ "权威性": 22037,
+ "存储空间": 22038,
+ "gmail": 22039,
+ "客机": 22040,
+ "机组": 22041,
+ "头盔": 22042,
+ "万平方公里": 22043,
+ "逮捕": 22044,
+ "连续性": 22045,
+ "人权": 22046,
+ "耐克": 22047,
+ "隐": 22048,
+ "身体检查": 22049,
+ "扶持": 22050,
+ "霸主": 22051,
+ "绿地": 22052,
+ "庭院": 22053,
+ "跨过": 22054,
+ "深知": 22055,
+ "薯片": 22056,
+ "这群": 22057,
+ "一勺": 22058,
+ "李华": 22059,
+ "生产商": 22060,
+ "他来": 22061,
+ "法治": 22062,
+ "有线电视": 22063,
+ "干事": 22064,
+ "党员": 22065,
+ "组织者": 22066,
+ "贯彻": 22067,
+ "入党": 22068,
+ "娱乐活动": 22069,
+ "党内": 22070,
+ "河边": 22071,
+ "算上": 22072,
+ "谦虚": 22073,
+ "村长": 22074,
+ "市中心": 22075,
+ "伊利": 22076,
+ "茅台": 22077,
+ "艾米": 22078,
+ "随机变量": 22079,
+ "正态分布": 22080,
+ "肛肠": 22081,
+ "神经功能": 22082,
+ "估值": 22083,
+ "冒泡排序": 22084,
+ "tring": 22085,
+ "数据类型": 22086,
+ "旧金山": 22087,
+ "永生": 22088,
+ "本篇": 22089,
+ "两层": 22090,
+ "丧生": 22091,
+ "松懈": 22092,
+ "名单": 22093,
+ "贴着": 22094,
+ "站队": 22095,
+ "数最多": 22096,
+ "开窗": 22097,
+ "通络": 22098,
+ "窜": 22099,
+ "指环王": 22100,
+ "托尔金": 22101,
+ "欢快": 22102,
+ "home": 22103,
+ "back": 22104,
+ "彼得": 22105,
+ "比利": 22106,
+ "溴": 22107,
+ "演唱": 22108,
+ "作曲家": 22109,
+ "霍华德": 22110,
+ "肖": 22111,
+ "Cloud": 22112,
+ "耀眼": 22113,
+ "议题": 22114,
+ "我发": 22115,
+ "精简": 22116,
+ "女孩儿": 22117,
+ "ǒ": 22118,
+ "甲骨文": 22119,
+ "采摘": 22120,
+ "日剧": 22121,
+ "纸质": 22122,
+ "并打印": 22123,
+ "俄语": 22124,
+ "и": 22125,
+ "т": 22126,
+ "о": 22127,
+ "в": 22128,
+ "柜员": 22129,
+ "格子": 22130,
+ "分部": 22131,
+ "一波": 22132,
+ "芝加哥": 22133,
+ "Mike": 22134,
+ "克里斯": 22135,
+ "华盛顿": 22136,
+ "瑞德": 22137,
+ "费城": 22138,
+ "多伦多": 22139,
+ "底特律": 22140,
+ "弗兰克": 22141,
+ "约翰": 22142,
+ "罗杰": 22143,
+ "洛夫": 22144,
+ "马里奥": 22145,
+ "波士顿": 22146,
+ "泰勒": 22147,
+ "阿司匹林": 22148,
+ "防寒保暖": 22149,
+ "缩放": 22150,
+ "持仓": 22151,
+ "专科医生": 22152,
+ "偏激": 22153,
+ "爹妈": 22154,
+ "社交活动": 22155,
+ "追捧": 22156,
+ "表现出色": 22157,
+ "关键因素": 22158,
+ "浙大": 22159,
+ "班长": 22160,
+ "病魔": 22161,
+ "炫": 22162,
+ "花钱买": 22163,
+ "清洁卫生": 22164,
+ "引产": 22165,
+ "赠与": 22166,
+ "有车": 22167,
+ "网盘": 22168,
+ "之家": 22169,
+ "技术支持": 22170,
+ "加持": 22171,
+ "赫拉": 22172,
+ "萃取": 22173,
+ "草本植物": 22174,
+ "旗舰店": 22175,
+ "新华社": 22176,
+ "电池板": 22177,
+ "该车": 22178,
+ "烈日": 22179,
+ "女宝": 22180,
+ "外婆": 22181,
+ "乙型肝炎": 22182,
+ "HBV": 22183,
+ "HIV": 22184,
+ "临床试验": 22185,
+ "下层": 22186,
+ "龙葵": 22187,
+ "路况": 22188,
+ "卧底": 22189,
+ "GB": 22190,
+ "探究": 22191,
+ "零售商": 22192,
+ "重现": 22193,
+ "菊": 22194,
+ "隔开": 22195,
+ "税前": 22196,
+ "人民政府": 22197,
+ "住所": 22198,
+ "警方": 22199,
+ "身亡": 22200,
+ "清华北大": 22201,
+ "清华": 22202,
+ "禾本科": 22203,
+ "作词": 22204,
+ "作曲": 22205,
+ "月薪": 22206,
+ "y1": 22207,
+ "卫生纸": 22208,
+ "抽动": 22209,
+ "我先": 22210,
+ "从业人员": 22211,
+ "次方": 22212,
+ "藤": 22213,
+ "骨干": 22214,
+ "彗星": 22215,
+ "后退": 22216,
+ "并会": 22217,
+ "人脉": 22218,
+ "愣": 22219,
+ "崩塌": 22220,
+ "战时": 22221,
+ "辞退": 22222,
+ "文学家": 22223,
+ "激动人心": 22224,
+ "教育家": 22225,
+ "认错": 22226,
+ "情怀": 22227,
+ "静谧": 22228,
+ "好书": 22229,
+ "涌": 22230,
+ "咖啡杯": 22231,
+ "伤感": 22232,
+ "很久很久": 22233,
+ "生命体": 22234,
+ "简而言之": 22235,
+ "罗密欧": 22236,
+ "朱丽叶": 22237,
+ "安娜": 22238,
+ "哭泣": 22239,
+ "重逢": 22240,
+ "安逸": 22241,
+ "全队": 22242,
+ "犯规": 22243,
+ "基数": 22244,
+ "自习": 22245,
+ "民工": 22246,
+ "碰触": 22247,
+ "提示音": 22248,
+ "犹": 22249,
+ "购票": 22250,
+ "绝非": 22251,
+ "荒唐": 22252,
+ "本省": 22253,
+ "充分考虑": 22254,
+ "及格": 22255,
+ "教育学": 22256,
+ "历史学": 22257,
+ "三门": 22258,
+ "外国语": 22259,
+ "本科生": 22260,
+ "评审": 22261,
+ "山里": 22262,
+ "夏至": 22263,
+ "上时": 22264,
+ "黑龙江省": 22265,
+ "地平线": 22266,
+ "季军": 22267,
+ "一字": 22268,
+ "馅饼": 22269,
+ "水库": 22270,
+ "精明": 22271,
+ "不如意": 22272,
+ "平平": 22273,
+ "演艺": 22274,
+ "园艺": 22275,
+ "艾灸": 22276,
+ "SFC": 22277,
+ "招人": 22278,
+ "这行": 22279,
+ "降低成本": 22280,
+ "join": 22281,
+ "favorite": 22282,
+ "family": 22283,
+ "most": 22284,
+ "句号": 22285,
+ "废水": 22286,
+ "服务提供商": 22287,
+ "经济危机": 22288,
+ "商业模式": 22289,
+ "阿里巴巴": 22290,
+ "首任": 22291,
+ "出任": 22292,
+ "中小企业": 22293,
+ "硅谷": 22294,
+ "风险投资": 22295,
+ "Amazon": 22296,
+ "马云": 22297,
+ "麻省理工学院": 22298,
+ "商学院": 22299,
+ "高度评价": 22300,
+ "大阪府": 22301,
+ "富士山": 22302,
+ "九州": 22303,
+ "名古屋": 22304,
+ "新宿": 22305,
+ "植发": 22306,
+ "发凉": 22307,
+ "抗菌素": 22308,
+ "动脉瘤": 22309,
+ "这批": 22310,
+ "首歌曲": 22311,
+ "潘多拉": 22312,
+ "英文版": 22313,
+ "find": 22314,
+ "je": 22315,
+ "de": 22316,
+ "pour": 22317,
+ "que": 22318,
+ "val": 22319,
+ "ö": 22320,
+ "el": 22321,
+ "van": 22322,
+ "女歌手": 22323,
+ "萧条": 22324,
+ "1899": 22325,
+ "奏": 22326,
+ "一封信": 22327,
+ "乐队": 22328,
+ "店员": 22329,
+ "乞丐": 22330,
+ "举措": 22331,
+ "参议员": 22332,
+ "矮小": 22333,
+ "集中营": 22334,
+ "直译": 22335,
+ "弹奏": 22336,
+ "访客": 22337,
+ "为生": 22338,
+ "基督徒": 22339,
+ "犹太人": 22340,
+ "信托": 22341,
+ "音乐会": 22342,
+ "歌剧": 22343,
+ "资格考试": 22344,
+ "从大到": 22345,
+ "log": 22346,
+ "内壁": 22347,
+ "磁铁": 22348,
+ "唇膏": 22349,
+ "喷发": 22350,
+ "脚本语言": 22351,
+ "洞察": 22352,
+ "洞察力": 22353,
+ "零售业": 22354,
+ "衬衣": 22355,
+ "满足感": 22356,
+ "营运": 22357,
+ "乐于": 22358,
+ "制服": 22359,
+ "index": 22360,
+ "oftware": 22361,
+ "list": 22362,
+ "不料": 22363,
+ "大牛": 22364,
+ "年仅": 22365,
+ "物资": 22366,
+ "评级": 22367,
+ "历史数据": 22368,
+ "看得出来": 22369,
+ "不可否认": 22370,
+ "人渣": 22371,
+ "脾脏": 22372,
+ "上述情况": 22373,
+ "单人": 22374,
+ "three": 22375,
+ "重塑": 22376,
+ "重构": 22377,
+ "画质": 22378,
+ "兰花": 22379,
+ "驱动力": 22380,
+ "第一本": 22381,
+ "No": 22382,
+ "教育局": 22383,
+ "湿气": 22384,
+ "较佳": 22385,
+ "集结": 22386,
+ "蟑螂": 22387,
+ "纸巾": 22388,
+ "自然风光": 22389,
+ "漩涡": 22390,
+ "满满的": 22391,
+ "骑车": 22392,
+ "王明": 22393,
+ "外交部": 22394,
+ "名誉": 22395,
+ "灭菌": 22396,
+ "保持稳定": 22397,
+ "学堂": 22398,
+ "学分": 22399,
+ "处分": 22400,
+ "第一季": 22401,
+ "遇难": 22402,
+ "零下": 22403,
+ "降雨量": 22404,
+ "话剧": 22405,
+ "甄": 22406,
+ "麻辣烫": 22407,
+ "夫斯基": 22408,
+ "矢量": 22409,
+ "土星": 22410,
+ "一排": 22411,
+ "掠": 22412,
+ "多任务": 22413,
+ "特征值": 22414,
+ "装载": 22415,
+ "拼接": 22416,
+ "污渍": 22417,
+ "拖动": 22418,
+ "测试数据": 22419,
+ "经营者": 22420,
+ "菜品": 22421,
+ "抒情": 22422,
+ "他于": 22423,
+ "德里": 22424,
+ "前身": 22425,
+ "弹力": 22426,
+ "142": 22427,
+ "借记卡": 22428,
+ "造谣": 22429,
+ "攀爬": 22430,
+ "风力": 22431,
+ "滑动": 22432,
+ "应不应该": 22433,
+ "神学": 22434,
+ "科大": 22435,
+ "涂层": 22436,
+ "保安": 22437,
+ "国道": 22438,
+ "采样": 22439,
+ "出家": 22440,
+ "急忙": 22441,
+ "德尔": 22442,
+ "第二阶段": 22443,
+ "酸钠": 22444,
+ "间质性": 22445,
+ "尿路": 22446,
+ "软件工程": 22447,
+ "老兵": 22448,
+ "苏宁": 22449,
+ "掰": 22450,
+ "路段": 22451,
+ "肾小球": 22452,
+ "潜血": 22453,
+ "低盐": 22454,
+ "模拟器": 22455,
+ "任天堂": 22456,
+ "历年": 22457,
+ "ç": 22458,
+ "基调": 22459,
+ "谷丙": 22460,
+ "肌酐": 22461,
+ "灯笼": 22462,
+ "落日": 22463,
+ "数千年": 22464,
+ "久远": 22465,
+ "指示灯": 22466,
+ "简短": 22467,
+ "惟": 22468,
+ "礼": 22469,
+ "雷诺": 22470,
+ "英美": 22471,
+ "Red": 22472,
+ "江西省": 22473,
+ "矫情": 22474,
+ "神舟": 22475,
+ "升空": 22476,
+ "捕捉到": 22477,
+ "航天": 22478,
+ "载人": 22479,
+ "搜救": 22480,
+ "陈奕迅": 22481,
+ "邮箱地址": 22482,
+ "观光": 22483,
+ "扬": 22484,
+ "天气情况": 22485,
+ "出为": 22486,
+ "波浪": 22487,
+ "掌控": 22488,
+ "自制力": 22489,
+ "灶": 22490,
+ "知情": 22491,
+ "沥干": 22492,
+ "裁剪": 22493,
+ "游戏机": 22494,
+ "封锁": 22495,
+ "总经理": 22496,
+ "引体向上": 22497,
+ "纹身": 22498,
+ "哼": 22499,
+ "示威": 22500,
+ "家门口": 22501,
+ "搬到": 22502,
+ "APP": 22503,
+ "开局": 22504,
+ "镇上": 22505,
+ "菜市场": 22506,
+ "中方": 22507,
+ "两道": 22508,
+ "谷歌": 22509,
+ "Google": 22510,
+ "胜出": 22511,
+ "所选": 22512,
+ "普拉提": 22513,
+ "柔韧性": 22514,
+ "氨": 22515,
+ "自慰": 22516,
+ "cd": 22517,
+ "无可": 22518,
+ "变焦": 22519,
+ "取景": 22520,
+ "阴天": 22521,
+ "四代": 22522,
+ "新华": 22523,
+ "栋": 22524,
+ "哒": 22525,
+ "为界": 22526,
+ "耻骨": 22527,
+ "136": 22528,
+ "杀虫剂": 22529,
+ "行省": 22530,
+ "治所": 22531,
+ "强盗": 22532,
+ "叹为观止": 22533,
+ "复兴": 22534,
+ "慷慨": 22535,
+ "一代人": 22536,
+ "凝聚力": 22537,
+ "得主": 22538,
+ "比作": 22539,
+ "深邃": 22540,
+ "亨": 22541,
+ "感人至深": 22542,
+ "鬼神": 22543,
+ "奉天": 22544,
+ "浪漫主义": 22545,
+ "横跨": 22546,
+ "有史以来": 22547,
+ "拍案叫绝": 22548,
+ "心血": 22549,
+ "二十年": 22550,
+ "言论自由": 22551,
+ "梵高": 22552,
+ "表达方式": 22553,
+ "日食": 22554,
+ "填补": 22555,
+ "迷失": 22556,
+ "趟": 22557,
+ "欢乐颂": 22558,
+ "采取行动": 22559,
+ "独角兽": 22560,
+ "bb": 22561,
+ "富人": 22562,
+ "寿险": 22563,
+ "初试": 22564,
+ "呛": 22565,
+ "牌照": 22566,
+ "人工神经网络": 22567,
+ "特征提取": 22568,
+ "神经网络": 22569,
+ "北大": 22570,
+ "纠错": 22571,
+ "杜": 22572,
+ "大象": 22573,
+ "链球菌": 22574,
+ "拆线": 22575,
+ "药敏": 22576,
+ "分型": 22577,
+ "慢性肾炎": 22578,
+ "城市居民": 22579,
+ "着重于": 22580,
+ "嘶哑": 22581,
+ "声带": 22582,
+ "金球奖": 22583,
+ "奖项": 22584,
+ "中环": 22585,
+ "金融中心": 22586,
+ "今年夏天": 22587,
+ "犯法": 22588,
+ "化简": 22589,
+ "相似性": 22590,
+ "不同点": 22591,
+ "遗尿": 22592,
+ "袭": 22593,
+ "肛": 22594,
+ "体操": 22595,
+ "不提": 22596,
+ "五官": 22597,
+ "开塞露": 22598,
+ "热锅": 22599,
+ "鲈": 22600,
+ "虫草": 22601,
+ "爵位": 22602,
+ "收养": 22603,
+ "顺治": 22604,
+ "礼部": 22605,
+ "再三": 22606,
+ "沿途": 22607,
+ "散播": 22608,
+ "册封": 22609,
+ "吹嘘": 22610,
+ "十四年": 22611,
+ "AND": 22612,
+ "卡特": 22613,
+ "自营": 22614,
+ "兽医": 22615,
+ "三家": 22616,
+ "新干线": 22617,
+ "铁道": 22618,
+ "一个半": 22619,
+ "算作": 22620,
+ "范式": 22621,
+ "Text": 22622,
+ "啥时候": 22623,
+ "博主": 22624,
+ "大阪": 22625,
+ "关东": 22626,
+ "下辖": 22627,
+ "町": 22628,
+ "纽约州": 22629,
+ "河口": 22630,
+ "曼哈顿": 22631,
+ "布鲁克林": 22632,
+ "布朗": 22633,
+ "纽约市": 22634,
+ "首相": 22635,
+ "塔桥": 22636,
+ "金融业": 22637,
+ "首府": 22638,
+ "神户": 22639,
+ "此地": 22640,
+ "going": 22641,
+ "高管": 22642,
+ "增量": 22643,
+ "投行": 22644,
+ "年报": 22645,
+ "财报": 22646,
+ "从头到尾": 22647,
+ "剧场版": 22648,
+ "广告公司": 22649,
+ "若干个": 22650,
+ "流畅性": 22651,
+ "紧张感": 22652,
+ "错误率": 22653,
+ "阁": 22654,
+ "蕨": 22655,
+ "节操": 22656,
+ "共济失调": 22657,
+ "突发性": 22658,
+ "俯卧撑": 22659,
+ "受害者": 22660,
+ "认知度": 22661,
+ "原画": 22662,
+ "2016": 22663,
+ "咨询师": 22664,
+ "法是": 22665,
+ "测试用例": 22666,
+ "软件测试": 22667,
+ "阿拉斯加": 22668,
+ "斯拉夫": 22669,
+ "养狗": 22670,
+ "捕鱼": 22671,
+ "繁衍": 22672,
+ "鲸鱼": 22673,
+ "北极熊": 22674,
+ "鳞片": 22675,
+ "入门级": 22676,
+ "尼康": 22677,
+ "画幅": 22678,
+ "医疗器械": 22679,
+ "异同": 22680,
+ "共同点": 22681,
+ "歇": 22682,
+ "察觉到": 22683,
+ "逆袭": 22684,
+ "下划线": 22685,
+ "麦田": 22686,
+ "凸起": 22687,
+ "布雷": 22688,
+ "犯病": 22689,
+ "幽门": 22690,
+ "螺旋杆菌": 22691,
+ "先放": 22692,
+ "特殊字符": 22693,
+ "道家": 22694,
+ "高薪": 22695,
+ "南亚": 22696,
+ "历史学家": 22697,
+ "公尺": 22698,
+ "汉朝": 22699,
+ "北伐": 22700,
+ "天大": 22701,
+ "不敢相信": 22702,
+ "此基础": 22703,
+ "跑过来": 22704,
+ "专业技能": 22705,
+ "二线": 22706,
+ "java": 22707,
+ "评测": 22708,
+ "很感兴趣": 22709,
+ "半场": 22710,
+ "哈哈哈哈": 22711,
+ "window": 22712,
+ "祠": 22713,
+ "西接": 22714,
+ "探寻": 22715,
+ "大业": 22716,
+ "三等": 22717,
+ "生产方式": 22718,
+ "追寻": 22719,
+ "在历史上": 22720,
+ "屈原": 22721,
+ "兮": 22722,
+ "雍正": 22723,
+ "嘉庆": 22724,
+ "道光": 22725,
+ "孕育": 22726,
+ "刻画": 22727,
+ "植被": 22728,
+ "空气质量": 22729,
+ "误": 22730,
+ "丢脸": 22731,
+ "竞选": 22732,
+ "蹭": 22733,
+ "占卜": 22734,
+ "史学": 22735,
+ "长年": 22736,
+ "私企": 22737,
+ "没带": 22738,
+ "街区": 22739,
+ "章程": 22740,
+ "新品": 22741,
+ "相匹配": 22742,
+ "有太大": 22743,
+ "暴雨": 22744,
+ "大雨": 22745,
+ "几件": 22746,
+ "萌萌": 22747,
+ "恐怖片": 22748,
+ "纪律": 22749,
+ "不甘": 22750,
+ "最难": 22751,
+ "摩羯座": 22752,
+ "很惨": 22753,
+ "上阵": 22754,
+ "路灯": 22755,
+ "海风": 22756,
+ "离别": 22757,
+ "天水": 22758,
+ "清净": 22759,
+ "倒地": 22760,
+ "万年": 22761,
+ "一脚": 22762,
+ "尿痛": 22763,
+ "team": 22764,
+ "computer": 22765,
+ "ample": 22766,
+ "procesing": 22767,
+ "also": 22768,
+ "偶遇": 22769,
+ "梅西": 22770,
+ "切尔": 22771,
+ "起名": 22772,
+ "概论": 22773,
+ "教学方法": 22774,
+ "童鞋": 22775,
+ "明文": 22776,
+ "派对": 22777,
+ "霸": 22778,
+ "海贼": 22779,
+ "马术": 22780,
+ "筹建": 22781,
+ "上校": 22782,
+ "进修": 22783,
+ "公关": 22784,
+ "拒": 22785,
+ "暴涨": 22786,
+ "显性": 22787,
+ "合理性": 22788,
+ "最坏": 22789,
+ "树枝": 22790,
+ "中医药": 22791,
+ "手球": 22792,
+ "资本家": 22793,
+ "传销": 22794,
+ "这帮": 22795,
+ "科长": 22796,
+ "两千": 22797,
+ "检察院": 22798,
+ "小强": 22799,
+ "反潜": 22800,
+ "核潜艇": 22801,
+ "letter": 22802,
+ "baby": 22803,
+ "孩童": 22804,
+ "皮脂腺": 22805,
+ "教学楼": 22806,
+ "篮球场": 22807,
+ "橡树": 22808,
+ "棒子": 22809,
+ "民族主义": 22810,
+ "核弹": 22811,
+ "斯大林": 22812,
+ "硬伤": 22813,
+ "print": 22814,
+ "瓜": 22815,
+ "社会保障": 22816,
+ "米其林": 22817,
+ "左右两个": 22818,
+ "二期": 22819,
+ "专属": 22820,
+ "div": 22821,
+ "某件事": 22822,
+ "毒蛇": 22823,
+ "追击": 22824,
+ "三金片": 22825,
+ "上楼": 22826,
+ "跳过": 22827,
+ "清明节": 22828,
+ "预报": 22829,
+ "台风": 22830,
+ "晴天": 22831,
+ "坠胀": 22832,
+ "痛点": 22833,
+ "面饼": 22834,
+ "股本": 22835,
+ "总公司": 22836,
+ "通过观察": 22837,
+ "进一步提高": 22838,
+ "上游": 22839,
+ "机枪": 22840,
+ "滑板": 22841,
+ "枪管": 22842,
+ "移交": 22843,
+ "人大代表": 22844,
+ "━": 22845,
+ "手机游戏": 22846,
+ "校对": 22847,
+ "动车组": 22848,
+ "日内": 22849,
+ "这为": 22850,
+ "泡澡": 22851,
+ "七日": 22852,
+ "泡面": 22853,
+ "杠铃": 22854,
+ "踢足球": 22855,
+ "伪装": 22856,
+ "电网": 22857,
+ "城市规划": 22858,
+ "设计院": 22859,
+ "前缀": 22860,
+ "十岁": 22861,
+ "文化差异": 22862,
+ "反差": 22863,
+ "十多年": 22864,
+ "车手": 22865,
+ "直径约": 22866,
+ "小脑": 22867,
+ "存货": 22868,
+ "账款": 22869,
+ "管理层": 22870,
+ "JS": 22871,
+ "糖果": 22872,
+ "模特儿": 22873,
+ "广州市": 22874,
+ "转基因": 22875,
+ "高句丽": 22876,
+ "这两点": 22877,
+ "心室": 22878,
+ "UDP": 22879,
+ "DNS": 22880,
+ "幽灵": 22881,
+ "领主": 22882,
+ "契约": 22883,
+ "artificial": 22884,
+ "entity": 22885,
+ "逻辑推理": 22886,
+ "大厂": 22887,
+ "RPG": 22888,
+ "统计数据": 22889,
+ "画师": 22890,
+ "人设": 22891,
+ "剧作家": 22892,
+ "嚣张": 22893,
+ "call": 22894,
+ "幽默感": 22895,
+ "物语": 22896,
+ "全职": 22897,
+ "锁骨": 22898,
+ "症候群": 22899,
+ "预估": 22900,
+ "阿里": 22901,
+ "几首": 22902,
+ "金曲奖": 22903,
+ "海豚": 22904,
+ "专用发票": 22905,
+ "第五天": 22906,
+ "卵巢癌": 22907,
+ "性早熟": 22908,
+ "肠癌": 22909,
+ "更多地": 22910,
+ "哪些因素": 22911,
+ "万名": 22912,
+ "六天": 22913,
+ "曾一度": 22914,
+ "瘦下来": 22915,
+ "轴承": 22916,
+ "一局": 22917,
+ "收入水平": 22918,
+ "舍": 22919,
+ "延安": 22920,
+ "5.2": 22921,
+ "0.7": 22922,
+ "专攻": 22923,
+ "Master": 22924,
+ "华裔": 22925,
+ "加州大学": 22926,
+ "抽风": 22927,
+ "该文": 22928,
+ "葡萄球菌": 22929,
+ "输卵管炎": 22930,
+ "脓液": 22931,
+ "渐": 22932,
+ "example": 22933,
+ "泰坦": 22934,
+ "热带雨林": 22935,
+ "种族歧视": 22936,
+ "自由主义": 22937,
+ "游行": 22938,
+ "911": 22939,
+ "已故": 22940,
+ "市场调研": 22941,
+ "民营": 22942,
+ "企划": 22943,
+ "品牌形象": 22944,
+ "尼古拉": 22945,
+ "夏洛特": 22946,
+ "男爵": 22947,
+ "玛格丽特": 22948,
+ "揭露": 22949,
+ "朗德": 22950,
+ "儿时": 22951,
+ "囚犯": 22952,
+ "岸边": 22953,
+ "吸氧": 22954,
+ "流感病毒": 22955,
+ "干干净净": 22956,
+ "美剧": 22957,
+ "POST": 22958,
+ "查出来": 22959,
+ "租借": 22960,
+ "癌肿": 22961,
+ "放疗": 22962,
+ "免疫治疗": 22963,
+ "中医中药": 22964,
+ "腹水": 22965,
+ "视神经": 22966,
+ "追星": 22967,
+ "汽水": 22968,
+ "洗衣服": 22969,
+ "方正": 22970,
+ "一致性": 22971,
+ "博士学位": 22972,
+ "社会科学": 22973,
+ "调查报告": 22974,
+ "出版物": 22975,
+ "播": 22976,
+ "社会学": 22977,
+ "政治学": 22978,
+ "几十个": 22979,
+ "计算机程序": 22980,
+ "左翼": 22981,
+ "IC": 22982,
+ "续航": 22983,
+ "拆分": 22984,
+ "贩卖": 22985,
+ "毛茸茸": 22986,
+ "摸摸": 22987,
+ "欧冠": 22988,
+ "羞辱": 22989,
+ "琥珀": 22990,
+ "博士后": 22991,
+ "布拉": 22992,
+ "116": 22993,
+ "亚历山大": 22994,
+ "自然灾害": 22995,
+ "加粗": 22996,
+ "猫科": 22997,
+ "猫科动物": 22998,
+ "食者": 22999,
+ "爬行动物": 23000,
+ "有功": 23001,
+ "唐诗": 23002,
+ "第一期": 23003,
+ "七岁": 23004,
+ "庄子": 23005,
+ "分隔符": 23006,
+ "脑损伤": 23007,
+ "脑水肿": 23008,
+ "攻击者": 23009,
+ "英国伦敦": 23010,
+ "天文台": 23011,
+ "原址": 23012,
+ "微粒": 23013,
+ "拍打": 23014,
+ "同义": 23015,
+ "One": 23016,
+ "大奖赛": 23017,
+ "经济学家": 23018,
+ "理财产品": 23019,
+ "螺杆菌": 23020,
+ "千金": 23021,
+ "引致": 23022,
+ "浓烈": 23023,
+ "电动牙刷": 23024,
+ "a1": 23025,
+ "无意间": 23026,
+ "某次": 23027,
+ "一科": 23028,
+ "少量多餐": 23029,
+ "芋头": 23030,
+ "胸骨": 23031,
+ "系统地": 23032,
+ "肌群": 23033,
+ "高昂": 23034,
+ "理论知识": 23035,
+ "素描": 23036,
+ "肠梗阻": 23037,
+ "信息技术": 23038,
+ "柱状图": 23039,
+ "监护": 23040,
+ "计算机软件": 23041,
+ "推导": 23042,
+ "沸点": 23043,
+ "半导体": 23044,
+ "海浪": 23045,
+ "粤": 23046,
+ "网络营销": 23047,
+ "可逆": 23048,
+ "乌鲁木齐": 23049,
+ "攻破": 23050,
+ "空气污染": 23051,
+ "标点": 23052,
+ "护卫舰": 23053,
+ "RGB": 23054,
+ "基本原理": 23055,
+ "青梅竹马": 23056,
+ "口琴": 23057,
+ "三生": 23058,
+ "深入探讨": 23059,
+ "彰显": 23060,
+ "点名": 23061,
+ "品牌价值": 23062,
+ "媒体广告": 23063,
+ "检索": 23064,
+ "产品开发": 23065,
+ "销售策略": 23066,
+ "当回事": 23067,
+ "插曲": 23068,
+ "普洱茶": 23069,
+ "代数": 23070,
+ "Δ": 23071,
+ "甲状腺癌": 23072,
+ "武术": 23073,
+ "复出": 23074,
+ "以备": 23075,
+ "状语": 23076,
+ "American": 23077,
+ "city": 23078,
+ "every": 23079,
+ "分词": 23080,
+ "三只": 23081,
+ "175": 23082,
+ "特种部队": 23083,
+ "朴素": 23084,
+ "旗号": 23085,
+ "程序员": 23086,
+ "支持者": 23087,
+ "无可厚非": 23088,
+ "毁掉": 23089,
+ "程序代码": 23090,
+ "制定者": 23091,
+ "848": 23092,
+ "beautiful": 23093,
+ "亚当": 23094,
+ "全天": 23095,
+ "村上春树": 23096,
+ "王小波": 23097,
+ "批判": 23098,
+ "康德": 23099,
+ "难懂": 23100,
+ "雨果": 23101,
+ "可读性": 23102,
+ "史蒂芬": 23103,
+ "霍金": 23104,
+ "一读": 23105,
+ "禁酒": 23106,
+ "踏入": 23107,
+ "宿命": 23108,
+ "paper": 23109,
+ "human": 23110,
+ "监禁": 23111,
+ "浮现": 23112,
+ "祖母": 23113,
+ "里头": 23114,
+ "豪": 23115,
+ "第三届": 23116,
+ "历届": 23117,
+ "涂鸦": 23118,
+ "各个领域": 23119,
+ "购买力": 23120,
+ "搜狐": 23121,
+ "译作": 23122,
+ "利亚": 23123,
+ "format": 23124,
+ "排列组合": 23125,
+ "从小到大": 23126,
+ "日间": 23127,
+ "柑橘类": 23128,
+ "干果": 23129,
+ "牡丹": 23130,
+ "看不下去": 23131,
+ "案子": 23132,
+ "温哥华": 23133,
+ "勒布朗": 23134,
+ "遗传学": 23135,
+ "cs": 23136,
+ "资本主义": 23137,
+ "商品价格": 23138,
+ "讲台": 23139,
+ "草根": 23140,
+ "高学历": 23141,
+ "曹雪芹": 23142,
+ "充当": 23143,
+ "葱姜": 23144,
+ "糊": 23145,
+ "阿尔伯特": 23146,
+ "加泰罗尼亚": 23147,
+ "377": 23148,
+ "海姆": 23149,
+ "鼻咽癌": 23150,
+ "泛黄": 23151,
+ "建筑材料": 23152,
+ "贝克": 23153,
+ "尾气": 23154,
+ "自然资源": 23155,
+ "创业板": 23156,
+ "两届": 23157,
+ "咸丰": 23158,
+ "1861": 23159,
+ "庵": 23160,
+ "获得成功": 23161,
+ "西南部": 23162,
+ "河内": 23163,
+ "1915": 23164,
+ "全省": 23165,
+ "佐": 23166,
+ "徐": 23167,
+ "绛": 23168,
+ "电视节目": 23169,
+ "流媒体": 23170,
+ "因数": 23171,
+ "海拔高度": 23172,
+ "障碍性": 23173,
+ "阿拉伯数字": 23174,
+ "顺序排列": 23175,
+ "荣幸": 23176,
+ "诺贝尔文学奖": 23177,
+ "1901": 23178,
+ "剖析": 23179,
+ "en": 23180,
+ "恩爱": 23181,
+ "干细胞": 23182,
+ "value": 23183,
+ "line": 23184,
+ "爱丽丝": 23185,
+ "输尿管": 23186,
+ "精索": 23187,
+ "硬是": 23188,
+ "住户": 23189,
+ "亲密关系": 23190,
+ "治不好": 23191,
+ "交由": 23192,
+ "卢卡斯": 23193,
+ "爆料": 23194,
+ "本作": 23195,
+ "拉扯": 23196,
+ "顺带": 23197,
+ "mini": 23198,
+ "提问者": 23199,
+ "生活品质": 23200,
+ "第二期": 23201,
+ "合唱团": 23202,
+ "综艺": 23203,
+ "赛区": 23204,
+ "总决赛": 23205,
+ "巡演": 23206,
+ "传输数据": 23207,
+ "直流": 23208,
+ "学徒": 23209,
+ "一步步": 23210,
+ "线下": 23211,
+ "三甲": 23212,
+ "分值": 23213,
+ "篮球比赛": 23214,
+ "入球": 23215,
+ "河道": 23216,
+ "1971": 23217,
+ "VR": 23218,
+ "表单": 23219,
+ "剔除": 23220,
+ "虐待": 23221,
+ "伤及": 23222,
+ "植入": 23223,
+ "士官": 23224,
+ "THE": 23225,
+ "驾": 23226,
+ "世锦赛": 23227,
+ "政变": 23228,
+ "袁世凯": 23229,
+ "眼界": 23230,
+ "娃": 23231,
+ "泪流满面": 23232,
+ "没敢": 23233,
+ "入境": 23234,
+ "苦味": 23235,
+ "溢价": 23236,
+ "比萨": 23237,
+ "馅料": 23238,
+ "烤制": 23239,
+ "矿工": 23240,
+ "转战": 23241,
+ "资格赛": 23242,
+ "主帅": 23243,
+ "基友": 23244,
+ "松鼠": 23245,
+ "横滨": 23246,
+ "029": 23247,
+ "福冈": 23248,
+ "釜山": 23249,
+ "供养": 23250,
+ "令得": 23251,
+ "机器翻译": 23252,
+ "table": 23253,
+ "聚合": 23254,
+ "High": 23255,
+ "安全漏洞": 23256,
+ "转正": 23257,
+ "买买": 23258,
+ "雌性": 23259,
+ "肺泡": 23260,
+ "癖": 23261,
+ "血象": 23262,
+ "1934": 23263,
+ "财务状况": 23264,
+ "投资决策": 23265,
+ "可用性": 23266,
+ "前任": 23267,
+ "美国国会": 23268,
+ "心智": 23269,
+ "导图": 23270,
+ "托尼": 23271,
+ "思维过程": 23272,
+ "非线性": 23273,
+ "field": 23274,
+ "price": 23275,
+ "CPA": 23276,
+ "副教授": 23277,
+ "专长": 23278,
+ "风险管理": 23279,
+ "税法": 23280,
+ "批复": 23281,
+ "聊着": 23282,
+ "很穷": 23283,
+ "林俊杰": 23284,
+ "月入": 23285,
+ "转折点": 23286,
+ "北非": 23287,
+ "独立战争": 23288,
+ "逃亡": 23289,
+ "帕拉": 23290,
+ "活儿": 23291,
+ "托马斯": 23292,
+ "1938": 23293,
+ "活下去": 23294,
+ "德克萨斯州": 23295,
+ "肯尼迪": 23296,
+ "警察局": 23297,
+ "人质": 23298,
+ "加西亚": 23299,
+ "发源地": 23300,
+ "印第安人": 23301,
+ "行政区域": 23302,
+ "普里": 23303,
+ "塔克": 23304,
+ "该市": 23305,
+ "总督": 23306,
+ "奥德": 23307,
+ "特里": 23308,
+ "一届": 23309,
+ "恐怖分子": 23310,
+ "修正案": 23311,
+ "拉美": 23312,
+ "铋": 23313,
+ "阅兵": 23314,
+ "任意球": 23315,
+ "190": 23316,
+ "佩": 23317,
+ "弗雷": 23318,
+ "尼奥": 23319,
+ "哈特": 23320,
+ "抨击": 23321,
+ "执行者": 23322,
+ "当期": 23323,
+ "′": 23324,
+ "推送": 23325,
+ "微信": 23326,
+ "MIUI": 23327,
+ "・": 23328,
+ "纠葛": 23329,
+ "报案": 23330,
+ "咳咳": 23331,
+ "上万": 23332,
+ "卖萌": 23333,
+ "暹罗": 23334,
+ "啊啊啊": 23335,
+ "挑战性": 23336,
+ "万岁": 23337,
+ "参考价值": 23338,
+ "类比": 23339,
+ "拉面": 23340,
+ "润色": 23341,
+ "外卖": 23342,
+ "小产": 23343,
+ "反派": 23344,
+ "Name": 23345,
+ "太早": 23346,
+ "拜堂": 23347,
+ "典礼": 23348,
+ "领证": 23349,
+ "安卓": 23350,
+ "福建省": 23351,
+ "关键作用": 23352,
+ "л": 23353,
+ "努力学习": 23354,
+ "爱国主义": 23355,
+ "保护环境": 23356,
+ "职业技能": 23357,
+ "共青团": 23358,
+ "传统节日": 23359,
+ "广播电视": 23360,
+ "表彰": 23361,
+ "全员": 23362,
+ "造诣": 23363,
+ "JavaScript": 23364,
+ "凝血": 23365,
+ "布列塔尼": 23366,
+ "1902": 23367,
+ "现名": 23368,
+ "校舍": 23369,
+ "象征意义": 23370,
+ "论点": 23371,
+ "名言": 23372,
+ "修辞手法": 23373,
+ "趣事": 23374,
+ "空间站": 23375,
+ "菊科": 23376,
+ "大河": 23377,
+ "分级": 23378,
+ "柱子": 23379,
+ "相乘": 23380,
+ "梦遗": 23381,
+ "送达": 23382,
+ "项目经理": 23383,
+ "稿件": 23384,
+ "论据": 23385,
+ "蒸汽机": 23386,
+ "合群": 23387,
+ "票数": 23388,
+ "懵": 23389,
+ "卡车": 23390,
+ "永乐": 23391,
+ "越野": 23392,
+ "滑雪": 23393,
+ "该书": 23394,
+ "积极向上": 23395,
+ "8.0": 23396,
+ "分界线": 23397,
+ "外科医生": 23398,
+ "宝马": 23399,
+ "学区": 23400,
+ "锻练": 23401,
+ "旅游者": 23402,
+ "媒体报道": 23403,
+ "board": 23404,
+ "太晚": 23405,
+ "政协": 23406,
+ "庄": 23407,
+ "中国人民解放军": 23408,
+ "攻占": 23409,
+ "荃湾": 23410,
+ "混合液": 23411,
+ "鲨鱼": 23412,
+ "郭德纲": 23413,
+ "夸奖": 23414,
+ "舒": 23415,
+ "两者之间": 23416,
+ "因果关系": 23417,
+ "放化疗": 23418,
+ "中亚": 23419,
+ "联军": 23420,
+ "札": 23421,
+ "汗国": 23422,
+ "基辅": 23423,
+ "伐": 23424,
+ "翻唱": 23425,
+ "df": 23426,
+ "溪": 23427,
+ "程序运行": 23428,
+ "黄绿色": 23429,
+ "退烧药": 23430,
+ "西方人": 23431,
+ "重男轻女": 23432,
+ "安眠药": 23433,
+ "抵触": 23434,
+ "共产主义": 23435,
+ "尿毒症": 23436,
+ "稿": 23437,
+ "白宫": 23438,
+ "京东": 23439,
+ "十位数": 23440,
+ "连锁店": 23441,
+ "职业生涯": 23442,
+ "拉里": 23443,
+ "瓦拉": 23444,
+ "时态": 23445,
+ "web": 23446,
+ "映射": 23447,
+ "String": 23448,
+ "ex": 23449,
+ "form": 23450,
+ "虚拟机": 23451,
+ "自负": 23452,
+ "信不信": 23453,
+ "薪酬": 23454,
+ "哪些地方": 23455,
+ "书信": 23456,
+ "受害人": 23457,
+ "院士": 23458,
+ "期权": 23459,
+ "军区": 23460,
+ "水分子": 23461,
+ "原发": 23462,
+ "量子力学": 23463,
+ "物理系": 23464,
+ "干酪": 23465,
+ "小肚子": 23466,
+ "南阳": 23467,
+ "地主": 23468,
+ "关西": 23469,
+ "数十": 23470,
+ "今属": 23471,
+ "官僚": 23472,
+ "汲取": 23473,
+ "丞": 23474,
+ "二十一年": 23475,
+ "病逝": 23476,
+ "帝": 23477,
+ "既定": 23478,
+ "谭": 23479,
+ "评": 23480,
+ "柴": 23481,
+ "量子": 23482,
+ "原子弹": 23483,
+ "完事": 23484,
+ "好意思": 23485,
+ "温州": 23486,
+ "干货": 23487,
+ "底气": 23488,
+ "exo": 23489,
+ "天前": 23490,
+ "1925": 23491,
+ "帝国主义": 23492,
+ "1932": 23493,
+ "一时期": 23494,
+ "高音": 23495,
+ "调查结果": 23496,
+ "详尽": 23497,
+ "讲座": 23498,
+ "备考": 23499,
+ "顺风": 23500,
+ "佝偻病": 23501,
+ "宝玉": 23502,
+ "西区": 23503,
+ "西岸": 23504,
+ "奥斯卡金像奖": 23505,
+ "血管炎": 23506,
+ "‰": 23507,
+ "口腔癌": 23508,
+ "结核性": 23509,
+ "声响": 23510,
+ "宙斯": 23511,
+ "尊称": 23512,
+ "里斯": 23513,
+ "奥利": 23514,
+ "翁": 23515,
+ "早熟": 23516,
+ "笔触": 23517,
+ "方才": 23518,
+ "冗长": 23519,
+ "卑微": 23520,
+ "光年": 23521,
+ "原作": 23522,
+ "水能": 23523,
+ "地下水": 23524,
+ "汇入": 23525,
+ "沙特阿拉伯": 23526,
+ "约旦": 23527,
+ "陕西省": 23528,
+ "地级市": 23529,
+ "热身": 23530,
+ "故宫": 23531,
+ "高智商": 23532,
+ "静静": 23533,
+ "释迦牟尼": 23534,
+ "大乘": 23535,
+ "教义": 23536,
+ "并于": 23537,
+ "三观": 23538,
+ "全国性": 23539,
+ "畔": 23540,
+ "奥秘": 23541,
+ "高下": 23542,
+ "在世": 23543,
+ "门下": 23544,
+ "学系": 23545,
+ "佛学": 23546,
+ "资产阶级": 23547,
+ "生母": 23548,
+ "双十": 23549,
+ "时至今日": 23550,
+ "留学生": 23551,
+ "袋鼠": 23552,
+ "飞舞": 23553,
+ "摇滚乐": 23554,
+ "真人秀": 23555,
+ "正确性": 23556,
+ "生物医学": 23557,
+ "同为": 23558,
+ "围着": 23559,
+ "大坑": 23560,
+ "膜炎": 23561,
+ "镜片": 23562,
+ "押韵": 23563,
+ "美团": 23564,
+ "jane": 23565,
+ "前作": 23566,
+ "复旦": 23567,
+ "面糊": 23568,
+ "浮躁": 23569,
+ "满脸": 23570,
+ "库中": 23571,
+ "配不上": 23572,
+ "打了个": 23573,
+ "退伍": 23574,
+ "台湾人": 23575,
+ "第二段": 23576,
+ "拆解": 23577,
+ "足球场": 23578,
+ "三名": 23579,
+ "路子": 23580,
+ "大炮": 23581,
+ "自卫": 23582,
+ "更多人": 23583,
+ "活生生": 23584,
+ "北斗": 23585,
+ "绝妙": 23586,
+ "倒塌": 23587,
+ "镇痛药": 23588,
+ "减法": 23589,
+ "最重": 23590,
+ "杂音": 23591,
+ "该游戏": 23592,
+ "SSD": 23593,
+ "旁白": 23594,
+ "刘德华": 23595,
+ "离线": 23596,
+ "丽": 23597,
+ "数据表": 23598,
+ "市级": 23599,
+ "社长": 23600,
+ "创刊": 23601,
+ "创办": 23602,
+ "时任": 23603,
+ "所写": 23604,
+ "蝶": 23605,
+ "富士": 23606,
+ "自我介绍": 23607,
+ "free": 23608,
+ "music": 23609,
+ "世界大战": 23610,
+ "棱": 23611,
+ "掏钱": 23612,
+ "lol": 23613,
+ "簿": 23614,
+ "空缺": 23615,
+ "1966": 23616,
+ "岛国": 23617,
+ "情歌": 23618,
+ "纪念馆": 23619,
+ "年于": 23620,
+ "凯撒": 23621,
+ "大赏": 23622,
+ "提名": 23623,
+ "角逐": 23624,
+ "放送": 23625,
+ "该剧": 23626,
+ "NHK": 23627,
+ "无线电视": 23628,
+ "享年": 23629,
+ "全国人民代表大会": 23630,
+ "辩护": 23631,
+ "人大常委会": 23632,
+ "亲子": 23633,
+ "铭记": 23634,
+ "月饼": 23635,
+ "中秋节": 23636,
+ "迈向": 23637,
+ "音符": 23638,
+ "完蛋": 23639,
+ "高铁": 23640,
+ "Pro": 23641,
+ "盎司": 23642,
+ "纾解": 23643,
+ "止痛药": 23644,
+ "并购": 23645,
+ "苏黎世": 23646,
+ "外包": 23647,
+ "售卖": 23648,
+ "出其": 23649,
+ "布洛芬": 23650,
+ "各有不同": 23651,
+ "之路": 23652,
+ "基督": 23653,
+ "三体": 23654,
+ "平衡点": 23655,
+ "饥": 23656,
+ "二元": 23657,
+ "几千块": 23658,
+ "发物": 23659,
+ "插进": 23660,
+ "硅胶": 23661,
+ "isvery": 23662,
+ "tomorrow": 23663,
+ "fit": 23664,
+ "title": 23665,
+ "翻盘": 23666,
+ "对接": 23667,
+ "两篇": 23668,
+ "odd": 23669,
+ "社会福利": 23670,
+ "这组": 23671,
+ "报社": 23672,
+ "3.4": 23673,
+ "占位": 23674,
+ "幕后": 23675,
+ "交通工具": 23676,
+ "肖申克": 23677,
+ "救赎": 23678,
+ "Step": 23679,
+ "语种": 23680,
+ "play": 23681,
+ "肾积水": 23682,
+ "png": 23683,
+ "贝拉": 23684,
+ "text": 23685,
+ "分解成": 23686,
+ "古风": 23687,
+ "诺贝尔": 23688,
+ "三座": 23689,
+ "击球": 23690,
+ "首部": 23691,
+ "艇": 23692,
+ "雅克": 23693,
+ "陆上": 23694,
+ "122": 23695,
+ "售出": 23696,
+ "娱乐圈": 23697,
+ "叮嘱": 23698,
+ "刺猬": 23699,
+ "概要": 23700,
+ "新意": 23701,
+ "西欧": 23702,
+ "布鲁塞尔": 23703,
+ "理事会": 23704,
+ "George": 23705,
+ "就任": 23706,
+ "卸任": 23707,
+ "德国人": 23708,
+ "Group": 23709,
+ "除法": 23710,
+ "非正式": 23711,
+ "下设": 23712,
+ "盟军": 23713,
+ "削减": 23714,
+ "俄罗斯联邦": 23715,
+ "题为": 23716,
+ "第五次": 23717,
+ "阻滞剂": 23718,
+ "草图": 23719,
+ "大话西游": 23720,
+ "唐僧": 23721,
+ "知不知道": 23722,
+ "组中": 23723,
+ "exam": 23724,
+ "助力": 23725,
+ "赘述": 23726,
+ "Σ": 23727,
+ "最常": 23728,
+ "奈": 23729,
+ "推断出": 23730,
+ "水瓶": 23731,
+ "伴奏": 23732,
+ "瑞克": 23733,
+ "小孩儿": 23734,
+ "下标": 23735,
+ "被动语态": 23736,
+ "学妹": 23737,
+ "被选为": 23738,
+ "咨询服务": 23739,
+ "选修": 23740,
+ "自恋": 23741,
+ "上流社会": 23742,
+ "涉足": 23743,
+ "1895": 23744,
+ "社会关系": 23745,
+ "走红": 23746,
+ "剧团": 23747,
+ "剧组": 23748,
+ "幸福感": 23749,
+ "外星": 23750,
+ "蔷薇": 23751,
+ "宫崎骏": 23752,
+ "写实": 23753,
+ "整部": 23754,
+ "op": 23755,
+ "超能力": 23756,
+ "摧残": 23757,
+ "声优": 23758,
+ "民意": 23759,
+ "主旨": 23760,
+ "恶搞": 23761,
+ "男主": 23762,
+ "教科书": 23763,
+ "美人鱼": 23764,
+ "太郎": 23765,
+ "直面": 23766,
+ "移居": 23767,
+ "期满": 23768,
+ "庐山": 23769,
+ "旅游胜地": 23770,
+ "市场份额": 23771,
+ "个人电脑": 23772,
+ "霍尔": 23773,
+ "病理学": 23774,
+ "大佬": 23775,
+ "IV": 23776,
+ "替换成": 23777,
+ "海豹": 23778,
+ "多夫": 23779,
+ "耶稣": 23780,
+ "普鲁士": 23781,
+ "快车": 23782,
+ "警官": 23783,
+ "师范学院": 23784,
+ "橙汁": 23785,
+ "杜鹃": 23786,
+ "分类法": 23787,
+ "花盆": 23788,
+ "藓": 23789,
+ "网文": 23790,
+ "保证数据": 23791,
+ "保持清洁": 23792,
+ "站名": 23793,
+ "亡": 23794,
+ "中央军委": 23795,
+ "住院治疗": 23796,
+ "师范学校": 23797,
+ "ッ": 23798,
+ "YouTube": 23799,
+ "El": 23800,
+ "group": 23801,
+ "社交能力": 23802,
+ "及后": 23803,
+ "例行": 23804,
+ "平衡性": 23805,
+ "音高": 23806,
+ "防疫": 23807,
+ "胃里": 23808,
+ "农作物": 23809,
+ "物理量": 23810,
+ "安全带": 23811,
+ "可控": 23812,
+ "核聚变": 23813,
+ "鱼体": 23814,
+ "竹林": 23815,
+ "原图": 23816,
+ "高额": 23817,
+ "生计": 23818,
+ "归宿": 23819,
+ "日式": 23820,
+ "方便快捷": 23821,
+ "阿姆斯特丹": 23822,
+ "归属感": 23823,
+ "前妻": 23824,
+ "巴塞罗那": 23825,
+ "之差": 23826,
+ "没退": 23827,
+ "溶血": 23828,
+ "金曲": 23829,
+ "主办": 23830,
+ "男歌手": 23831,
+ "开发新": 23832,
+ "牛肉面": 23833,
+ "三元": 23834,
+ "以下内容": 23835,
+ "胸片": 23836,
+ "前言": 23837,
+ "产品设计": 23838,
+ "交互式": 23839,
+ "产品线": 23840,
+ "交互性": 23841,
+ "书画": 23842,
+ "master": 23843,
+ "technology": 23844,
+ "不容": 23845,
+ "▲": 23846,
+ "满族": 23847,
+ "中信": 23848,
+ "侦查": 23849,
+ "候选人": 23850,
+ "会面": 23851,
+ "指控": 23852,
+ "凯尔": 23853,
+ "凯文": 23854,
+ "报仇": 23855,
+ "安德烈": 23856,
+ "开枪": 23857,
+ "悲痛": 23858,
+ "兴奋剂": 23859,
+ "病患": 23860,
+ "泵": 23861,
+ "疑似": 23862,
+ "硬生生": 23863,
+ "演艺圈": 23864,
+ "果子": 23865,
+ "ω": 23866,
+ "穆罕默德": 23867,
+ "公社": 23868,
+ "刀片": 23869,
+ "链表": 23870,
+ "国立": 23871,
+ "布政使": 23872,
+ "晋国": 23873,
+ "先秦": 23874,
+ "凸显": 23875,
+ "莱德": 23876,
+ "悬疑": 23877,
+ "孤岛": 23878,
+ "黄金时代": 23879,
+ "集群": 23880,
+ "军方": 23881,
+ "隶属于": 23882,
+ "简洁明了": 23883,
+ "非常重视": 23884,
+ "一查": 23885,
+ "晚睡": 23886,
+ "每行": 23887,
+ "蒙特": 23888,
+ "商户": 23889,
+ "联动": 23890,
+ "水浒传": 23891,
+ "生命科学": 23892,
+ "原句": 23893,
+ "Today": 23894,
+ "food": 23895,
+ "张学友": 23896,
+ "乐天": 23897,
+ "错失": 23898,
+ "声母": 23899,
+ "点头": 23900,
+ "UA": 23901,
+ "尿蛋白": 23902,
+ "交通管理": 23903,
+ "配角": 23904,
+ "丧心病狂": 23905,
+ "最高人民法院": 23906,
+ "隔阂": 23907,
+ "尿床": 23908,
+ "iphone": 23909,
+ "做得好": 23910,
+ "该省": 23911,
+ "司法考试": 23912,
+ "约翰逊": 23913,
+ "误判": 23914,
+ "1918": 23915,
+ "1922": 23916,
+ "渍": 23917,
+ "民国时期": 23918,
+ "公车": 23919,
+ "世代": 23920,
+ "花式": 23921,
+ "特权": 23922,
+ "湖广": 23923,
+ "卢浮宫": 23924,
+ "皮划艇": 23925,
+ "水上运动": 23926,
+ "河谷": 23927,
+ "地貌": 23928,
+ "骑行": 23929,
+ "移步": 23930,
+ "迪士尼": 23931,
+ "太平洋区": 23932,
+ "现为": 23933,
+ "丘陵": 23934,
+ "影视作品": 23935,
+ "毗邻": 23936,
+ "大抵": 23937,
+ "日于": 23938,
+ "经典电影": 23939,
+ "美国作家": 23940,
+ "米勒": 23941,
+ "伊斯": 23942,
+ "改编自": 23943,
+ "格拉": 23944,
+ "尔巴": 23945,
+ "小说家": 23946,
+ "巴黎圣母院": 23947,
+ "诺斯": 23948,
+ "广岛": 23949,
+ "五世": 23950,
+ "斯威夫特": 23951,
+ "斯坦": 23952,
+ "小王子": 23953,
+ "艾米莉": 23954,
+ "劳伦斯": 23955,
+ "威尔斯": 23956,
+ "尼尔": 23957,
+ "密室": 23958,
+ "罗琳": 23959,
+ "西游记": 23960,
+ "大衣": 23961,
+ "运河": 23962,
+ "1880": 23963,
+ "克莱": 23964,
+ "1914": 23965,
+ "驻扎": 23966,
+ "家境": 23967,
+ "一棵树": 23968,
+ "三期": 23969,
+ "加密技术": 23970,
+ "install": 23971,
+ "node": 23972,
+ "启蒙": 23973,
+ "隋朝": 23974,
+ "牛津大学": 23975,
+ "市长": 23976,
+ "衔": 23977,
+ "福利待遇": 23978,
+ "轰": 23979,
+ "便利性": 23980,
+ "数据挖掘": 23981,
+ "城乡": 23982,
+ "排挤": 23983,
+ "合规": 23984,
+ "吃海鲜": 23985,
+ "多囊肾": 23986,
+ "展出": 23987,
+ "小林": 23988,
+ "缺席": 23989,
+ "弗里": 23990,
+ "犬科": 23991,
+ "本部": 23992,
+ "医学影像": 23993,
+ "颅脑": 23994,
+ "多部": 23995,
+ "加速器": 23996,
+ "无缝": 23997,
+ "拓宽": 23998,
+ "髋关节": 23999,
+ "磕": 24000,
+ "市政厅": 24001,
+ "咦": 24002,
+ "施加": 24003,
+ "富豪": 24004,
+ "美联储": 24005,
+ "和服": 24006,
+ "退热": 24007,
+ "闪存": 24008,
+ "1894": 24009,
+ "直隶": 24010,
+ "提督": 24011,
+ "祐": 24012,
+ "队列": 24013,
+ "右翼": 24014,
+ "总兵": 24015,
+ "骑着": 24016,
+ "进出口": 24017,
+ "曲目": 24018,
+ "诚": 24019,
+ "钛": 24020,
+ "item": 24021,
+ "pm": 24022,
+ "闹钟": 24023,
+ "日程表": 24024,
+ "WiFi": 24025,
+ "扭伤": 24026,
+ "主观性": 24027,
+ "编写程序": 24028,
+ "肯德基": 24029,
+ "pro": 24030,
+ "奇点": 24031,
+ "暗物质": 24032,
+ "星系": 24033,
+ "分句": 24034,
+ "贬义": 24035,
+ "重复性": 24036,
+ "渐变": 24037,
+ "建筑学": 24038,
+ "亚马逊": 24039,
+ "大名": 24040,
+ "观影": 24041,
+ "肾盂肾炎": 24042,
+ "利尿剂": 24043,
+ "乳头状": 24044,
+ "肾盂": 24045,
+ "再次发生": 24046,
+ "膀胱癌": 24047,
+ "国共": 24048,
+ "捍卫": 24049,
+ "高血糖": 24050,
+ "展会": 24051,
+ "存储容量": 24052,
+ "加密算法": 24053,
+ "前庭": 24054,
+ "append": 24055,
+ "从零开始": 24056,
+ "麻疹": 24057,
+ "马克思主义": 24058,
+ "洗脑": 24059,
+ "鼓吹": 24060,
+ "為": 24061,
+ "CV": 24062,
+ "结账": 24063,
+ "合称": 24064,
+ "某地": 24065,
+ "汪": 24066,
+ "战国时代": 24067,
+ "董": 24068,
+ "以使": 24069,
+ "枪击": 24070,
+ "驯养": 24071,
+ "delete": 24072,
+ "长篇": 24073,
+ "译本": 24074,
+ "马匹": 24075,
+ "起草": 24076,
+ "金融风险": 24077,
+ "中央银行": 24078,
+ "繁体字": 24079,
+ "为原": 24080,
+ "文章内容": 24081,
+ "港台": 24082,
+ "药好": 24083,
+ "普罗旺斯": 24084,
+ "悠闲": 24085,
+ "尾鳍": 24086,
+ "海贼王": 24087,
+ "筒": 24088,
+ "助词": 24089,
+ "建制": 24090,
+ "浦东": 24091,
+ "mi": 24092,
+ "中北部": 24093,
+ "小生": 24094,
+ "um": 24095,
+ "历史沿革": 24096,
+ "浮游生物": 24097,
+ "纲": 24098,
+ "二枚": 24099,
+ "肋": 24100,
+ "考古学": 24101,
+ "贾母": 24102,
+ "文艺复兴": 24103,
+ "现代科学": 24104,
+ "地层": 24105,
+ "万年前": 24106,
+ "印度人": 24107,
+ "飞弹": 24108,
+ "弹幕": 24109,
+ "display": 24110,
+ "game": 24111,
+ "它于": 24112,
+ "平均水平": 24113,
+ "真题": 24114,
+ "影视剧": 24115,
+ "324": 24116,
+ "干线": 24117,
+ "韩式": 24118,
+ "次列车": 24119,
+ "香港中文大学": 24120,
+ "香港大学": 24121,
+ "131": 24122,
+ "酋长": 24123,
+ "伊尔": 24124,
+ "普京": 24125,
+ "va": 24126,
+ "建筑风格": 24127,
+ "巴洛克": 24128,
+ "建筑师": 24129,
+ "第一座": 24130,
+ "拜占庭": 24131,
+ "东岸": 24132,
+ "伊斯兰": 24133,
+ "管控": 24134,
+ "pop": 24135,
+ "交汇": 24136,
+ "团圆": 24137,
+ "编曲": 24138,
+ "法西斯": 24139,
+ "煽动": 24140,
+ "意大利语": 24141,
+ "统帅": 24142,
+ "隧道": 24143,
+ "猿": 24144,
+ "谷维素": 24145,
+ "br": 24146,
+ "关联性": 24147,
+ "西德": 24148,
+ "总冠军": 24149,
+ "濒危": 24150,
+ "大熊猫": 24151,
+ "种群": 24152,
+ "生态学": 24153,
+ "自然生态": 24154,
+ "猎杀": 24155,
+ "青海省": 24156,
+ "电视广告": 24157,
+ "性格特征": 24158,
+ "机智": 24159,
+ "羊毛": 24160,
+ "啪啪": 24161,
+ "羊癫疯": 24162,
+ "哪句": 24163,
+ "低碳": 24164,
+ "海绵体": 24165,
+ "罗马数字": 24166,
+ "理工科": 24167,
+ "新闻报道": 24168,
+ "简明扼要": 24169,
+ "先有": 24170,
+ "算式": 24171,
+ "但凡": 24172,
+ "甘肃省": 24173,
+ "饱和度": 24174,
+ "可选": 24175,
+ "小游戏": 24176,
+ "祛痰": 24177,
+ "爆出": 24178,
+ "微分": 24179,
+ "物理学家": 24180,
+ "脊椎动物": 24181,
+ "预赛": 24182,
+ "吉士": 24183,
+ "罗宾": 24184,
+ "独居": 24185,
+ "永安": 24186,
+ "门面": 24187,
+ "面瘫": 24188,
+ "发言人": 24189,
+ "不退": 24190,
+ "彩礼": 24191,
+ "台独": 24192,
+ "盟友": 24193,
+ "看不上": 24194,
+ "一块钱": 24195,
+ "回忆录": 24196,
+ "校外": 24197,
+ "辞去": 24198,
+ "集是": 24199,
+ "对题": 24200,
+ "全书": 24201,
+ "条目": 24202,
+ "舍友": 24203,
+ "先发": 24204,
+ "根据地": 24205,
+ "曼彻斯特": 24206,
+ "短袖": 24207,
+ "随著": 24208,
+ "嬛": 24209,
+ "标杆": 24210,
+ "国学": 24211,
+ "据点": 24212,
+ "鸡翅": 24213,
+ "疝": 24214,
+ "深思": 24215,
+ "年入": 24216,
+ "错别字": 24217,
+ "大气污染": 24218,
+ "荒凉": 24219,
+ "弹劾": 24220,
+ "举出": 24221,
+ "剧院": 24222,
+ "长颈鹿": 24223,
+ "赫敏": 24224,
+ "战友": 24225,
+ "‧": 24226,
+ "绝佳": 24227,
+ "胶质瘤": 24228,
+ "曾任": 24229,
+ "接替": 24230,
+ "遗体": 24231,
+ "天气炎热": 24232,
+ "石墨": 24233,
+ "参与者": 24234,
+ "冲绳": 24235,
+ "增肌": 24236,
+ "雇用": 24237,
+ "发文": 24238,
+ "胸腺": 24239,
+ "礼服": 24240,
+ "旗袍": 24241,
+ "汉服": 24242,
+ "展品": 24243,
+ "层出不穷": 24244,
+ "这所": 24245,
+ "身临其境": 24246,
+ "选区": 24247,
+ "圈子里": 24248,
+ "魔术师": 24249,
+ "tatic": 24250,
+ "赞助": 24251,
+ "世界大赛": 24252,
+ "瓦尔": 24253,
+ "登顶": 24254,
+ "球门": 24255,
+ "爆破": 24256,
+ "头孢类": 24257,
+ "Computer": 24258,
+ "尔德": 24259,
+ "渤海": 24260,
+ "下雨天": 24261,
+ "app": 24262,
+ "apple": 24263,
+ "计算机系统": 24264,
+ "打广告": 24265,
+ "鸡血": 24266,
+ "信息安全": 24267,
+ "革命性": 24268,
+ "Code": 24269,
+ "位列": 24270,
+ "发力": 24271,
+ "到场": 24272,
+ "伏笔": 24273,
+ "恐怖袭击": 24274,
+ "营业额": 24275,
+ "鲍鱼": 24276,
+ "份量": 24277,
+ "方法论": 24278,
+ "圭": 24279,
+ "asa": 24280,
+ "瞅": 24281,
+ "肋间": 24282,
+ "Wi": 24283,
+ "牙买加": 24284,
+ "联队": 24285,
+ "损毁": 24286,
+ "光伏": 24287,
+ "发明家": 24288,
+ "天梯": 24289,
+ "相互连接": 24290,
+ "不忍心": 24291,
+ "童话故事": 24292,
+ "笑笑": 24293,
+ "几何学": 24294,
+ "回忆起": 24295,
+ "近邻": 24296,
+ "人造卫星": 24297,
+ "逼近": 24298,
+ "登月": 24299,
+ "宇航员": 24300,
+ "运载火箭": 24301,
+ "阿姆斯特朗": 24302,
+ "航天器": 24303,
+ "二号": 24304,
+ "国歌": 24305,
+ "高中同学": 24306,
+ "通车": 24307,
+ "高速铁路": 24308,
+ "核能": 24309,
+ "现如今": 24310,
+ "场均": 24311,
+ "练字": 24312,
+ "守望": 24313,
+ "通胀": 24314,
+ "逍遥丸": 24315,
+ "老挝": 24316,
+ "最让人": 24317,
+ "凳子": 24318,
+ "邻": 24319,
+ "主题公园": 24320,
+ "驻守": 24321,
+ "福祉": 24322,
+ "血压高": 24323,
+ "剧集": 24324,
+ "头衔": 24325,
+ "字幕组": 24326,
+ "软件系统": 24327,
+ "double": 24328,
+ "生存期": 24329,
+ "恶露": 24330,
+ "控制系统": 24331,
+ "饱受": 24332,
+ "深入研究": 24333,
+ "马里": 24334,
+ "机等": 24335,
+ "灵异": 24336,
+ "差评": 24337,
+ "门店": 24338,
+ "火龙果": 24339,
+ "小鼠": 24340,
+ "肉瘤": 24341,
+ "宫颈癌": 24342,
+ "tudent": 24343,
+ "elf": 24344,
+ "贬低": 24345,
+ "相较": 24346,
+ "主播": 24347,
+ "锋利": 24348,
+ "追溯": 24349,
+ "match": 24350,
+ "会用": 24351,
+ "machine": 24352,
+ "晕车": 24353,
+ "彻底消除": 24354,
+ "维权": 24355,
+ "精神疾病": 24356,
+ "贾府": 24357,
+ "没落": 24358,
+ "贾宝玉": 24359,
+ "林黛玉": 24360,
+ "lambda": 24361,
+ "缩减": 24362,
+ "行动计划": 24363,
+ "IS": 24364,
+ "亿个": 24365,
+ "坦桑尼亚": 24366,
+ "人类学": 24367,
+ "hold": 24368,
+ "绑架": 24369,
+ "领队": 24370,
+ "李小龙": 24371,
+ "金门": 24372,
+ "耐药性": 24373,
+ "会有": 24374,
+ "trip": 24375,
+ "week": 24376,
+ "镇江": 24377,
+ "背书": 24378,
+ "音乐作品": 24379,
+ "doc": 24380,
+ "毋庸置疑": 24381,
+ "碱基": 24382,
+ "基因组": 24383,
+ "递给": 24384,
+ "小猫咪": 24385,
+ "华尔街": 24386,
+ "草稿": 24387,
+ "惊艳": 24388,
+ "耳光": 24389,
+ "惊呆": 24390,
+ "跑题": 24391,
+ "倒计时": 24392,
+ "入职": 24393,
+ "电影票": 24394,
+ "肾癌": 24395,
+ "history": 24396,
+ "牛仔": 24397,
+ "Mac": 24398,
+ "京剧": 24399,
+ "脑残": 24400,
+ "低俗": 24401,
+ "胡歌": 24402,
+ "吃货": 24403,
+ "跨专业": 24404,
+ "翅": 24405,
+ "先不说": 24406,
+ "upper": 24407,
+ "а": 24408,
+ "▅": 24409,
+ "守望者": 24410,
+ "打麻将": 24411,
+ "图是": 24412,
+ "武大": 24413,
+ "每张": 24414,
+ "1965": 24415,
+ "年出": 24416,
+ "签下": 24417,
+ "常规赛": 24418,
+ "Game": 24419,
+ "维奇": 24420,
+ "名人堂": 24421,
+ "返回值": 24422,
+ "探险队": 24423,
+ "株式会社": 24424,
+ "平成": 24425,
+ "型态": 24426,
+ "摔倒": 24427,
+ "人次": 24428,
+ "green": 24429,
+ "创新性": 24430,
+ "多难": 24431,
+ "闪闪发光": 24432,
+ "转行": 24433,
+ "潮汕": 24434,
+ "why": 24435,
+ "回族": 24436,
+ "load": 24437,
+ "参与度": 24438,
+ "公司总部": 24439,
+ "指南针": 24440,
+ "乘积": 24441,
+ "3.14": 24442,
+ "朕": 24443,
+ "易发": 24444,
+ "沙哑": 24445,
+ "情话": 24446,
+ "贝格": 24447,
+ "水稻": 24448,
+ "感受一下": 24449,
+ "自救": 24450,
+ "心房": 24451,
+ "吞咽困难": 24452,
+ "播放列表": 24453,
+ "大清": 24454,
+ "不可或缺": 24455,
+ "黑猫": 24456,
+ "龙珠": 24457,
+ "上图": 24458,
+ "幻灯片": 24459,
+ "科幻小说": 24460,
+ "知县": 24461,
+ "冬眠": 24462,
+ "弗朗西斯": 24463,
+ "明治": 24464,
+ "交叉学科": 24465,
+ "人工智能": 24466,
+ "客户关系": 24467,
+ "求和": 24468,
+ "幂": 24469,
+ "草案": 24470,
+ "刚上": 24471,
+ "灾害": 24472,
+ "出海": 24473,
+ "山村": 24474,
+ "消费品": 24475,
+ "淋巴癌": 24476,
+ "餐馆": 24477,
+ "摊位": 24478,
+ "男权": 24479,
+ "核心思想": 24480,
+ "荒谬": 24481,
+ "城邦": 24482,
+ "中南部": 24483,
+ "鳍": 24484,
+ "底质": 24485,
+ "捕捞": 24486,
+ "认认真真": 24487,
+ "quare": 24488,
+ "我大": 24489,
+ "升温": 24490,
+ "德拉": 24491,
+ "说不上": 24492,
+ "风靡": 24493,
+ "太棒了": 24494,
+ "可视化": 24495,
+ "克尔": 24496,
+ "顺丰": 24497,
+ "薛宝钗": 24498,
+ "功利": 24499,
+ "贾家": 24500,
+ "黛玉": 24501,
+ "良": 24502,
+ "生平": 24503,
+ "大同": 24504,
+ "公共服务": 24505,
+ "俗名": 24506,
+ "公共汽车": 24507,
+ "有轨电车": 24508,
+ "扑克": 24509,
+ "小提琴": 24510,
+ "微调": 24511,
+ "极地": 24512,
+ "发球": 24513,
+ "台南": 24514,
+ "钢琴家": 24515,
+ "迁至": 24516,
+ "理工学院": 24517,
+ "助教": 24518,
+ "1905": 24519,
+ "1909": 24520,
+ "布拉格": 24521,
+ "母校": 24522,
+ "大学教授": 24523,
+ "诺贝尔物理学奖": 24524,
+ "查理": 24525,
+ "纪念碑": 24526,
+ "耶路撒冷": 24527,
+ "哥本哈根": 24528,
+ "悖论": 24529,
+ "素食主义者": 24530,
+ "难民": 24531,
+ "犹太": 24532,
+ "罗素": 24533,
+ "汉斯": 24534,
+ "共和党": 24535,
+ "选票": 24536,
+ "蒂诺": 24537,
+ "光谱": 24538,
+ "故宫博物院": 24539,
+ "二十四年": 24540,
+ "兵部": 24541,
+ "乡试": 24542,
+ "会试": 24543,
+ "祖籍": 24544,
+ "侍郎": 24545,
+ "文集": 24546,
+ "长文": 24547,
+ "皇上": 24548,
+ "linux": 24549,
+ "hape": 24550,
+ "杂货店": 24551,
+ "朝鲜民主主义人民共和国": 24552,
+ "前半部": 24553,
+ "出该": 24554,
+ "大白": 24555,
+ "米歇尔": 24556,
+ "BAT": 24557,
+ "原子核": 24558,
+ "双打": 24559,
+ "警示": 24560,
+ "蔷薇科": 24561,
+ "灌丛": 24562,
+ "奥美拉唑": 24563,
+ "生物体": 24564,
+ "大都会": 24565,
+ "生态旅游": 24566,
+ "武侠小说": 24567,
+ "单行本": 24568,
+ "岬": 24569,
+ "烊": 24570,
+ "幸存者": 24571,
+ "超自然": 24572,
+ "4K": 24573,
+ "猎头": 24574,
+ "薪水": 24575,
+ "their": 24576,
+ "using": 24577,
+ "胆囊息肉": 24578,
+ "女神像": 24579,
+ "教徒": 24580,
+ "嘈杂": 24581,
+ "艹": 24582,
+ "book": 24583,
+ "肠套叠": 24584,
+ "腰椎间盘": 24585,
+ "上位": 24586,
+ "中晚期": 24587,
+ "天王星": 24588,
+ "斑马": 24589,
+ "葡萄牙语": 24590,
+ "阿拉伯语": 24591,
+ "常住人口": 24592,
+ "朱元璋": 24593,
+ "转录": 24594,
+ "tag": 24595,
+ "蒙古国": 24596,
+ "提案": 24597,
+ "分治": 24598,
+ "半边": 24599,
+ "保持足够": 24600,
+ "高雄市": 24601,
+ "民进党": 24602,
+ "政党": 24603,
+ "捷运": 24604,
+ "工业生产": 24605,
+ "考到": 24606,
+ "实现目标": 24607,
+ "淡定": 24608,
+ "马里亚纳": 24609,
+ "天朝": 24610,
+ "比利牛斯": 24611,
+ "参议院": 24612,
+ "行政长官": 24613,
+ "投身": 24614,
+ "莱茵": 24615,
+ "入伍": 24616,
+ "岔开": 24617,
+ "此文": 24618,
+ "颐和园": 24619,
+ "zh": 24620,
+ "安保": 24621,
+ "食管癌": 24622,
+ "风能": 24623,
+ "蜀汉": 24624,
+ "经济体": 24625,
+ "毁灭性": 24626,
+ "大喊": 24627,
+ "东京都": 24628,
+ "连衣裙": 24629,
+ "契丹": 24630,
+ "社会阶层": 24631,
+ "CBA": 24632,
+ "剑桥大学": 24633,
+ "Lucy": 24634,
+ "猪八戒": 24635,
+ "2025": 24636,
+ "下半场": 24637,
+ "ascii": 24638,
+ "tate": 24639,
+ "Bob": 24640,
+ "下架": 24641,
+ "匮乏": 24642,
+ "闺女": 24643,
+ "专业术语": 24644,
+ "达尔文": 24645,
+ "进化论": 24646,
+ "爆棚": 24647,
+ "市政": 24648,
+ "烘焙": 24649,
+ "波尔": 24650,
+ "发展史": 24651,
+ "网络攻击": 24652,
+ "播映": 24653,
+ "系列赛": 24654,
+ "获奖者": 24655,
+ "赛艇": 24656,
+ "裁定": 24657,
+ "银牌": 24658,
+ "参赛者": 24659,
+ "感谢信": 24660,
+ "食道癌": 24661,
+ "️": 24662,
+ "棋手": 24663,
+ "蓬松": 24664,
+ "表征": 24665,
+ "會": 24666,
+ "拥堵": 24667,
+ "视频会议": 24668,
+ "吉斯": 24669,
+ "可扩展性": 24670,
+ "数据处理": 24671,
+ "复仇者": 24672,
+ "Blue": 24673,
+ "线粒体": 24674,
+ "巴赫": 24675,
+ "计划书": 24676,
+ "皇子": 24677,
+ "达尔": 24678,
+ "性骚扰": 24679,
+ "hk": 24680,
+ "结构化": 24681,
+ "再生能源": 24682,
+ "季后赛": 24683,
+ "mid": 24684,
+ "area": 24685,
+ "cut": 24686,
+ "position": 24687,
+ "准决赛": 24688,
+ "发件人": 24689,
+ "宣传片": 24690,
+ "南洋": 24691,
+ "之乱": 24692,
+ "人口数量": 24693,
+ "蒙古人": 24694,
+ "鲜卑": 24695,
+ "华侨": 24696,
+ "无序": 24697,
+ "冒号": 24698,
+ "最优": 24699,
+ "冷笑": 24700,
+ "曲风": 24701,
+ "前台": 24702,
+ "拓扑": 24703,
+ "数据管理": 24704,
+ "控": 24705,
+ "包养": 24706,
+ "干过": 24707,
+ "学霸": 24708,
+ "世界纪录": 24709,
+ "张学良": 24710,
+ "蝙蝠侠": 24711,
+ "灌溉": 24712,
+ "听闻": 24713,
+ "骨转移": 24714,
+ "腺癌": 24715,
+ "GPA": 24716,
+ "山体": 24717,
+ "滑坡": 24718,
+ "怎样治": 24719,
+ "红烧肉": 24720,
+ "珠穆朗玛峰": 24721,
+ "生产率": 24722,
+ "background": 24723,
+ "安防": 24724,
+ "升任": 24725,
+ "语序": 24726,
+ "交通系统": 24727,
+ "菜式": 24728,
+ "酥脆": 24729,
+ "政治部": 24730,
+ "铁路局": 24731,
+ "市委": 24732,
+ "全息": 24733,
+ "新闻标题": 24734,
+ "文化背景": 24735,
+ "创新能力": 24736,
+ "吸管": 24737,
+ "节水": 24738,
+ "网格": 24739,
+ "第一组": 24740,
+ "第二组": 24741,
+ "蛤": 24742,
+ "雷神": 24743,
+ "出彩": 24744,
+ "披萨": 24745,
+ "解剖学": 24746,
+ "无趣": 24747,
+ "York": 24748,
+ "邻居家": 24749,
+ "彩蛋": 24750,
+ "车库": 24751,
+ "励志": 24752,
+ "妹子": 24753,
+ "1876": 24754,
+ "副局长": 24755,
+ "局长": 24756,
+ "大圣": 24757,
+ "二维": 24758,
+ "虚拟现实": 24759,
+ "死气沉沉": 24760,
+ "妃": 24761,
+ "水污染": 24762,
+ "郑爽": 24763,
+ "发明者": 24764,
+ "混沌": 24765,
+ "量词": 24766,
+ "军籍": 24767,
+ "沿革": 24768,
+ "老奶奶": 24769,
+ "天文学": 24770,
+ "超新星": 24771,
+ "杜鹃花": 24772,
+ "隔代遗传": 24773,
+ "另一组": 24774,
+ "射箭": 24775,
+ "common": 24776,
+ "心理学家": 24777,
+ "冰球": 24778,
+ "bin": 24779,
+ "便携式": 24780,
+ "主攻": 24781,
+ "惊悚片": 24782,
+ "爱情片": 24783,
+ "凯特": 24784,
+ "坐落于": 24785,
+ "黑客帝国": 24786,
+ "剧情片": 24787,
+ "阿甘正传": 24788,
+ "马龙": 24789,
+ "等差数列": 24790,
+ "科举": 24791,
+ "获取信息": 24792,
+ "洗白": 24793,
+ "英文单词": 24794,
+ "应聘者": 24795,
+ "交互方式": 24796,
+ "情商": 24797,
+ "信息处理": 24798,
+ "补课": 24799,
+ "\t": 24800,
+ "同人": 24801,
+ "田中": 24802,
+ "大汉": 24803,
+ "太祖": 24804,
+ "陛下": 24805,
+ "已然": 24806,
+ "截断": 24807,
+ "ice": 24808,
+ "县长": 24809,
+ "以西": 24810,
+ "南至": 24811,
+ "霾": 24812,
+ "治疗师": 24813,
+ "阿尔卑斯山脉": 24814,
+ "贝多芬": 24815,
+ "十八年": 24816,
+ "法医": 24817,
+ "许嵩": 24818,
+ "马拉松": 24819,
+ "曲棍球": 24820,
+ "柔道": 24821,
+ "帆船": 24822,
+ "跆拳道": 24823,
+ "小项": 24824,
+ "广西壮族自治区": 24825,
+ "西藏自治区": 24826,
+ "新疆维吾尔自治区": 24827,
+ "观感": 24828,
+ "相关检查": 24829,
+ "边际": 24830,
+ "灯塔": 24831,
+ "心怀": 24832,
+ "对口": 24833,
+ "数学老师": 24834,
+ "数学系": 24835,
+ "M1": 24836,
+ "高通": 24837,
+ "节度使": 24838,
+ "狱中": 24839,
+ "question": 24840,
+ "来来来": 24841,
+ "格里": 24842,
+ "人种": 24843,
+ "流行歌曲": 24844,
+ "停止下来": 24845,
+ "曹魏": 24846,
+ "极冷": 24847,
+ "这幅": 24848,
+ "公共交通": 24849,
+ "上下车": 24850,
+ "偏题": 24851,
+ "自变量": 24852,
+ "奇偶性": 24853,
+ "喜马拉雅山脉": 24854,
+ "亚种": 24855,
+ "一百万": 24856,
+ "该句": 24857,
+ "万亿美元": 24858,
+ "合伙人": 24859,
+ "演员阵容": 24860,
+ "九寨沟": 24861,
+ "满足条件": 24862,
+ "非常感激": 24863,
+ "撩": 24864,
+ "毛笔": 24865,
+ "降解": 24866,
+ "必需品": 24867,
+ "美国陆军": 24868,
+ "屯": 24869,
+ "自习室": 24870,
+ "应届生": 24871,
+ "热带地区": 24872,
+ "昭和": 24873,
+ "其种": 24874,
+ "抑止": 24875,
+ "商业区": 24876,
+ "琊": 24877,
+ "垃圾处理": 24878,
+ "莉莉": 24879,
+ "红叶": 24880,
+ "交通运输": 24881,
+ "世界排名": 24882,
+ "北魏": 24883,
+ "三峡": 24884,
+ "寓言": 24885,
+ "歧义": 24886,
+ "或事物": 24887,
+ "function": 24888,
+ "可维护性": 24889,
+ "备胎": 24890,
+ "y2": 24891,
+ "爱迪生": 24892,
+ "1870": 24893,
+ "创始": 24894,
+ "脏话": 24895,
+ "一巴掌": 24896,
+ "总管": 24897,
+ "濒死": 24898,
+ "基建": 24899,
+ "读取数据": 24900,
+ "智障": 24901,
+ "多云": 24902,
+ "PERSON": 24903,
+ "法兰克福": 24904,
+ "美术馆": 24905,
+ "啪": 24906,
+ "数学模型": 24907,
+ "熵": 24908,
+ "神明": 24909,
+ "编组": 24910,
+ "无产阶级": 24911,
+ "升格": 24912,
+ "多囊": 24913,
+ "宜家": 24914,
+ "德川": 24915,
+ "守备": 24916,
+ "砲": 24917,
+ "lst": 24918,
+ "尼玛": 24919,
+ "使徒": 24920,
+ "该区": 24921,
+ "殿试": 24922,
+ "1898": 24923,
+ "清末": 24924,
+ "清军": 24925,
+ "音乐节": 24926,
+ "化学家": 24927,
+ "学习效果": 24928,
+ "义务教育": 24929,
+ "2019": 24930,
+ "放射治疗": 24931,
+ "疾病诊断": 24932,
+ "批判性": 24933,
+ "北区": 24934,
+ "腰肌劳损": 24935,
+ "指着": 24936,
+ "面相": 24937,
+ "花园里": 24938,
+ "理事长": 24939,
+ "副校长": 24940,
+ "跳转": 24941,
+ "iPad": 24942,
+ "词源": 24943,
+ "倒序": 24944,
+ "专有名词": 24945,
+ "群组": 24946,
+ "Learning": 24947,
+ "图谱": 24948,
+ "赠品": 24949,
+ "读博": 24950,
+ "轻量级": 24951,
+ "难以忘怀": 24952,
+ "笑声": 24953,
+ "夜店": 24954,
+ "之流": 24955,
+ "历任": 24956,
+ "行径": 24957,
+ "特价": 24958,
+ "School": 24959,
+ "1906": 24960,
+ "炮兵": 24961,
+ "正则": 24962,
+ "商科": 24963,
+ "自驾": 24964,
+ "reading": 24965,
+ "▄": 24966,
+ "恶作剧": 24967,
+ "推理小说": 24968,
+ "不为人知": 24969,
+ "邮轮": 24970,
+ "translate": 24971,
+ "日程安排": 24972,
+ "Lisa": 24973,
+ "FBI": 24974,
+ "萌": 24975,
+ "一众": 24976,
+ "音乐风格": 24977,
+ "大选": 24978,
+ "多尔": 24979,
+ "培根": 24980,
+ "刚入": 24981,
+ "综艺节目": 24982,
+ "月刊": 24983,
+ "文本编辑": 24984,
+ "悉尼": 24985,
+ "旅行者": 24986,
+ "口病": 24987,
+ "范冰冰": 24988,
+ "计算机科学": 24989,
+ "狗血": 24990,
+ "frequency": 24991,
+ "达芬奇": 24992,
+ "跨境": 24993,
+ "月台": 24994,
+ "ō": 24995,
+ "植树造林": 24996,
+ "员外郎": 24997,
+ "Street": 24998,
+ "账本": 24999,
+ "两件事": 25000,
+ "崔": 25001,
+ "残粉": 25002,
+ "人脸": 25003,
+ "李世民": 25004,
+ "语言学": 25005,
+ "就业机会": 25006,
+ "步长": 25007,
+ "吏部": 25008,
+ "交通部": 25009,
+ "最高法院": 25010,
+ "户部": 25011,
+ "工部": 25012,
+ "大学士": 25013,
+ "翰林院": 25014,
+ "巡抚": 25015,
+ "按察使": 25016,
+ "同知": 25017,
+ "给事中": 25018,
+ "知府": 25019,
+ "参议": 25020,
+ "署": 25021,
+ "编修": 25022,
+ "帝都": 25023,
+ "宗室": 25024,
+ "李鸿章": 25025,
+ "藏品": 25026,
+ "品类": 25027,
+ "佛罗里达州": 25028,
+ "航天飞机": 25029,
+ "备感": 25030,
+ "分解代谢": 25031,
+ "一记": 25032,
+ "二度": 25033,
+ "Unicode": 25034,
+ "分类学": 25035,
+ "四国": 25036,
+ "涉猎": 25037,
+ "晚自习": 25038,
+ "斯坦福": 25039,
+ "黑帮": 25040,
+ "该处": 25041,
+ "路人": 25042,
+ "混迹": 25043,
+ "傲娇": 25044,
+ "瞪": 25045,
+ "逆天": 25046,
+ "Button": 25047,
+ "1913": 25048,
+ "码字": 25049,
+ "顺眼": 25050,
+ "粗体": 25051,
+ "星号": 25052,
+ "减号": 25053,
+ "受宠若惊": 25054,
+ "difference": 25055,
+ "转化率": 25056,
+ "LOGO": 25057,
+ "划归": 25058,
+ "伯格": 25059,
+ "塔尼": 25060,
+ "脑梗": 25061,
+ "精囊炎": 25062,
+ "坍缩": 25063,
+ "1897": 25064,
+ "研究会": 25065,
+ "任教": 25066,
+ "咖啡粉": 25067,
+ "咖啡豆": 25068,
+ "高级中学": 25069,
+ "甲壳类": 25070,
+ "霸王别姬": 25071,
+ "1904": 25072,
+ "曾祖": 25073,
+ "ISO": 25074,
+ "健康检查": 25075,
+ "不坚": 25076,
+ "弥漫着": 25077,
+ "考完": 25078,
+ "课程内容": 25079,
+ "恒大": 25080,
+ "全国政协": 25081,
+ "汉口": 25082,
+ "文革": 25083,
+ "论调": 25084,
+ "踏踏实实": 25085,
+ "二十多年": 25086,
+ "奠基人": 25087,
+ "吉祥物": 25088,
+ "电子竞技": 25089,
+ "购物车": 25090,
+ "开行": 25091,
+ "咩": 25092,
+ "法官": 25093,
+ "喝药": 25094,
+ "保持警惕": 25095,
+ "假说": 25096,
+ "为食": 25097,
+ "隆头鱼": 25098,
+ "人声": 25099,
+ "小哥": 25100,
+ "吐槽": 25101,
+ "表示法": 25102,
+ "家居用品": 25103,
+ "鸡腿": 25104,
+ "归根结底": 25105,
+ "逻辑关系": 25106,
+ "山口": 25107,
+ "节约能源": 25108,
+ "戏份": 25109,
+ "比萨饼": 25110,
+ "统计分析": 25111,
+ "观察者": 25112,
+ "电子表格": 25113,
+ "厂长": 25114,
+ "孟买": 25115,
+ "东正教": 25116,
+ "教宗": 25117,
+ "派系": 25118,
+ "修士": 25119,
+ "冬奥会": 25120,
+ "这则": 25121,
+ "投奔": 25122,
+ "电车": 25123,
+ "新市镇": 25124,
+ "独自一人": 25125,
+ "车位": 25126,
+ "精神科": 25127,
+ "燕麦片": 25128,
+ "无糖": 25129,
+ "达斯": 25130,
+ "短板": 25131,
+ "临摹": 25132,
+ "击落": 25133,
+ "减排": 25134,
+ "外滩": 25135,
+ "Club": 25136,
+ "box": 25137,
+ "爵士乐": 25138,
+ "洪武": 25139,
+ "李氏": 25140,
+ "余弦": 25141,
+ "澎湖": 25142,
+ "琉球": 25143,
+ "和弦": 25144,
+ "可再生": 25145,
+ "福岛": 25146,
+ "暴走": 25147,
+ "Sally": 25148,
+ "Kindle": 25149,
+ "kindle": 25150,
+ "mmol": 25151,
+ "tack": 25152,
+ "car": 25153,
+ "面向对象编程": 25154,
+ "肛瘘": 25155,
+ "广电": 25156,
+ "信任度": 25157,
+ "差值": 25158,
+ "西元": 25159,
+ "总书记": 25160,
+ "交响曲": 25161,
+ "观众们": 25162,
+ "感到高兴": 25163,
+ "蓝鲸": 25164,
+ "混血": 25165,
+ "大猩猩": 25166,
+ "广为人知": 25167,
+ "黄黄的": 25168,
+ "fox": 25169,
+ "寮": 25170,
+ "同进士": 25171,
+ "指代": 25172,
+ "西宁": 25173,
+ "参军": 25174,
+ "University": 25175,
+ "首长": 25176,
+ "State": 25177,
+ "Design": 25178,
+ "pizza": 25179,
+ "手工艺品": 25180,
+ "市场趋势": 25181,
+ "失业率": 25182,
+ "克林顿": 25183,
+ "城市化": 25184,
+ "第三句": 25185,
+ "我特": 25186,
+ "洁癖": 25187,
+ "禾": 25188,
+ "聚落": 25189,
+ "冒泡": 25190,
+ "init": 25191,
+ "剪辑": 25192,
+ "2021": 25193,
+ "2024": 25194,
+ "font": 25195,
+ "filter": 25196,
+ "alpha": 25197,
+ "label": 25198,
+ "校服": 25199,
+ "translation": 25200,
+ "布兰": 25201,
+ "弘治": 25202,
+ "曾祖父": 25203,
+ "学界": 25204,
+ "肺动脉": 25205,
+ "曾于": 25206,
+ "基隆": 25207,
+ "臀鳍": 25208,
+ "dota": 25209,
+ "喵": 25210,
+ "妹纸": 25211,
+ "新台币": 25212,
+ "地标": 25213,
+ "image": 25214,
+ "生产流程": 25215,
+ "正确处理": 25216,
+ "House": 25217,
+ "诟病": 25218,
+ "梯队": 25219,
+ "八路军": 25220,
+ "灵长类": 25221,
+ "黑猩猩": 25222,
+ "Ich": 25223,
+ "夸克": 25224,
+ "纪念品": 25225,
+ "喉癌": 25226,
+ "暴动": 25227,
+ "即时通讯": 25228,
+ "贝斯": 25229,
+ "平方根": 25230,
+ "欧拉": 25231,
+ "台灯": 25232,
+ "chinese": 25233,
+ "大法官": 25234,
+ "任内": 25235,
+ "可汗": 25236,
+ "造纸术": 25237,
+ "技术创新": 25238,
+ "目标值": 25239,
+ "Taylor": 25240,
+ "TA": 25241,
+ "万立方米": 25242,
+ "开篇": 25243,
+ "措辞": 25244,
+ "出乎意料": 25245,
+ "包膜": 25246,
+ "手抖": 25247,
+ "Logo": 25248,
+ "username": 25249,
+ "标识符": 25250,
+ "气场": 25251,
+ "维吾尔族": 25252,
+ "歌舞": 25253,
+ "清真寺": 25254,
+ "写手": 25255,
+ "EXO": 25256,
+ "鹿晗": 25257,
+ "公演": 25258,
+ "NN": 25259,
+ "冗余": 25260,
+ "javascript": 25261,
+ "揍": 25262,
+ "软文": 25263,
+ "SEO": 25264,
+ "广受": 25265,
+ "FIFA": 25266,
+ "放缓": 25267,
+ "张艺谋": 25268,
+ "夜市": 25269,
+ "洛特": 25270,
+ "冰盖": 25271,
+ "复述": 25272,
+ "左派": 25273,
+ "右派": 25274,
+ "ê": 25275,
+ "doesn": 25276,
+ "身理": 25277,
+ "晋升为": 25278,
+ "solo": 25279,
+ "地缘": 25280,
+ "比赛项目": 25281,
+ "谢尔盖": 25282,
+ "汉子": 25283,
+ "流程图": 25284,
+ "中央委员会": 25285,
+ "党组": 25286,
+ "tr": 25287,
+ "科学依据": 25288,
+ "时区": 25289,
+ "牠": 25290,
+ "CP": 25291,
+ "嘧啶": 25292,
+ "爱丁堡": 25293,
+ "默尔": 25294,
+ "巴伐利亚州": 25295,
+ "蒙娜丽莎": 25296,
+ "总督府": 25297,
+ "莫扎特": 25298,
+ "斯德哥尔摩": 25299,
+ "蜂鸟": 25300,
+ "du": 25301,
+ "咖啡店": 25302,
+ "线性代数": 25303,
+ "囚禁": 25304,
+ "中文系": 25305,
+ "纳什": 25306,
+ "抱团": 25307,
+ "气旋": 25308,
+ "克里米亚": 25309,
+ "新竹": 25310,
+ "子集": 25311,
+ "骨癌": 25312,
+ "三流": 25313,
+ "election": 25314,
+ "蜥": 25315,
+ "BMI": 25316,
+ "亚裔": 25317,
+ "方差": 25318,
+ "experience": 25319,
+ "一两句话": 25320,
+ "贫富差距": 25321,
+ "财产损失": 25322,
+ "加利福尼亚州": 25323,
+ "教官": 25324,
+ "distance": 25325,
+ "直白": 25326,
+ "闺蜜": 25327,
+ "响应速度": 25328,
+ "前列腺癌": 25329,
+ "搅拌器": 25330,
+ "古典音乐": 25331,
+ "计算技术": 25332,
+ "一本正经": 25333,
+ "IMDB": 25334,
+ "个人成长": 25335,
+ "document": 25336,
+ "reverse": 25337,
+ "hash": 25338,
+ "字段": 25339,
+ "无人驾驶": 25340,
+ "广告投放": 25341,
+ "二胎": 25342,
+ "降糖药": 25343,
+ "代表作品": 25344,
+ "芝士": 25345,
+ "土豪": 25346,
+ "NGC": 25347,
+ "迭代": 25348,
+ "汉克斯": 25349,
+ "分配任务": 25350,
+ "Test": 25351,
+ "non": 25352,
+ "鸟嘌呤": 25353,
+ "墨尔本": 25354,
+ "缩进": 25355,
+ "该段": 25356,
+ "SAO": 25357,
+ "国民革命军": 25358,
+ "王家卫": 25359,
+ "泳池": 25360,
+ "官至": 25361,
+ "可读": 25362,
+ "十九年": 25363,
+ "学园": 25364,
+ "概率论": 25365,
+ "能源消耗": 25366,
+ "浮点数": 25367,
+ "极大地提高": 25368,
+ "古兰经": 25369,
+ "活佛": 25370,
+ "iPhone": 25371,
+ "奥斯汀": 25372,
+ "UTC": 25373,
+ "青旅": 25374,
+ "社群": 25375,
+ "知识库": 25376,
+ "讷": 25377,
+ "电信号": 25378,
+ "文物保护": 25379,
+ "孚日": 25380,
+ "评论者": 25381,
+ "表演者": 25382,
+ "参选": 25383,
+ "弗洛伊德": 25384,
+ "Thisisan": 25385,
+ "出入口": 25386,
+ "range": 25387,
+ "炉石": 25388,
+ "Store": 25389,
+ "海星": 25390,
+ "Go": 25391,
+ "加减乘除": 25392,
+ "开源": 25393,
+ "脑梗死": 25394,
+ "搭讪": 25395,
+ "搬运工": 25396,
+ "Samsung": 25397,
+ "那会儿": 25398,
+ "胸膜": 25399,
+ "透镜": 25400,
+ "孤独感": 25401,
+ "Amy": 25402,
+ "info": 25403,
+ "鲶": 25404,
+ "烤面包": 25405,
+ "咖": 25406,
+ "第三季": 25407,
+ "DOTA": 25408,
+ "韩寒": 25409,
+ "树形": 25410,
+ "议程": 25411,
+ "remove": 25412,
+ "库里": 25413,
+ "利用效率": 25414,
+ "目击者": 25415,
+ "证人": 25416,
+ "白垩纪": 25417,
+ "阶乘": 25418,
+ "动画电影": 25419,
+ "哆": 25420,
+ "北海道": 25421,
+ "il": 25422,
+ "古典小说": 25423,
+ "裔": 25424,
+ "饭局": 25425,
+ "dog": 25426,
+ "elephant": 25427,
+ "苹果公司": 25428,
+ "检察官": 25429,
+ "hello": 25430,
+ "集上": 25431,
+ "专家系统": 25432,
+ "有条理": 25433,
+ "副总裁": 25434,
+ "隆庆": 25435,
+ "985": 25436,
+ "不请自来": 25437,
+ "全剧": 25438,
+ "艺术作品": 25439,
+ "西临": 25440,
+ "撵走": 25441,
+ "商业机会": 25442,
+ "转述": 25443,
+ "耍流氓": 25444,
+ "套利": 25445,
+ "鲍勃": 25446,
+ "韦恩": 25447,
+ "戴维斯": 25448,
+ "第十三届": 25449,
+ "第十一届": 25450,
+ "张国荣": 25451,
+ "珍妮": 25452,
+ "内啡肽": 25453,
+ "微积分": 25454,
+ "2022": 25455,
+ "果仁": 25456,
+ "银行家": 25457,
+ "李宁": 25458,
+ "1871": 25459,
+ "微分方程": 25460,
+ "苏格拉底": 25461,
+ "政委": 25462,
+ "收视": 25463,
+ "销售员": 25464,
+ "近现代": 25465,
+ "乐理": 25466,
+ "greater": 25467,
+ "avg": 25468,
+ "拟合": 25469,
+ "嵌套": 25470,
+ "停车位": 25471,
+ "共同体": 25472,
+ "认同感": 25473,
+ "携程": 25474,
+ "易读": 25475,
+ "十七年": 25476,
+ "天气现象": 25477,
+ "宾夕法尼亚州": 25478,
+ "San": 25479,
+ "该州": 25480,
+ "四十年": 25481,
+ "连接成": 25482,
+ "工具包": 25483,
+ "肠系膜": 25484,
+ "qrt": 25485,
+ "著名景点": 25486,
+ "嘉义": 25487,
+ "谩骂": 25488,
+ "最新进展": 25489,
+ "工业革命": 25490,
+ "month": 25491,
+ "酸化": 25492,
+ "感恩节": 25493,
+ "互相配合": 25494,
+ "女星": 25495,
+ "获选": 25496,
+ "汉堡包": 25497,
+ "流域面积": 25498,
+ "河川": 25499,
+ "公开赛": 25500,
+ "同性恋": 25501,
+ "hui": 25502,
+ "水生动物": 25503,
+ "界面设计": 25504,
+ "开发人员": 25505,
+ "人机交互": 25506,
+ "华晨": 25507,
+ "高冷": 25508,
+ "阿尔萨斯": 25509,
+ "洛林": 25510,
+ "1907": 25511,
+ "佩奇": 25512,
+ "标准差": 25513,
+ "多动症": 25514,
+ "cherry": 25515,
+ "菲尔德": 25516,
+ "建模": 25517,
+ "人行道": 25518,
+ "崩裂": 25519,
+ "库比": 25520,
+ "图尔": 25521,
+ "野餐": 25522,
+ "班次": 25523,
+ "数据安全": 25524,
+ "FROM": 25525,
+ "试错": 25526,
+ "哥伦比亚大学": 25527,
+ "立方体": 25528,
+ "回溯": 25529,
+ "斯蒂芬": 25530,
+ "Output": 25531,
+ "Je": 25532,
+ "aime": 25533,
+ "begin": 25534,
+ "解释性": 25535,
+ "银翼": 25536,
+ "志愿军": 25537,
+ "义工": 25538,
+ "攀岩": 25539,
+ "org": 25540,
+ "▼": 25541,
+ "¥": 25542,
+ "Le": 25543,
+ "亚科": 25544,
+ "清真": 25545,
+ "孟加拉国": 25546,
+ "eating": 25547,
+ "current": 25548,
+ "ub": 25549,
+ "面试官": 25550,
+ "洗碗机": 25551,
+ "None": 25552,
+ "weight": 25553,
+ "编导": 25554,
+ "亚运会": 25555,
+ "纪录片": 25556,
+ "翻看": 25557,
+ "鲤": 25558,
+ "高盐": 25559,
+ "控制权": 25560,
+ "coffee": 25561,
+ "calculator": 25562,
+ "var": 25563,
+ "影评": 25564,
+ "Sarah": 25565,
+ "卡马西平": 25566,
+ "唐太宗": 25567,
+ "罗恩": 25568,
+ "偏置": 25569,
+ "封电子邮件": 25570,
+ "青岛市": 25571,
+ "二十三年": 25572,
+ "二十九年": 25573,
+ "养猫": 25574,
+ "复合句": 25575,
+ "性别歧视": 25576,
+ "Natural": 25577,
+ "市场推广": 25578,
+ "他妈的": 25579,
+ "基站": 25580,
+ "吐蕃": 25581,
+ "pattern": 25582,
+ "虚拟化": 25583,
+ "纸牌": 25584,
+ "合法化": 25585,
+ "帝国大厦": 25586,
+ "Music": 25587,
+ "鸡胸肉": 25588,
+ "Sony": 25589,
+ "手稿": 25590,
+ "真实世界": 25591,
+ "引言": 25592,
+ "文库": 25593,
+ "辍学": 25594,
+ "协奏曲": 25595,
+ "MySQL": 25596,
+ "Counter": 25597,
+ "IDF": 25598,
+ "韬": 25599,
+ "疫情": 25600,
+ "语族": 25601,
+ "渡边": 25602,
+ "LOL": 25603,
+ "公投": 25604,
+ "Park": 25605,
+ "该站": 25606,
+ "语态": 25607,
+ "这货": 25608,
+ "该镇": 25609,
+ "intelligence": 25610,
+ "js": 25611,
+ "夏洛克": 25612,
+ "民主党": 25613,
+ "Translation": 25614,
+ "官话": 25615,
+ "食用鱼": 25616,
+ "卡布奇诺": 25617,
+ "极少量": 25618,
+ "子句": 25619,
+ "SM": 25620,
+ "遍历": 25621,
+ "司职": 25622,
+ "塑料制品": 25623,
+ "众议院": 25624,
+ "该党": 25625,
+ "er": 25626,
+ "thisisa": 25627,
+ "article": 25628,
+ "对数": 25629,
+ "拓跋": 25630,
+ "earch": 25631,
+ "操作符": 25632,
+ "数据源": 25633,
+ "神经科学": 25634,
+ "Mount": 25635,
+ "司长": 25636,
+ "est": 25637,
+ "来答": 25638,
+ "结疤": 25639,
+ "健身器材": 25640,
+ "意淫": 25641,
+ "喜剧电影": 25642,
+ "首张": 25643,
+ "玛丽亚": 25644,
+ "空难": 25645,
+ "ection": 25646,
+ "活多久": 25647,
+ "小伙": 25648,
+ "避忌": 25649,
+ "py": 25650,
+ "毛子": 25651,
+ "cience": 25652,
+ "句点": 25653,
+ "诺夫": 25654,
+ "利用计算机": 25655,
+ "单品": 25656,
+ "保研": 25657,
+ "决策制定": 25658,
+ "乌斯": 25659,
+ "一属": 25660,
+ "段子": 25661,
+ "冷嘲热讽": 25662,
+ "王宝强": 25663,
+ "肺纤维化": 25664,
+ "安迪": 25665,
+ "惊为天人": 25666,
+ "公开课": 25667,
+ "颁奖典礼": 25668,
+ "美帝": 25669,
+ "球会": 25670,
+ "足球联赛": 25671,
+ "这封": 25672,
+ "印象派": 25673,
+ "沙田": 25674,
+ "元朗": 25675,
+ "手游": 25676,
+ "1886": 25677,
+ "非营利": 25678,
+ "新闻稿": 25679,
+ "唱功": 25680,
+ "密码学": 25681,
+ "屯门": 25682,
+ "百老汇": 25683,
+ "胸大": 25684,
+ "C#": 25685,
+ "热浪": 25686,
+ "泌尿外科": 25687,
+ "堆栈": 25688,
+ "函数调用": 25689,
+ "代表队": 25690,
+ "升序": 25691,
+ "降序": 25692,
+ "肾囊肿": 25693,
+ "里约热内卢": 25694,
+ "消防员": 25695,
+ "阴阳师": 25696,
+ "大调": 25697,
+ "音乐剧": 25698,
+ "基本思路": 25699,
+ "杜兰特": 25700,
+ "测序": 25701,
+ "排放量": 25702,
+ "打印输出": 25703,
+ "model": 25704,
+ "¿": 25705,
+ "par": 25706,
+ "老张": 25707,
+ "lazy": 25708,
+ "保育": 25709,
+ "Swift": 25710,
+ "四大发明": 25711,
+ "数据中心": 25712,
+ "挂科": 25713,
+ "系列小说": 25714,
+ "两数": 25715,
+ "诺兰": 25716,
+ "唐纳德": 25717,
+ "安德鲁": 25718,
+ "恐怖电影": 25719,
+ "宇宙学": 25720,
+ "层级": 25721,
+ "历史博物馆": 25722,
+ "香港政府": 25723,
+ "师妹": 25724,
+ "比尔盖茨": 25725,
+ "血精": 25726,
+ "全长约": 25727,
+ "神奈川县": 25728,
+ "引种": 25729,
+ "城际": 25730,
+ "哈士奇": 25731,
+ "巴厘岛": 25732,
+ "大满贯": 25733,
+ "职棒": 25734,
+ "CFA": 25735,
+ "replace": 25736,
+ "addition": 25737,
+ "禁吃": 25738,
+ "特斯拉": 25739,
+ "此剧": 25740,
+ "匿": 25741,
+ "println": 25742,
+ "console": 25743,
+ "完爆": 25744,
+ "格雷": 25745,
+ "主题词": 25746,
+ "约莫": 25747,
+ "自由泳": 25748,
+ "茶道": 25749,
+ "base": 25750,
+ "风控": 25751,
+ "column": 25752,
+ "封闭性": 25753,
+ "PhD": 25754,
+ "形目": 25755,
+ "mean": 25756,
+ "热门话题": 25757,
+ "2030": 25758,
+ "漫威": 25759,
+ "交通拥堵": 25760,
+ "set": 25761,
+ "ort": 25762,
+ "ñ": 25763,
+ "PPT": 25764,
+ "科技类": 25765,
+ "投手": 25766,
+ "龙科": 25767,
+ "task": 25768,
+ "合租": 25769,
+ "设计模式": 25770,
+ "佩里": 25771,
+ "peach": 25772,
+ "fruit": 25773,
+ "丧尸": 25774,
+ "琳娜": 25775,
+ "尽可能减少": 25776,
+ "迪拜": 25777,
+ "哔": 25778,
+ "total": 25779,
+ "高效性": 25780,
+ "畜牧业": 25781,
+ "pd": 25782,
+ "Inc": 25783,
+ "水军": 25784,
+ "电动汽车": 25785,
+ "爬虫": 25786,
+ "两栖动物": 25787,
+ "н": 25788,
+ "我爹": 25789,
+ "音阶": 25790,
+ "亚目": 25791,
+ "日本帝国": 25792,
+ "Fibonacci": 25793,
+ "巴菲特": 25794,
+ "点赞": 25795,
+ "鱼科": 25796,
+ "迪卡": 25797,
+ "台南市": 25798,
+ "陆生": 25799,
+ "信息检索": 25800,
+ "电气化": 25801,
+ "停不下来": 25802,
+ "教友": 25803,
+ "祈使句": 25804,
+ "感叹句": 25805,
+ "多图": 25806,
+ "î": 25807,
+ "设于": 25808,
+ "科学计算": 25809,
+ "谬误": 25810,
+ "停办": 25811,
+ "quared": 25812,
+ "盗墓": 25813,
+ "和物": 25814,
+ "护命素": 25815,
+ "节约用水": 25816,
+ "商业价值": 25817,
+ "自然语言": 25818,
+ "button": 25819,
+ "渗血": 25820,
+ "特征向量": 25821,
+ "特色美食": 25822,
+ "演讲者": 25823,
+ "文章主题": 25824,
+ "List": 25825,
+ "抹黑": 25826,
+ "艾米丽": 25827,
+ "成化": 25828,
+ "问候语": 25829,
+ "女团": 25830,
+ "神作": 25831,
+ "杰夫": 25832,
+ "Spring": 25833,
+ "冰原": 25834,
+ "亲测": 25835,
+ "numbersx": 25836,
+ "盗梦": 25837,
+ "羽球": 25838,
+ "二十二年": 25839,
+ "肉食性": 25840,
+ "赛制": 25841,
+ "苏珊": 25842,
+ "尼采": 25843,
+ "合照": 25844,
+ "印度教": 25845,
+ "第三段": 25846,
+ "jumped": 25847,
+ "链是": 25848,
+ "湖人队": 25849,
+ "吴亦凡": 25850,
+ "Jerry": 25851,
+ "希拉里": 25852,
+ "小组讨论": 25853,
+ "卡牌": 25854,
+ "np": 25855,
+ "tudying": 25856,
+ "多姆": 25857,
+ "array": 25858,
+ "sum": 25859,
+ "accuracy": 25860,
+ "台湾大学": 25861,
+ "编码器": 25862,
+ "鲈形目": 25863,
+ "Za": 25864,
+ "协同工作": 25865,
+ "重述": 25866,
+ "深远影响": 25867,
+ "喷子": 25868,
+ "字母表": 25869,
+ "清北": 25870,
+ "自干": 25871,
+ "厅长": 25872,
+ "у": 25873,
+ "印刷术": 25874,
+ "朋克": 25875,
+ "导盲犬": 25876,
+ "稀软": 25877,
+ "問題": 25878,
+ "manger": 25879,
+ "骰子": 25880,
+ "绘本": 25881,
+ "榜单": 25882,
+ "租界": 25883,
+ "华氏度": 25884,
+ "tring2": 25885,
+ "李明": 25886,
+ "行政院": 25887,
+ "立法委员": 25888,
+ "党籍": 25889,
+ "议席": 25890,
+ "皮埃尔": 25891,
+ "产品描述": 25892,
+ "extract": 25893,
+ "跨界": 25894,
+ "影评人": 25895,
+ "noun": 25896,
+ "insert": 25897,
+ "预告片": 25898,
+ "小姐姐": 25899,
+ "埃菲尔铁塔": 25900,
+ "候车室": 25901,
+ "可回收": 25902,
+ "naive": 25903,
+ "Chrome": 25904,
+ "遗传信息": 25905,
+ "起些": 25906,
+ "民宿": 25907,
+ "监测数据": 25908,
+ "random": 25909,
+ "大埔": 25910,
+ "Intelligence": 25911,
+ "点餐": 25912,
+ "法学院": 25913,
+ "字符集": 25914,
+ "篮球队": 25915,
+ "慈善家": 25916,
+ "亚当斯": 25917,
+ "token": 25918,
+ "他們": 25919,
+ "時候": 25920,
+ "話": 25921,
+ "数据保护": 25922,
+ "幼崽": 25923,
+ "Ruby": 25924,
+ "來": 25925,
+ "我們": 25926,
+ "人脸识别": 25927,
+ "变体": 25928,
+ "flag": 25929,
+ "塞纳河": 25930,
+ "ent": 25931,
+ "崇祯": 25932,
+ "建立联系": 25933,
+ "h1": 25934,
+ "Tesla": 25935,
+ "购物袋": 25936,
+ "Charlie": 25937,
+ "Person": 25938,
+ "une": 25939,
+ "艾玛": 25940,
+ "â": 25941,
+ "球季": 25942,
+ "邦特": 25943,
+ "Entity": 25944,
+ "代码段": 25945,
+ "response": 25946,
+ "甲组": 25947,
+ "乐视": 25948,
+ "许多次": 25949,
+ "归为": 25950,
+ "市镇": 25951,
+ "操作数": 25952,
+ "女权主义者": 25953,
+ "SELECT": 25954,
+ "WHERE": 25955,
+ "某宝": 25956,
+ "尔特": 25957,
+ "拼写错误": 25958,
+ "跨学科": 25959,
+ "识字率": 25960,
+ "Rh2": 25961,
+ "output": 25962,
+ "largest": 25963,
+ "汽车品牌": 25964,
+ "跨文化": 25965,
+ "斐波": 25966,
+ "那契": 25967,
+ "复杂度": 25968,
+ "卡斯蒂利亚": 25969,
+ "comer": 25970,
+ "分布式系统": 25971,
+ "土地利用": 25972,
+ "地理学": 25973,
+ "unique": 25974,
+ "线性关系": 25975,
+ "formula": 25976,
+ "po": 25977,
+ "к": 25978,
+ "м": 25979,
+ "р": 25980,
+ "с": 25981,
+ "烂片": 25982,
+ "au": 25983,
+ "宫保鸡": 25984,
+ "length": 25985,
+ "插画": 25986,
+ "录音室": 25987,
+ "CSV": 25988,
+ "王五": 25989,
+ "伏地": 25990,
+ "图像识别": 25991,
+ "第四季": 25992,
+ "row": 25993,
+ "ilver": 25994,
+ "GUI": 25995,
+ "转任": 25996,
+ "家暴": 25997,
+ "在线教育": 25998,
+ "语法分析": 25999,
+ "中位数": 26000,
+ "台中市": 26001,
+ "彰化县": 26002,
+ "爱奇艺": 26003,
+ "formatted": 26004,
+ "答话": 26005,
+ "feature": 26006,
+ "鲤科": 26007,
+ "鸢尾花": 26008,
+ "样本数": 26009,
+ "女权": 26010,
+ "doe": 26011,
+ "ACG": 26012,
+ "2023": 26013,
+ "987": 26014,
+ "打野": 26015,
+ "pred": 26016,
+ "枚举": 26017,
+ "Surface": 26018,
+ "不邀": 26019,
+ "神社": 26020,
+ "delta": 26021,
+ "n2": 26022,
+ "参数传递": 26023,
+ "囧": 26024,
+ "克里斯托弗": 26025,
+ "露西": 26026,
+ "文本处理": 26027,
+ "桥段": 26028,
+ "众数": 26029,
+ "西贡": 26030,
+ "田径比赛": 26031,
+ "城市交通": 26032,
+ "竞品": 26033,
+ "岛式": 26034,
+ "n1": 26035,
+ "特与": 26036,
+ "魔法石": 26037,
+ "pr": 26038,
+ "塔恩": 26039,
+ "社论": 26040,
+ "多尔多涅": 26041,
+ "科技领域": 26042,
+ "回文": 26043,
+ "黑色素瘤": 26044,
+ "banana": 26045,
+ "马尔克斯": 26046,
+ "基准值": 26047,
+ "因变量": 26048,
+ "const": 26049,
+ "Alice": 26050,
+ "座堂": 26051,
+ "奥克": 26052,
+ "翻墙": 26053,
+ "Sort": 26054,
+ "youtube": 26055,
+ "obj": 26056,
+ "multiply": 26057,
+ "divide": 26058,
+ "colspan": 26059,
+ "Deep": 26060,
+ "generate": 26061,
+ "匈牙利语": 26062,
+ "hr": 26063,
+ "阿凡": 26064,
+ "步数": 26065,
+ "這個": 26066,
+ "科学论文": 26067,
+ "挑战赛": 26068,
+ "compile": 26069,
+ "电车站": 26070,
+ "curr": 26071,
+ "小众": 26072,
+ "vous": 26073,
+ "阴谋论": 26074,
+ "元组": 26075,
+ "ä": 26076,
+ "关键步骤": 26077,
+ "视星等": 26078,
+ "自拍": 26079,
+ "keyword": 26080,
+ "comment": 26081,
+ "plit": 26082,
+ "merge": 26083,
+ "黏连": 26084,
+ "受访者": 26085,
+ "屌丝": 26086,
+ "高富帅": 26087,
+ "二叉树": 26088,
+ "初心": 26089,
+ "布林": 26090,
+ "预测值": 26091,
+ "放柔": 26092,
+ "中产": 26093,
+ "哭啼": 26094,
+ "batch": 26095,
+ "binary": 26096,
+ "digit": 26097,
+ "国家足球队": 26098,
+ "def": 26099,
+ "隐窝": 26100,
+ "Python": 26101,
+ "cp": 26102,
+ "男神": 26103,
+ "MacBook": 26104,
+ "YYYY": 26105,
+ "陨石坑": 26106,
+ "伊勒": 26107,
+ "波函数": 26108,
+ "男子单打": 26109,
+ "现代主义": 26110,
+ "登进士": 26111,
+ "劝退": 26112,
+ "贝叶斯": 26113,
+ "女权主义": 26114,
+ "卵用": 26115,
+ "泛化": 26116,
+ "摩卡": 26117,
+ "XYZ": 26118,
+ "颜值": 26119,
+ "医学生": 26120,
+ "phrase": 26121,
+ "高赞": 26122,
+ "dota2": 26123,
+ "外行星": 26124,
+ "translated": 26125,
+ "哈希": 26126,
+ "待办": 26127,
+ "第十二届": 26128,
+ "ur": 26129,
+ "诊病": 26130,
+ "题主": 26131,
+ "新界": 26132,
+ "维空间": 26133,
+ "高维": 26134,
+ "grid": 26135,
+ "padding": 26136,
+ "IMDb": 26137,
+ "县人": 26138,
+ "总统大选": 26139,
+ "words": 26140,
+ "lower": 26141,
+ "勃艮第": 26142,
+ "阿甘": 26143,
+ "中心化": 26144,
+ "严令禁止": 26145,
+ "最大数": 26146,
+ "SaaS": 26147,
+ "索恩": 26148,
+ "撩妹": 26149,
+ "逆序": 26150,
+ "arr": 26151,
+ "无神论": 26152,
+ "马斯克": 26153,
+ "Uber": 26154,
+ "鲷": 26155,
+ "programming": 26156,
+ "wordsif": 26157,
+ "csv": 26158,
+ "推特": 26159,
+ "中國": 26160,
+ "高晓松": 26161,
+ "activation": 26162,
+ "MIT": 26163,
+ "二次元": 26164,
+ "nlp": 26165,
+ "NLP": 26166,
+ "nltk": 26167,
+ "python": 26168,
+ "n3": 26169,
+ "书单": 26170,
+ "布利": 26171,
+ "植物种": 26172,
+ "徒步旅行": 26173,
+ "克勒": 26174,
+ "Everest": 26175,
+ "啰嗦": 26176,
+ "gram": 26177,
+ "高票": 26178,
+ "本剧": 26179,
+ "台灣": 26180,
+ "沒": 26181,
+ "关注点": 26182,
+ "议长": 26183,
+ "维基": 26184,
+ "罗宾斯": 26185,
+ "Translate": 26186,
+ "参政": 26187,
+ "Node": 26188,
+ "虚拟环境": 26189,
+ "五毛": 26190,
+ "北起": 26191,
+ "對": 26192,
+ "col": 26193,
+ "Emily": 26194,
+ "阿列": 26195,
+ "len": 26196,
+ "萨利": 26197,
+ "方舟子": 26198,
+ "张艺兴": 26199,
+ "配音员": 26200,
+ "该村": 26201,
+ "Watch": 26202,
+ "东野": 26203,
+ "PS4": 26204,
+ "john": 26205,
+ "steam": 26206,
+ "异性恋": 26207,
+ "咖啡机": 26208,
+ "奶泡": 26209,
+ "欧几里得": 26210,
+ "杨洋": 26211,
+ "埃纳": 26212,
+ "bubble": 26213,
+ "分析模型": 26214,
+ "zA": 26215,
+ "厄尔": 26216,
+ "句法分析": 26217,
+ "卧槽": 26218,
+ "目标语言": 26219,
+ "calculate": 26220,
+ "正则表达式": 26221,
+ "kiwi": 26222,
+ "因為": 26223,
+ "鲀": 26224,
+ "longest": 26225,
+ "n4": 26226,
+ "女优": 26227,
+ "词干": 26228,
+ "相关系数": 26229,
+ "数据分布": 26230,
+ "子串": 26231,
+ "递归": 26232,
+ "日治": 26233,
+ "老罗": 26234,
+ "栖性": 26235,
+ "生日派对": 26236,
+ "解释器": 26237,
+ "直方图": 26238,
+ "鲶科": 26239,
+ "means": 26240,
+ "git": 26241,
+ "气候系统": 26242,
+ "enumerate": 26243,
+ "S21": 26244,
+ "薛之谦": 26245,
+ "辖下": 26246,
+ "任务分配": 26247,
+ "dict": 26248,
+ "加词": 26249,
+ "湄公河": 26250,
+ "Trump": 26251,
+ "numbers": 26252,
+ "numsi": 26253,
+ "加龙省": 26254,
+ "Stanford": 26255,
+ "elem": 26256,
+ "pear": 26257,
+ "grape": 26258,
+ "归一化": 26259,
+ "operator": 26260,
+ "站房": 26261,
+ "艺兴": 26262,
+ "交通流量": 26263,
+ "赤经": 26264,
+ "赤纬": 26265,
+ "乡镇级": 26266,
+ "妥妥": 26267,
+ "专硕": 26268,
+ "热巴": 26269,
+ "剧透": 26270,
+ "卢瓦尔": 26271,
+ "夏朗德": 26272,
+ "伊泽尔": 26273,
+ "罗讷": 26274,
+ "gender": 26275,
+ "区议会": 26276,
+ "霍格": 26277,
+ "dp": 26278,
+ "川普": 26279,
+ "Django": 26280,
+ "信息提取": 26281,
+ "partial": 26282,
+ "奥弗涅": 26283,
+ "概率分布": 26284,
+ "tf": 26285,
+ "Buzz": 26286,
+ "Alexa": 26287,
+ "装逼": 26288,
+ "呼息": 26289,
+ "tw": 26290,
+ "优衣库": 26291,
+ "性侵": 26292,
+ "聚类": 26293,
+ "tk": 26294,
+ "自行车道": 26295,
+ "计算资源": 26296,
+ "邨": 26297,
+ "reversed": 26298,
+ "校招": 26299,
+ "ubtract": 26300,
+ "date1": 26301,
+ "date2": 26302,
+ "B1900": 26303,
+ "Artificial": 26304,
+ "模式识别": 26305,
+ "显式": 26306,
+ "阿基坦": 26307,
+ "调查局": 26308,
+ "男票": 26309,
+ "陨坑": 26310,
+ "Instagram": 26311,
+ "Xbox": 26312,
+ "侧式": 26313,
+ "曼恩": 26314,
+ "fibonacci": 26315,
+ "equence": 26316,
+ "merged": 26317,
+ "不晨勃": 26318,
+ "fran": 26319,
+ "该数": 26320,
+ "超平面": 26321,
+ "网红": 26322,
+ "社交互动": 26323,
+ "持继": 26324,
+ "Accuracy": 26325,
+ "Recognition": 26326,
+ "黛西": 26327,
+ "Steam": 26328,
+ "源语言": 26329,
+ "雷军": 26330,
+ "词频": 26331,
+ "tring1": 26332,
+ "prime": 26333,
+ "调用函数": 26334,
+ "细思": 26335,
+ "讓": 26336,
+ "num2": 26337,
+ "SVM": 26338,
+ "递归函数": 26339,
+ "左子": 26340,
+ "右子": 26341,
+ "Siri": 26342,
+ "谢邀": 26343,
+ "bilibili": 26344,
+ "迪丽": 26345,
+ "predict": 26346,
+ "沃兹": 26347,
+ "datetime": 26348,
+ "语料库": 26349,
+ "作死": 26350,
+ "沃茨": 26351,
+ "脑补": 26352,
+ "打脸": 26353,
+ "鲁棒性": 26354,
+ "特征选择": 26355,
+ "给题": 26356,
+ "圣母院": 26357,
+ "ais": 26358,
+ "公知": 26359,
+ "玻璃心": 26360,
+ "登山者": 26361,
+ "版本控制": 26362,
+ "Twitter": 26363,
+ "软条": 26364,
+ "闭包": 26365,
+ "matrix": 26366,
+ "Jobs": 26367,
+ "知友": 26368,
+ "從": 26369,
+ "捂脸": 26370,
+ "param": 26371,
+ "抱括": 26372,
+ "卢瓦尔河": 26373,
+ "知乎": 26374,
+ "plt": 26375,
+ "赵六": 26376,
+ "−": 26377,
+ "拜登": 26378,
+ "gay": 26379,
+ "此站": 26380,
+ "爲": 26381,
+ "Rowling": 26382,
+ "入坑": 26383,
+ "刘慈欣": 26384,
+ "推文": 26385,
+ "测试函数": 26386,
+ "数独": 26387,
+ "集来": 26388,
+ "调优": 26389,
+ "枢轴": 26390,
+ "前端开发": 26391,
+ "伤损": 26392,
+ "弗朗什": 26393,
+ "孔泰": 26394,
+ "PlayStation": 26395,
+ "asert": 26396,
+ "维莱": 26397,
+ "测试代码": 26398,
+ "科下": 26399,
+ "散点图": 26400,
+ "对模型": 26401,
+ "卷积": 26402,
+ "屌": 26403,
+ "filtered": 26404,
+ "库来": 26405,
+ "菲茨杰拉德": 26406,
+ "chunk": 26407,
+ "吊打": 26408,
+ "linear": 26409,
+ "图灵": 26410,
+ "岛峰": 26411,
+ "hans": 26412,
+ "names": 26413,
+ "zhihu": 26414,
+ "安德尔": 26415,
+ "list1": 26416,
+ "Fizz": 26417,
+ "tr1": 26418,
+ "搜索算法": 26419,
+ "diff": 26420,
+ "lowercase": 26421,
+ "uppercase": 26422,
+ "ا": 26423,
+ "Transformer": 26424,
+ "新冠": 26425,
+ "emails": 26426,
+ "怒答": 26427,
+ "max2": 26428,
+ "决策树": 26429,
+ "契数": 26430,
+ "插入排序": 26431,
+ "isprime": 26432,
+ "split": 26433,
+ "allez": 26434,
+ "roman": 26435,
+ "出柜": 26436,
+ "张三是": 26437,
+ "讷省": 26438,
+ "排好序": 26439,
+ "AWS": 26440,
+ "clf": 26441,
+ "布尔值": 26442,
+ "Windows10": 26443,
+ "frac": 26444,
+ "爆照": 26445,
+ "特朗普": 26446,
+ "Chorus": 26447,
+ "聚类分析": 26448,
+ "dataset": 26449,
+ "transform": 26450,
+ "逼格": 26451,
+ "本鱼": 26452,
+ "摩泽尔": 26453,
+ "imilarity": 26454,
+ "Z0": 26455,
+ "序列表": 26456,
+ "该庄": 26457,
+ "promener": 26458,
+ "抖音": 26459,
+ "辐鳍鱼": 26460,
+ "Named": 26461,
+ "码农": 26462,
+ "tr2": 26463,
+ "糜乱": 26464,
+ "恐极": 26465,
+ "多赞": 26466,
+ "普法尔茨": 26467,
+ "jumpsover": 26468,
+ "讲真": 26469,
+ "瓦兹省": 26470,
+ "sort": 26471,
+ "呎": 26472,
+ "chien": 26473,
+ "factorial": 26474,
+ "刷题": 26475,
+ "median": 26476,
+ "num1": 26477,
+ "桃园市": 26478,
+ "dates": 26479,
+ "punctuation": 26480,
+ "AKB48": 26481,
+ "nums": 26482,
+ "题主是": 26483,
+ "新北市": 26484,
+ "哔哩": 26485,
+ "Flask": 26486,
+ "NER": 26487,
+ "orted": 26488,
+ "懒狗": 26489,
+ "gusta": 26490,
+ "绘入": 26491,
+ "马恩省": 26492,
+ "埼": 26493,
+ "硬棘": 26494,
+ "macOS": 26495,
+ "json": 26496,
+ "desusle": 26497,
+ "维埃纳": 26498,
+ "众筹": 26499,
+ "罗永浩": 26500,
+ "女票": 26501,
+ "Netflix": 26502,
+ "capitalize": 26503,
+ "httpswww": 26504,
+ "apprendre": 26505,
+ "list2": 26506,
+ "题主问": 26507,
+ "细思极": 26508,
+ "Doe": 26509,
+ "出人名": 26510,
+ "Vue": 26511,
+ "pandas": 26512,
+ "numbers3": 26513,
+ "numbers0": 26514,
+ "Git": 26515,
+ "NLTK": 26516,
+ "tokenize": 26517,
+ "postag": 26518,
+ "httpsi": 26519,
+ "imgur": 26520,
+ "识别模式": 26521,
+ "Neural": 26522,
+ "池化层": 26523,
+ "RNN": 26524,
+ "分类器": 26525,
+ "numbersnum1": 26526,
+ "numbers5": 26527,
+ "个斐波": 26528,
+ "elif": 26529,
+ "numsj": 26530,
+ "nums1": 26531,
+ "nums2": 26532,
+ "TensorFlow": 26533,
+ "PyTorch": 26534,
+ "降维": 26535,
+ "Hola": 26536,
+ "dlrow": 26537,
+ "olleh": 26538,
+ "sorted": 26539,
+ "spaCy": 26540,
+ "fib": 26541,
+ "nums0": 26542,
+ "numsif": 26543,
+ "olleH": 26544,
+ "tagged": 26545,
+ "numbersprint": 26546,
+ "primes": 26547,
+ "pivot": 26548,
+ "词袋": 26549,
+ "BERT": 26550,
+ "renard": 26551,
+ "brun": 26552,
+ "rapide": 26553,
+ "pareseux": 26554,
+ "jieba": 26555,
+ "findall": 26556,
+ "scikit": 26557,
+ "wordstext": 26558,
+ "CountVectorizer": 26559,
+ "klearn": 26560,
+ "numbersappend": 26561,
+ "numbersfor": 26562,
+ "MNIST": 26563,
+ "LSTM": 26564,
+ "numbersa": 26565,
+ "numbers2": 26566,
+ "mallest": 26567,
+ "numbers1": 26568,
+ "numbersif": 26569,
+ "AlphaGo": 26570,
+ "ValueError": 26571,
+ "capitalized": 26572,
+ "nlogn": 26573,
+ "pip": 26574,
+ "regex": 26575,
+ "datesre": 26576,
+ "numpy": 26577,
+ "asnp": 26578,
+ "randint": 26579,
+ "trptime": 26580,
+ "trftime": 26581,
+ "pandasaspd": 26582,
+ "Pandas": 26583,
+ "fruits": 26584,
+ "recursive": 26585,
+ "Matplotlib": 26586,
+ "matplotlib": 26587,
+ "文章生成": 26588,
+ "Airbnb": 26589,
+ "dlroW": 26590,
+ "wordsword": 26591,
+ "vectorizer": 26592,
+ "quicksort": 26593,
+ "Word2Vec": 26594,
+ "KNN": 26595,
+ "numberslist": 26596,
+ "aujourd": 26597,
+ "Scikit": 26598,
+ "racecar": 26599,
+ "pacy": 26600,
+ "BeautifulSoup": 26601,
+ "NumPy": 26602,
+ "Coursera": 26603,
+ "GitHub": 26604,
+ "JSON": 26605,
+ "freq": 26606,
+ "LinkedIn": 26607,
+ "SpaceX": 26608,
+ "cdot": 26609,
+ "RESTful": 26610,
+ "numsprint": 26611,
+ "emailsre": 26612,
+ "DataFrame": 26613,
+ "848.86": 26614,
+ "arr2": 26615,
+ "arr1": 26616,
+ "7890": 26617,
+ "ispalindrome": 26618,
+ "FizzBuzz": 26619,
+ "React": 26620,
+ "padx": 26621,
+ "pady": 26622,
+ "duplicates": 26623,
+ "number2": 26624,
+ "numbersj": 26625,
+ "千玺": 26626,
+ "LGBT": 26627,
+ "王思聪": 26628,
+ "Quora": 26629,
+ "宝可梦": 26630,
+ "奥布省": 26631,
+ "塞纳省": 26632,
+ "ISIS": 26633,
+ "脑洞": 26634,
+ "学渣": 26635,
+ "鲉": 26636,
+ "答主": 26637,
+ "阿尔卑斯省": 26638,
+ "SNH48": 26639,
+ "爱豆": 26640,
+ "脑残粉": 26641,
+ "INSEE": 26642,
+ "hant": 26643,
+ "强答": 26644,
+ "鳉": 26645,
+ "httpwww": 26646,
+ "答主说": 26647,
+ "首答": 26648,
+ "侵删": 26649,
+ "题主说": 26650,
+ "约炮": 26651,
+ "民籍": 26652,
+ "观政": 26653,
+ "银经": 26654,
+ "𫚥": 26655,
+ "默兹省": 26656,
+ "索姆省": 26657,
+ "卢瓦省": 26658,
+ "奥恩省": 26659,
+ "恩省": 26660,
+ "谢尔省": 26661,
+ "ISTAT": 26662,
+ "银纬": 26663,
+ "鲶形": 26664,
+ "责": 26665,
+ "况": 26666,
+ "刹": 26667,
+ "驶": 26668,
+ "概": 26669,
+ "汽": 26670,
+ "警": 26671,
+ "污": 26672,
+ "庞": 26673,
+ "察": 26674,
+ "确": 26675,
+ "肤": 26676,
+ "胞": 26677,
+ "隙": 26678,
+ "务": 26679,
+ "详": 26680,
+ "梭": 26681,
+ "垮": 26682,
+ "阻": 26683,
+ "洁": 26684,
+ "织": 26685,
+ "柔": 26686,
+ "寡": 26687,
+ "效": 26688,
+ "息": 26689,
+ "倩": 26690,
+ "危": 26691,
+ "适": 26692,
+ "遗": 26693,
+ "泌": 26694,
+ "尘": 26695,
+ "繁": 26696,
+ "殖": 26697,
+ "激": 26698,
+ "辅": 26699,
+ "庭": 26700,
+ "垃": 26701,
+ "圾": 26702,
+ "珍": 26703,
+ "幸": 26704,
+ "恼": 26705,
+ "耸": 26706,
+ "朋": 26707,
+ "恃": 26708,
+ "龄": 26709,
+ "膨": 26710,
+ "敛": 26711,
+ "巾": 26712,
+ "柠": 26713,
+ "檬": 26714,
+ "抑": 26715,
+ "疱": 26716,
+ "拭": 26717,
+ "橄": 26718,
+ "榄": 26719,
+ "匀": 26720,
+ "储": 26721,
+ "栗": 26722,
+ "捣": 26723,
+ "蜂": 26724,
+ "疗": 26725,
+ "癫": 26726,
+ "痫": 26727,
+ "候": 26728,
+ "规": 26729,
+ "择": 26730,
+ "荐": 26731,
+ "络": 26732,
+ "噻": 26733,
+ "嗪": 26734,
+ "陷": 26735,
+ "资": 26736,
+ "悄": 26737,
+ "介": 26738,
+ "筹": 26739,
+ "议": 26740,
+ "喻": 26741,
+ "趋": 26742,
+ "势": 26743,
+ "综": 26744,
+ "典": 26745,
+ "墨": 26746,
+ "夕": 26747,
+ "斥": 26748,
+ "吏": 26749,
+ "衡": 26750,
+ "逐": 26751,
+ "掩": 26752,
+ "捕": 26753,
+ "昌": 26754,
+ "贬": 26755,
+ "禹": 26756,
+ "纪": 26757,
+ "仲": 26758,
+ "淹": 26759,
+ "岳": 26760,
+ "骚": 26761,
+ "擢": 26762,
+ "徙": 26763,
+ "慕": 26764,
+ "黜": 26765,
+ "舜": 26766,
+ "绩": 26767,
+ "幽": 26768,
+ "谪": 26769,
+ "愚": 26770,
+ "潇": 26771,
+ "⑦": 26772,
+ "凌": 26773,
+ "浒": 26774,
+ "乞": 26775,
+ "骸": 26776,
+ "骤": 26777,
+ "邯": 26778,
+ "郸": 26779,
+ "址": 26780,
+ "示": 26781,
+ "培": 26782,
+ "肃": 26783,
+ "究": 26784,
+ "悠": 26785,
+ "础": 26786,
+ "纬": 26787,
+ "弧": 26788,
+ "辨": 26789,
+ "递": 26790,
+ "途": 26791,
+ "际": 26792,
+ "陡": 26793,
+ "鞍": 26794,
+ "厘": 26795,
+ "疹": 26796,
+ "诉": 26797,
+ "痱": 26798,
+ "荷": 26799,
+ "担": 26800,
+ "霉": 26801,
+ "藉": 26802,
+ "禽": 26803,
+ "泄": 26804,
+ "剖": 26805,
+ "哺": 26806,
+ "决": 26807,
+ "摄": 26808,
+ "益": 26809,
+ "篮": 26810,
+ "凤": 26811,
+ "释": 26812,
+ "孩": 26813,
+ "欢": 26814,
+ "肚": 26815,
+ "验": 26816,
+ "乏": 26817,
+ "燥": 26818,
+ "蜕": 26819,
+ "督": 26820,
+ "踏": 26821,
+ "阱": 26822,
+ "郁": 26823,
+ "潜": 26824,
+ "虑": 26825,
+ "述": 26826,
+ "恢": 26827,
+ "浑": 26828,
+ "浊": 26829,
+ "澄": 26830,
+ "淀": 26831,
+ "蕊": 26832,
+ "俗": 26833,
+ "庆": 26834,
+ "锐": 26835,
+ "痕": 26836,
+ "睹": 26837,
+ "济": 26838,
+ "弊": 26839,
+ "午": 26840,
+ "统": 26841,
+ "捷": 26842,
+ "销": 26843,
+ "售": 26844,
+ "频": 26845,
+ "绍": 26846,
+ "裕": 26847,
+ "诞": 26848,
+ "企": 26849,
+ "哲": 26850,
+ "伙": 26851,
+ "融": 26852,
+ "幕": 26853,
+ "括": 26854,
+ "研": 26855,
+ "趣": 26856,
+ "愉": 26857,
+ "婆": 26858,
+ "恭": 26859,
+ "裁": 26860,
+ "挥": 26861,
+ "悉": 26862,
+ "驱": 26863,
+ "启": 26864,
+ "梯": 26865,
+ "蓄": 26866,
+ "夷": 26867,
+ "浙": 26868,
+ "萝": 26869,
+ "践": 26870,
+ "薪": 26871,
+ "谋": 26872,
+ "辱": 26873,
+ "旦": 26874,
+ "献": 26875,
+ "惑": 26876,
+ "叛": 26877,
+ "蠡": 26878,
+ "舟": 26879,
+ "育": 26880,
+ "训": 26881,
+ "叙": 26882,
+ "烈": 26883,
+ "姿": 26884,
+ "厉": 26885,
+ "析": 26886,
+ "锻": 26887,
+ "炼": 26888,
+ "矢": 26889,
+ "励": 26890,
+ "忆": 26891,
+ "束": 26892,
+ "涕": 26893,
+ "噜": 26894,
+ "童": 26895,
+ "妨": 26896,
+ "碍": 26897,
+ "嚏": 26898,
+ "祛": 26899,
+ "椎": 26900,
+ "慎": 26901,
+ "孤": 26902,
+ "惧": 26903,
+ "默": 26904,
+ "勇": 26905,
+ "毅": 26906,
+ "扰": 26907,
+ "轨": 26908,
+ "迹": 26909,
+ "惰": 26910,
+ "慧": 26911,
+ "描": 26912,
+ "宵": 26913,
+ "炭": 26914,
+ "沸": 26915,
+ "啡": 26916,
+ "璃": 26917,
+ "陶": 26918,
+ "锈": 26919,
+ "艳": 26920,
+ "荣": 26921,
+ "莉": 26922,
+ "诊": 26923,
+ "妇": 26924,
+ "炅": 26925,
+ "笙": 26926,
+ "享": 26927,
+ "殊": 26928,
+ "协": 26929,
+ "咨": 26930,
+ "询": 26931,
+ "闸": 26932,
+ "疲": 26933,
+ "紊": 26934,
+ "滋": 26935,
+ "荠": 26936,
+ "卜": 26937,
+ "芝": 26938,
+ "枣": 26939,
+ "燕": 26940,
+ "诱": 26941,
+ "晨": 26942,
+ "沐": 26943,
+ "浴": 26944,
+ "耗": 26945,
+ "竿": 26946,
+ "莲": 26947,
+ "腐": 26948,
+ "靓": 26949,
+ "材": 26950,
+ "暑": 26951,
+ "钨": 26952,
+ "钼": 26953,
+ "磁": 26954,
+ "执": 26955,
+ "妄": 26956,
+ "臆": 26957,
+ "幻": 26958,
+ "固": 26959,
+ "凝": 26960,
+ "循": 26961,
+ "胰": 26962,
+ "疸": 26963,
+ "昏": 26964,
+ "躁": 26965,
+ "苍": 26966,
+ "肢": 26967,
+ "溃": 26968,
+ "侵": 26969,
+ "蚀": 26970,
+ "绞": 26971,
+ "淋": 26972,
+ "漓": 26973,
+ "贸": 26974,
+ "迦": 26975,
+ "辐": 26976,
+ "轧": 26977,
+ "境": 26978,
+ "障": 26979,
+ "航": 26980,
+ "械": 26981,
+ "辈": 26982,
+ "幼": 26983,
+ "稚": 26984,
+ "鬣": 26985,
+ "毫": 26986,
+ "膛": 26987,
+ "糟": 26988,
+ "狭": 26989,
+ "哮": 26990,
+ "痹": 26991,
+ "嗽": 26992,
+ "梢": 26993,
+ "策": 26994,
+ "踪": 26995,
+ "彻": 26996,
+ "屈": 26997,
+ "暮": 26998,
+ "奢": 26999,
+ "侈": 27000,
+ "娱": 27001,
+ "丰": 27002,
+ "冀": 27003,
+ "缴": 27004,
+ "酬": 27005,
+ "窥": 27006,
+ "痴": 27007,
+ "菩": 27008,
+ "覆": 27009,
+ "秘": 27010,
+ "狮": 27011,
+ "削": 27012,
+ "胚": 27013,
+ "涉": 27014,
+ "沼": 27015,
+ "莘": 27016,
+ "闵": 27017,
+ "锦": 27018,
+ "澜": 27019,
+ "衷": 27020,
+ "耻": 27021,
+ "誉": 27022,
+ "譬": 27023,
+ "契": 27024,
+ "卓": 27025,
+ "蒲": 27026,
+ "戟": 27027,
+ "丈": 27028,
+ "猖": 27029,
+ "冤": 27030,
+ "映": 27031,
+ "赎": 27032,
+ "延": 27033,
+ "讯": 27034,
+ "绒": 27035,
+ "菱": 27036,
+ "婉": 27037,
+ "烹": 27038,
+ "函": 27039,
+ "贡": 27040,
+ "偿": 27041,
+ "忧": 27042,
+ "委": 27043,
+ "允": 27044,
+ "拦": 27045,
+ "贤": 27046,
+ "惠": 27047,
+ "娇": 27048,
+ "妩": 27049,
+ "媚": 27050,
+ "漫": 27051,
+ "韵": 27052,
+ "魅": 27053,
+ "涵": 27054,
+ "貌": 27055,
+ "欣": 27056,
+ "腊": 27057,
+ "茉": 27058,
+ "绽": 27059,
+ "诠": 27060,
+ "聪": 27061,
+ "羞": 27062,
+ "淑": 27063,
+ "眸": 27064,
+ "怜": 27065,
+ "颤": 27066,
+ "惭": 27067,
+ "愧": 27068,
+ "糙": 27069,
+ "睛": 27070,
+ "忠": 27071,
+ "贞": 27072,
+ "渝": 27073,
+ "剔": 27074,
+ "渴": 27075,
+ "憧": 27076,
+ "憬": 27077,
+ "挚": 27078,
+ "馨": 27079,
+ "谐": 27080,
+ "蕴": 27081,
+ "雁": 27082,
+ "丧": 27083,
+ "絮": 27084,
+ "惺": 27085,
+ "衰": 27086,
+ "哀": 27087,
+ "唠": 27088,
+ "叨": 27089,
+ "辄": 27090,
+ "吆": 27091,
+ "歧": 27092,
+ "憾": 27093,
+ "矛": 27094,
+ "疑": 27095,
+ "悍": 27096,
+ "泊": 27097,
+ "僵": 27098,
+ "纤": 27099,
+ "抚": 27100,
+ "呻": 27101,
+ "吟": 27102,
+ "鼾": 27103,
+ "绵": 27104,
+ "弥": 27105,
+ "拢": 27106,
+ "构": 27107,
+ "魄": 27108,
+ "逝": 27109,
+ "臃": 27110,
+ "俊": 27111,
+ "恒": 27112,
+ "犀": 27113,
+ "眉": 27114,
+ "岐": 27115,
+ "纷": 27116,
+ "冉": 27117,
+ "翩": 27118,
+ "攘": 27119,
+ "袖": 27120,
+ "皎": 27121,
+ "腕": 27122,
+ "爵": 27123,
+ "钗": 27124,
+ "翠": 27125,
+ "珊": 27126,
+ "瑚": 27127,
+ "啸": 27128,
+ "阅": 27129,
+ "谨": 27130,
+ "辑": 27131,
+ "嘻": 27132,
+ "笼": 27133,
+ "粹": 27134,
+ "侃": 27135,
+ "谅": 27136,
+ "违": 27137,
+ "仇": 27138,
+ "淫": 27139,
+ "秽": 27140,
+ "唆": 27141,
+ "侮": 27142,
+ "诽": 27143,
+ "谤": 27144,
+ "秩": 27145,
+ "浏": 27146,
+ "览": 27147,
+ "纠": 27148,
+ "猥": 27149,
+ "亵": 27150,
+ "昵": 27151,
+ "讼": 27152,
+ "禅": 27153,
+ "颖": 27154,
+ "崇": 27155,
+ "挫": 27156,
+ "槌": 27157,
+ "芎": 27158,
+ "麝": 27159,
+ "摧": 27160,
+ "绪": 27161,
+ "萎": 27162,
+ "仆": 27163,
+ "贯": 27164,
+ "馈": 27165,
+ "腾": 27166,
+ "徽": 27167,
+ "冥": 27168,
+ "葡": 27169,
+ "萄": 27170,
+ "绰": 27171,
+ "矶": 27172,
+ "∧": 27173,
+ "芷": 27174,
+ "萍": 27175,
+ "≠": 27176,
+ "蚤": 27177,
+ "携": 27178,
+ "贫": 27179,
+ "疙": 27180,
+ "瘩": 27181,
+ "脖": 27182,
+ "踝": 27183,
+ "宿": 27184,
+ "毯": 27185,
+ "茧": 27186,
+ "孵": 27187,
+ "坚": 27188,
+ "厌": 27189,
+ "迅": 27190,
+ "渗": 27191,
+ "郊": 27192,
+ "央": 27193,
+ "艺": 27194,
+ "媒": 27195,
+ "邮": 27196,
+ "蔬": 27197,
+ "柏": 27198,
+ "蜡": 27199,
+ "筑": 27200,
+ "黎": 27201,
+ "灾": 27202,
+ "瘟": 27203,
+ "疫": 27204,
+ "J": 27205,
+ "虔": 27206,
+ "徒": 27207,
+ "诵": 27208,
+ "仰": 27209,
+ "寿": 27210,
+ "岸": 27211,
+ "祥": 27212,
+ "陀": 27213,
+ "芹": 27214,
+ "筷": 27215,
+ "芽": 27216,
+ "矩": 27217,
+ "牧": 27218,
+ "狱": 27219,
+ "挽": 27220,
+ "苹": 27221,
+ "蛔": 27222,
+ "蠕": 27223,
+ "挪": 27224,
+ "茫": 27225,
+ "硝": 27226,
+ "窒": 27227,
+ "屿": 27228,
+ "滕": 27229,
+ "澈": 27230,
+ "渔": 27231,
+ "猎": 27232,
+ "戚": 27233,
+ "估": 27234,
+ "媳": 27235,
+ "措": 27236,
+ "颂": 27237,
+ "碌": 27238,
+ "蔼": 27239,
+ "睐": 27240,
+ "侨": 27241,
+ "毗": 27242,
+ "壤": 27243,
+ "渡": 27244,
+ "盟": 27245,
+ "敦": 27246,
+ "宪": 27247,
+ "茵": 27248,
+ "竭": 27249,
+ "顷": 27250,
+ "罡": 27251,
+ "琢": 27252,
+ "眩": 27253,
+ "亢": 27254,
+ "奋": 27255,
+ "姑": 27256,
+ "嗦": 27257,
+ "昧": 27258,
+ "氓": 27259,
+ "谴": 27260,
+ "昨": 27261,
+ "睁": 27262,
+ "冕": 27263,
+ "芬": 27264,
+ "匈": 27265,
+ "宛": 27266,
+ "浦": 27267,
+ "疆": 27268,
+ "汰": 27269,
+ "凰": 27270,
+ "厕": 27271,
+ "庸": 27272,
+ "圳": 27273,
+ "蝎": 27274,
+ "堤": 27275,
+ "阐": 27276,
+ "晰": 27277,
+ "缀": 27278,
+ "访": 27279,
+ "鄙": 27280,
+ "婴": 27281,
+ "槛": 27282,
+ "聘": 27283,
+ "拷": 27284,
+ "拣": 27285,
+ "钮": 27286,
+ "藻": 27287,
+ "泳": 27288,
+ "馬": 27289,
+ "": 27290,
+ "瞬": 27291,
+ "荒": 27292,
+ "苁": 27293,
+ "秤": 27294,
+ "贿": 27295,
+ "醫": 27296,
+ "統": 27297,
+ "調": 27298,
+ "痿": 27299,
+ "眠": 27300,
+ "體": 27301,
+ "喉": 27302,
+ "蹈": 27303,
+ "腥": 27304,
+ "⑵": 27305,
+ "難": 27306,
+ "產": 27307,
+ "乾": 27308,
+ "狀": 27309,
+ "咧": 27310,
+ "養": 27311,
+ "魚": 27312,
+ "歉": 27313,
+ "橱": 27314,
+ "豫": 27315,
+ "夺": 27316,
+ "帘": 27317,
+ "牲": 27318,
+ "a": 27319,
+ "塑": 27320,
+ "损": 27321,
+ "酊": 27322,
+ "蒿": 27323,
+ "鹤": 27324,
+ "朴": 27325,
+ "瑶": 27326,
+ "璀": 27327,
+ "灿": 27328,
+ "皿": 27329,
+ "玲": 27330,
+ "珑": 27331,
+ "仕": 27332,
+ "烘": 27333,
+ "栩": 27334,
+ "盎": 27335,
+ "卉": 27336,
+ "盂": 27337,
+ "鼎": 27338,
+ "湛": 27339,
+ "绚": 27340,
+ "啤": 27341,
+ "炕": 27342,
+ "凳": 27343,
+ "椅": 27344,
+ "绘": 27345,
+ "雕": 27346,
+ "嵌": 27347,
+ "砂": 27348,
+ "砚": 27349,
+ "隋": 27350,
+ "韧": 27351,
+ "焙": 27352,
+ "驰": 27353,
+ "橘": 27354,
+ "悦": 27355,
+ "傅": 27356,
+ "淮": 27357,
+ "妓": 27358,
+ "糯": 27359,
+ "役": 27360,
+ "蟆": 27361,
+ "酵": 27362,
+ "宴": 27363,
+ "廷": 27364,
+ "膳": 27365,
+ "琼": 27366,
+ "酿": 27367,
+ "擅": 27368,
+ "荤": 27369,
+ "脯": 27370,
+ "饯": 27371,
+ "翡": 27372,
+ "饺": 27373,
+ "螯": 27374,
+ "笋": 27375,
+ "桂": 27376,
+ "馄": 27377,
+ "饨": 27378,
+ "苑": 27379,
+ "厦": 27380,
+ "棠": 27381,
+ "怖": 27382,
+ "偕": 27383,
+ "螃": 27384,
+ "馋": 27385,
+ "呕": 27386,
+ "蚕": 27387,
+ "茄": 27388,
+ "菇": 27389,
+ "妊": 27390,
+ "娠": 27391,
+ "堕": 27392,
+ "鳖": 27393,
+ "肴": 27394,
+ "薏": 27395,
+ "苋": 27396,
+ "盲": 27397,
+ "畸": 27398,
+ "肪": 27399,
+ "贮": 27400,
+ "倦": 27401,
+ "囱": 27402,
+ "颚": 27403,
+ "振": 27404,
+ "醛": 27405,
+ "茸": 27406,
+ "燃": 27407,
+ "芳": 27408,
+ "烃": 27409,
+ "矾": 27410,
+ "铃": 27411,
+ "薯": 27412,
+ "惕": 27413,
+ "茴": 27414,
+ "疡": 27415,
+ "疮": 27416,
+ "楂": 27417,
+ "菠": 27418,
+ "饲": 27419,
+ "荸": 27420,
+ "雀": 27421,
+ "荔": 27422,
+ "杏": 27423,
+ "诀": 27424,
+ "沫": 27425,
+ "捋": 27426,
+ "霆": 27427,
+ "锋": 27428,
+ "拓": 27429,
+ "茂": 27430,
+ "晶": 27431,
+ "蝴": 27432,
+ "镯": 27433,
+ "芥": 27434,
+ "缤": 27435,
+ "漱": 27436,
+ "颊": 27437,
+ "椭": 27438,
+ "灼": 27439,
+ "龈": 27440,
+ "颌": 27441,
+ "逸": 27442,
+ "杞": 27443,
+ "蔷": 27444,
+ "斛": 27445,
+ "茱": 27446,
+ "萸": 27447,
+ "涎": 27448,
+ "黛": 27449,
+ "硼": 27450,
+ "粟": 27451,
+ "玫": 27452,
+ "瑰": 27453,
+ "纱": 27454,
+ "蕉": 27455,
+ "芦": 27456,
+ "荟": 27457,
+ "暇": 27458,
+ "疵": 27459,
+ "屑": 27460,
+ "绷": 27461,
+ "骄": 27462,
+ "涤": 27463,
+ "瘙": 27464,
+ "柿": 27465,
+ "畴": 27466,
+ "勉": 27467,
+ "姻": 27468,
+ "溯": 27469,
+ "刑": 27470,
+ "喃": 27471,
+ "阔": 27472,
+ "噪": 27473,
+ "诈": 27474,
+ "桐": 27475,
+ "梓": 27476,
+ "绥": 27477,
+ "湄": 27478,
+ "潭": 27479,
+ "蹋": 27480,
+ "胳": 27481,
+ "膊": 27482,
+ "壹": 27483,
+ "煌": 27484,
+ "肆": 27485,
+ "燎": 27486,
+ "焰": 27487,
+ "贰": 27488,
+ "叁": 27489,
+ "蓬": 27490,
+ "璇": 27491,
+ "伍": 27492,
+ "缚": 27493,
+ "棺": 27494,
+ "屠": 27495,
+ "炯": 27496,
+ "奠": 27497,
+ "阜": 27498,
+ "旋": 27499,
+ "瘘": 27500,
+ "植": 27501,
+ "牢": 27502,
+ "旨": 27503,
+ "炙": 27504,
+ "芪": 27505,
+ "荆": 27506,
+ "凿": 27507,
+ "襄": 27508,
+ "枢": 27509,
+ "隘": 27510,
+ "陵": 27511,
+ "邵": 27512,
+ "簧": 27513,
+ "橡": 27514,
+ "崖": 27515,
+ "塌": 27516,
+ "逊": 27517,
+ "蔗": 27518,
+ "嘶": 27519,
+ "糜": 27520,
+ "革": 27521,
+ "晓": 27522,
+ "拇": 27523,
+ "擀": 27524,
+ "楔": 27525,
+ "掺": 27526,
+ "葆": 27527,
+ "峪": 27528,
+ "蓟": 27529,
+ "氛": 27530,
+ "馒": 27531,
+ "蘑": 27532,
+ "葫": 27533,
+ "蔻": 27534,
+ "烩": 27535,
+ "淇": 27536,
+ "碾": 27537,
+ "褐": 27538,
+ "滤": 27539,
+ "熄": 27540,
+ "鉴": 27541,
+ "喱": 27542,
+ "蓉": 27543,
+ "椰": 27544,
+ "惜": 27545,
+ "欺": 27546,
+ "疚": 27547,
+ "蔓": 27548,
+ "屡": 27549,
+ "悔": 27550,
+ "蜗": 27551,
+ "撼": 27552,
+ "辩": 27553,
+ "磋": 27554,
+ "耀": 27555,
+ "咚": 27556,
+ "杭": 27557,
+ "颐": 27558,
+ "酌": 27559,
+ "匠": 27560,
+ "髓": 27561,
+ "郝": 27562,
+ "顽": 27563,
+ "伟": 27564,
+ "遣": 27565,
+ "秉": 27566,
+ "迫": 27567,
+ "胁": 27568,
+ "痢": 27569,
+ "鞣": 27570,
+ "迄": 27571,
+ "鲑": 27572,
+ "浣": 27573,
+ "涛": 27574,
+ "巢": 27575,
+ "咎": 27576,
+ "侗": 27577,
+ "奕": 27578,
+ "绳": 27579,
+ "捻": 27580,
+ "窍": 27581,
+ "苗": 27582,
+ "滩": 27583,
+ "蜇": 27584,
+ "跃": 27585,
+ "喇": 27586,
+ "叭": 27587,
+ "滨": 27588,
+ "鲍": 27589,
+ "纂": 27590,
+ "崭": 27591,
+ "勃": 27592,
+ "慈": 27593,
+ "眺": 27594,
+ "滔": 27595,
+ "憎": 27596,
+ "囚": 27597,
+ "嘲": 27598,
+ "倚": 27599,
+ "衙": 27600,
+ "嗓": 27601,
+ "饕": 27602,
+ "蚣": 27603,
+ "蚌": 27604,
+ "テ": 27605,
+ "キ": 27606,
+ "滥": 27607,
+ "荡": 27608,
+ "刊": 27609,
+ "瓷": 27610,
+ "扳": 27611,
+ "奸": 27612,
+ "劣": 27613,
+ "丘": 27614,
+ "墟": 27615,
+ "诡": 27616,
+ "援": 27617,
+ "撬": 27618,
+ "庇": 27619,
+ "祸": 27620,
+ "怠": 27621,
+ "悸": 27622,
+ "珀": 27623,
+ "皙": 27624,
+ "掘": 27625,
+ "涯": 27626,
+ "枭": 27627,
+ "襟": 27628,
+ "俯": 27629,
+ "霹": 27630,
+ "雳": 27631,
+ "拾": 27632,
+ "羟": 27633,
+ "桔": 27634,
+ "瓢": 27635,
+ "雍": 27636,
+ "陋": 27637,
+ "堪": 27638,
+ "腋": 27639,
+ "卑": 27640,
+ "洱": 27641,
+ "苡": 27642,
+ "盈": 27643,
+ "磐": 27644,
+ "寓": 27645,
+ "喧": 27646,
+ "逻": 27647,
+ "巩": 27648,
+ "渠": 27649,
+ "渊": 27650,
+ "鬓": 27651,
+ "飙": 27652,
+ "鞭": 27653,
+ "曝": 27654,
+ "睑": 27655,
+ "凸": 27656,
+ "颅": 27657,
+ "廓": 27658,
+ "漠": 27659,
+ "舅": 27660,
+ "矫": 27661,
+ "妥": 27662,
+ "锢": 27663,
+ "肘": 27664,
+ "骋": 27665,
+ "惩": 27666,
+ "驯": 27667,
+ "橇": 27668,
+ "噩": 27669,
+ "啼": 27670,
+ "淤": 27671,
+ "榛": 27672,
+ "葵": 27673,
+ "芡": 27674,
+ "眶": 27675,
+ "佑": 27676,
+ "莹": 27677,
+ "舀": 27678,
+ "昆": 27679,
+ "枸": 27680,
+ "粳": 27681,
+ "梧": 27682,
+ "酪": 27683,
+ "坞": 27684,
+ "拯": 27685,
+ "焕": 27686,
+ "癣": 27687,
+ "胱": 27688,
+ "肽": 27689,
+ "煨": 27690,
+ "瓤": 27691,
+ "睬": 27692,
+ "幢": 27693,
+ "愤": 27694,
+ "刃": 27695,
+ "膀": 27696,
+ "孢": 27697,
+ "咕": 27698,
+ "鸽": 27699,
+ "魁": 27700,
+ "宙": 27701,
+ "履": 27702,
+ "峙": 27703,
+ "栅": 27704,
+ "昼": 27705,
+ "寝": 27706,
+ "聆": 27707,
+ "淅": 27708,
+ "沥": 27709,
+ "沛": 27710,
+ "垄": 27711,
+ "漕": 27712,
+ "泾": 27713,
+ "眷": 27714,
+ "弘": 27715,
+ "湘": 27716,
+ "豁": 27717,
+ "羡": 27718,
+ "熙": 27719,
+ "朽": 27720,
+ "孟": 27721,
+ "殴": 27722,
+ "毙": 27723,
+ "捆": 27724,
+ "墩": 27725,
+ "亥": 27726,
+ "庚": 27727,
+ "祀": 27728,
+ "饪": 27729,
+ "裳": 27730,
+ "檐": 27731,
+ "ゃ": 27732,
+ "惫": 27733,
+ "谊": 27734,
+ "擎": 27735,
+ "棚": 27736,
+ "岔": 27737,
+ "藿": 27738,
+ "槿": 27739,
+ "痊": 27740,
+ "垒": 27741,
+ "垣": 27742,
+ "辰": 27743,
+ "祈": 27744,
+ "祷": 27745,
+ "浩": 27746,
+ "碉": 27747,
+ "瑙": 27748,
+ "衍": 27749,
+ "兀": 27750,
+ "稼": 27751,
+ "屹": 27752,
+ "峡": 27753,
+ "镑": 27754,
+ "姚": 27755,
+ "寇": 27756,
+ "漳": 27757,
+ "裴": 27758,
+ "阎": 27759,
+ "邱": 27760,
+ "闾": 27761,
+ "甫": 27762,
+ "弑": 27763,
+ "谏": 27764,
+ "厨": 27765,
+ "巫": 27766,
+ "讳": 27767,
+ "邹": 27768,
+ "葛": 27769,
+ "奚": 27770,
+ "廉": 27771,
+ "岑": 27772,
+ "贺": 27773,
+ "倪": 27774,
+ "殷": 27775,
+ "卞": 27776,
+ "焚": 27777,
+ "匪": 27778,
+ "懈": 27779,
+ "寐": 27780,
+ "孜": 27781,
+ "诣": 27782,
+ "锥": 27783,
+ "咏": 27784,
+ "萤": 27785,
+ "楹": 27786,
+ "敖": 27787,
+ "狐": 27788,
+ "陨": 27789,
+ "唤": 27790,
+ "姨": 27791,
+ "苛": 27792,
+ "睫": 27793,
+ "榴": 27794,
+ "柚": 27795,
+ "裸": 27796,
+ "叱": 27797,
+ "咤": 27798,
+ "貂": 27799,
+ "蝉": 27800,
+ "烛": 27801,
+ "罕": 27802,
+ "铛": 27803,
+ "荞": 27804,
+ "懿": 27805,
+ "哩": 27806,
+ "霞": 27807,
+ "轿": 27808,
+ "杉": 27809,
+ "泸": 27810,
+ "沽": 27811,
+ "沧": 27812,
+ "坝": 27813,
+ "瀑": 27814,
+ "傣": 27815,
+ "勐": 27816,
+ "仑": 27817,
+ "缅": 27818,
+ "甸": 27819,
+ "殇": 27820,
+ "彝": 27821,
+ "昭": 27822,
+ "靖": 27823,
+ "侄": 27824,
+ "滇": 27825,
+ "虹": 27826,
+ "盔": 27827,
+ "恤": 27828,
+ "涡": 27829,
+ "匝": 27830,
+ "皋": 27831,
+ "嵩": 27832,
+ "遥": 27833,
+ "缆": 27834,
+ "镀": 27835,
+ "铸": 27836,
+ "熔": 27837,
+ "扮": 27838,
+ "攸": 27839,
+ "冶": 27840,
+ "溢": 27841,
+ "焊": 27842,
+ "U": 27843,
+ "恳": 27844,
+ "吭": 27845,
+ "贻": 27846,
+ "搏": 27847,
+ "沦": 27848,
+ "淄": 27849,
+ "阀": 27850,
+ "株": 27851,
+ "涝": 27852,
+ "旬": 27853,
+ "辫": 27854,
+ "鬃": 27855,
+ "咙": 27856,
+ "幔": 27857,
+ "誓": 27858,
+ "睾": 27859,
+ "躯": 27860,
+ "耽": 27861,
+ "诅": 27862,
+ "蛰": 27863,
+ "哌": 27864,
+ "谎": 27865,
+ "拘": 27866,
+ "硕": 27867,
+ "锄": 27868,
+ "傲": 27869,
+ "侦": 27870,
+ "伺": 27871,
+ "锯": 27872,
+ "侣": 27873,
+ "懦": 27874,
+ "彷": 27875,
+ "徨": 27876,
+ "豚": 27877,
+ "狸": 27878,
+ "氰": 27879,
+ "挛": 27880,
+ "瘫": 27881,
+ "痪": 27882,
+ "莓": 27883,
+ "豌": 27884,
+ "铂": 27885,
+ "悚": 27886,
+ "琳": 27887,
+ "漾": 27888,
+ "厢": 27889,
+ "弩": 27890,
+ "匕": 27891,
+ "骷": 27892,
+ "髅": 27893,
+ "哑": 27894,
+ "狄": 27895,
+ "坯": 27896,
+ "栀": 27897,
+ "苞": 27898,
+ "蕾": 27899,
+ "杵": 27900,
+ "蟒": 27901,
+ "缭": 27902,
+ "黯": 27903,
+ "噬": 27904,
+ "鸳": 27905,
+ "鸯": 27906,
+ "煜": 27907,
+ "勋": 27908,
+ "偃": 27909,
+ "癸": 27910,
+ "酉": 27911,
+ "壬": 27912,
+ "戌": 27913,
+ "艰": 27914,
+ "寥": 27915,
+ "筛": 27916,
+ "倡": 27917,
+ "鹊": 27918,
+ "塘": 27919,
+ "瘢": 27920,
+ "娩": 27921,
+ "稻": 27922,
+ "袱": 27923,
+ "弋": 27924,
+ "弈": 27925,
+ "袅": 27926,
+ "啉": 27927,
+ "宰": 27928,
+ "荨": 27929,
+ "赁": 27930,
+ "墅": 27931,
+ "滞": 27932,
+ "喀": 27933,
+ "奎": 27934,
+ "昊": 27935,
+ "昔": 27936,
+ "侥": 27937,
+ "琐": 27938,
+ "蜘": 27939,
+ "霄": 27940,
+ "咆": 27941,
+ "狙": 27942,
+ "哨": 27943,
+ "尹": 27944,
+ "礁": 27945,
+ "俘": 27946,
+ "虏": 27947,
+ "嚣": 27948,
+ "炽": 27949,
+ "召": 27950,
+ "裆": 27951,
+ "婷": 27952,
+ "凄": 27953,
+ "匹": 27954,
+ "娅": 27955,
+ "曳": 27956,
+ "畏": 27957,
+ "栖": 27958,
+ "谟": 27959,
+ "淼": 27960,
+ "撰": 27961,
+ "罹": 27962,
+ "笃": 27963,
+ "枳": 27964,
+ "芍": 27965,
+ "蛭": 27966,
+ "莪": 27967,
+ "幡": 27968,
+ "铠": 27969,
+ "辉": 27970,
+ "珞": 27971,
+ "珈": 27972,
+ "砌": 27973,
+ "翰": 27974,
+ "癜": 27975,
+ "叮": 27976,
+ "杠": 27977,
+ "倘": 27978,
+ "阈": 27979,
+ "洽": 27980,
+ "佣": 27981,
+ "蔽": 27982,
+ "颠": 27983,
+ "暧": 27984,
+ "忻": 27985,
+ "蚊": 27986,
+ "灸": 27987,
+ "莞": 27988,
+ "跻": 27989,
+ "牺": 27990,
+ "纺": 27991,
+ "粱": 27992,
+ "麸": 27993,
+ "恙": 27994,
+ "淳": 27995,
+ "畜": 27996,
+ "睦": 27997,
+ "胫": 27998,
+ "妍": 27999,
+ "彦": 28000,
+ "陌": 28001,
+ "耕": 28002,
+ "涮": 28003,
+ "茯": 28004,
+ "苓": 28005,
+ "枉": 28006,
+ "麼": 28007,
+ "腓": 28008,
+ "厥": 28009,
+ "斟": 28010,
+ "辜": 28011,
+ "铣": 28012,
+ "慨": 28013,
+ "抉": 28014,
+ "扼": 28015,
+ "蛟": 28016,
+ "螳": 28017,
+ "螂": 28018,
+ "ょ": 28019,
+ "約": 28020,
+ "芭": 28021,
+ "毡": 28022,
+ "竺": 28023,
+ "梵": 28024,
+ "翌": 28025,
+ "谚": 28026,
+ "揣": 28027,
+ "椹": 28028,
+ "晦": 28029,
+ "槐": 28030,
+ "菟": 28031,
+ "镉": 28032,
+ "湃": 28033,
+ "撇": 28034,
+ "褥": 28035,
+ "盅": 28036,
+ "憔": 28037,
+ "悴": 28038,
+ "钳": 28039,
+ "舶": 28040,
+ "揭": 28041,
+ "潼": 28042,
+ "窑": 28043,
+ "現": 28044,
+ "謝": 28045,
+ "乍": 28046,
+ "乒": 28047,
+ "乓": 28048,
+ "辙": 28049,
+ "谍": 28050,
+ "砷": 28051,
+ "傍": 28052,
+ "戍": 28053,
+ "渚": 28054,
+ "帆": 28055,
+ "枫": 28056,
+ "袜": 28057,
+ "徘": 28058,
+ "徊": 28059,
+ "阙": 28060,
+ "绮": 28061,
+ "婵": 28062,
+ "娟": 28063,
+ "卯": 28064,
+ "淆": 28065,
+ "驿": 28066,
+ "髦": 28067,
+ "烽": 28068,
+ "炊": 28069,
+ "蝇": 28070,
+ "蟑": 28071,
+ "屉": 28072,
+ "崎": 28073,
+ "巡": 28074,
+ "掖": 28075,
+ "⊥": 28076,
+ "钞": 28077,
+ "衬": 28078,
+ "衫": 28079,
+ "⑴": 28080,
+ "褶": 28081,
+ "⑶": 28082,
+ "嘱": 28083,
+ "廊": 28084,
+ "麓": 28085,
+ "汾": 28086,
+ "渭": 28087,
+ "渤": 28088,
+ "嫖": 28089,
+ "撮": 28090,
+ "嘎": 28091,
+ "禧": 28092,
+ "椿": 28093,
+ "忏": 28094,
+ "寅": 28095,
+ "毋": 28096,
+ "咀": 28097,
+ "姊": 28098,
+ "裝": 28099,
+ "悖": 28100,
+ "槟": 28101,
+ "侍": 28102,
+ "蚝": 28103,
+ "钵": 28104,
+ "煞": 28105,
+ "嗝": 28106,
+ "脘": 28107,
+ "嗳": 28108,
+ "歹": 28109,
+ "苟": 28110,
+ "甙": 28111,
+ "惘": 28112,
+ "镭": 28113,
+ "鸦": 28114,
+ "颁": 28115,
+ "嬴": 28116,
+ "迢": 28117,
+ "俏": 28118,
+ "绊": 28119,
+ "撵": 28120,
+ "虞": 28121,
+ "毓": 28122,
+ "拂": 28123,
+ "寂": 28124,
+ "寞": 28125,
+ "翔": 28126,
+ "锣": 28127,
+ "骏": 28128,
+ "铉": 28129,
+ "翱": 28130,
+ "烁": 28131,
+ "攀": 28132,
+ "坷": 28133,
+ "飒": 28134,
+ "帜": 28135,
+ "洙": 28136,
+ "儒": 28137,
+ "蜊": 28138,
+ "牡": 28139,
+ "蛎": 28140,
+ "瞳": 28141,
+ "钥": 28142,
+ "窃": 28143,
+ "骼": 28144,
+ "嫉": 28145,
+ "妒": 28146,
+ "憩": 28147,
+ "铬": 28148,
+ "锗": 28149,
+ "鳗": 28150,
+ "榆": 28151,
+ "菖": 28152,
+ "熨": 28153,
+ "戮": 28154,
+ "徕": 28155,
+ "鞠": 28156,
+ "躬": 28157,
+ "缮": 28158,
+ "稣": 28159,
+ "铎": 28160,
+ "鳝": 28161,
+ "垦": 28162,
+ "峻": 28163,
+ "伶": 28164,
+ "逍": 28165,
+ "瞌": 28166,
+ "恍": 28167,
+ "惚": 28168,
+ "瘾": 28169,
+ "讶": 28170,
+ "〓": 28171,
+ "崽": 28172,
+ "斌": 28173,
+ "砰": 28174,
+ "榔": 28175,
+ "弛": 28176,
+ "萃": 28177,
+ "忱": 28178,
+ "侏": 28179,
+ "舵": 28180,
+ "沓": 28181,
+ "辟": 28182,
+ "蹊": 28183,
+ "臻": 28184,
+ "璨": 28185,
+ "茁": 28186,
+ "恣": 28187,
+ "绎": 28188,
+ "瞩": 28189,
+ "瞻": 28190,
+ "遐": 28191,
+ "踞": 28192,
+ "巅": 28193,
+ "鳌": 28194,
+ "俑": 28195,
+ "姥": 28196,
+ "腑": 28197,
+ "嘀": 28198,
+ "羁": 28199,
+ "芜": 28200,
+ "慰": 28201,
+ "尴": 28202,
+ "尬": 28203,
+ "吝": 28204,
+ "啬": 28205,
+ "穹": 28206,
+ "缔": 28207,
+ "孺": 28208,
+ "孽": 28209,
+ "祚": 28210,
+ "肇": 28211,
+ "尧": 28212,
+ "奴": 28213,
+ "茹": 28214,
+ "敝": 28215,
+ "袍": 28216,
+ "晤": 28217,
+ "炬": 28218,
+ "婿": 28219,
+ "甥": 28220,
+ "嗣": 28221,
+ "佬": 28222,
+ "哗": 28223,
+ "篱": 28224,
+ "殉": 28225,
+ "瑾": 28226,
+ "醍": 28227,
+ "醐": 28228,
+ "幺": 28229,
+ "買": 28230,
+ "痤": 28231,
+ "旱": 28232,
+ "搐": 28233,
+ "旷": 28234,
+ "琛": 28235,
+ "陕": 28236,
+ "馍": 28237,
+ "嗖": 28238,
+ "纾": 28239,
+ "溺": 28240,
+ "沮": 28241,
+ "巍": 28242,
+ "峨": 28243,
+ "桓": 28244,
+ "绯": 28245,
+ "赂": 28246,
+ "捎": 28247,
+ "靡": 28248,
+ "饶": 28249,
+ "胛": 28250,
+ "樵": 28251,
+ "證": 28252,
+ "絕": 28253,
+ "缕": 28254,
+ "匆": 28255,
+ "胭": 28256,
+ "闽": 28257,
+ "汕": 28258,
+ "瓮": 28259,
+ "嫂": 28260,
+ "泯": 28261,
+ "凛": 28262,
+ "裡": 28263,
+ "處": 28264,
+ "谣": 28265,
+ "煸": 28266,
+ "挟": 28267,
+ "涧": 28268,
+ "鲫": 28269,
+ "鱿": 28270,
+ "酗": 28271,
+ "矜": 28272,
+ "遏": 28273,
+ "渎": 28274,
+ "诘": 28275,
+ "臼": 28276,
+ "渥": 28277,
+ "髌": 28278,
+ "榭": 28279,
+ "茬": 28280,
+ "摁": 28281,
+ "狩": 28282,
+ "榷": 28283,
+ "獒": 28284,
+ "舆": 28285,
+ "迂": 28286,
+ "枷": 28287,
+ "嗤": 28288,
+ "羲": 28289,
+ "搪": 28290,
+ "邸": 28291,
+ "鼬": 28292,
+ "抒": 28293,
+ "驳": 28294,
+ "豉": 28295,
+ "揽": 28296,
+ "聿": 28297,
+ "坂": 28298,
+ "沂": 28299,
+ "鄂": 28300,
+ "钰": 28301,
+ "彪": 28302,
+ "淞": 28303,
+ "羌": 28304,
+ "纭": 28305,
+ "赣": 28306,
+ "纣": 28307,
+ "膘": 28308,
+ "慑": 28309,
+ "绀": 28310,
+ "诫": 28311,
+ "懊": 28312,
+ "桅": 28313,
+ "聋": 28314,
+ "潺": 28315,
+ "離": 28316,
+ "遠": 28317,
+ "點": 28318,
+ "ο": 28319,
+ "昙": 28320,
+ "皖": 28321,
+ "蔚": 28322,
+ "镖": 28323,
+ "馏": 28324,
+ "觅": 28325,
+ "湮": 28326,
+ "贩": 28327,
+ "殆": 28328,
+ "崛": 28329,
+ "漉": 28330,
+ "谛": 28331,
+ "绶": 28332,
+ "眯": 28333,
+ "霰": 28334,
+ "堰": 28335,
+ "疖": 28336,
+ "鳅": 28337,
+ "莴": 28338,
+ "芩": 28339,
+ "鹌": 28340,
+ "鹑": 28341,
+ "韭": 28342,
+ "盹": 28343,
+ "疽": 28344,
+ "烯": 28345,
+ "φ": 28346,
+ "箍": 28347,
+ "绅": 28348,
+ "沁": 28349,
+ "蜈": 28350,
+ "镳": 28351,
+ "眨": 28352,
+ "蹄": 28353,
+ "噎": 28354,
+ "衩": 28355,
+ "绸": 28356,
+ "糠": 28357,
+ "荧": 28358,
+ "璐": 28359,
+ "笈": 28360,
+ "僚": 28361,
+ "骆": 28362,
+ "帛": 28363,
+ "莽": 28364,
+ "俭": 28365,
+ "耆": 28366,
+ "吒": 28367,
+ "褂": 28368,
+ "钦": 28369,
+ "瓯": 28370,
+ "锂": 28371,
+ "璧": 28372,
+ "稷": 28373,
+ "斓": 28374,
+ "靛": 28375,
+ "怡": 28376,
+ "畿": 28377,
+ "喳": 28378,
+ "羚": 28379,
+ "噱": 28380,
+ "怯": 28381,
+ "谦": 28382,
+ "烷": 28383,
+ "捶": 28384,
+ "榨": 28385,
+ "吮": 28386,
+ "資": 28387,
+ "惋": 28388,
+ "稽": 28389,
+ "讥": 28390,
+ "讽": 28391,
+ "渺": 28392,
+ "韶": 28393,
+ "晏": 28394,
+ "檀": 28395,
+ "拈": 28396,
+ "苇": 28397,
+ "耿": 28398,
+ "凋": 28399,
+ "鬟": 28400,
+ "饵": 28401,
+ "脲": 28402,
+ "皓": 28403,
+ "惬": 28404,
+ "诃": 28405,
+ "結": 28406,
+ "掂": 28407,
+ "頭": 28408,
+ "∑": 28409,
+ "進": 28410,
+ "過": 28411,
+ "叩": 28412,
+ "親": 28413,
+ "議": 28414,
+ "槭": 28415,
+ "種": 28416,
+ "氖": 28417,
+ "诩": 28418,
+ "辦": 28419,
+ "溉": 28420,
+ "匾": 28421,
+ "诙": 28422,
+ "確": 28423,
+ "網": 28424,
+ "發": 28425,
+ "酝": 28426,
+ "偎": 28427,
+ "瀚": 28428,
+ "盏": 28429,
+ "澎": 28430,
+ "隶": 28431,
+ "佗": 28432,
+ "鹫": 28433,
+ "瘠": 28434,
+ "遁": 28435,
+ "蝙": 28436,
+ "蝠": 28437,
+ "鸵": 28438,
+ "峭": 28439,
+ "箫": 28440,
+ "鹏": 28441,
+ "募": 28442,
+ "尉": 28443,
+ "桧": 28444,
+ "诬": 28445,
+ "麟": 28446,
+ "诋": 28447,
+ "蔑": 28448,
+ "柑": 28449,
+ "嗡": 28450,
+ "驼": 28451,
+ "荼": 28452,
+ "赘": 28453,
+ "拙": 28454,
+ "華": 28455,
+ "錯": 28456,
+ "選": 28457,
+ "衢": 28458,
+ "阑": 28459,
+ "僻": 28460,
+ "嚎": 28461,
+ "闺": 28462,
+ "邂": 28463,
+ "逅": 28464,
+ "榈": 28465,
+ "蛲": 28466,
+ "疟": 28467,
+ "唾": 28468,
+ "龋": 28469,
+ "裘": 28470,
+ "猩": 28471,
+ "酰": 28472,
+ "琵": 28473,
+ "琶": 28474,
+ "筝": 28475,
+ "媲": 28476,
+ "瞿": 28477,
+ "恪": 28478,
+ "粼": 28479,
+ "帷": 28480,
+ "髂": 28481,
+ "δ": 28482,
+ "夭": 28483,
+ "跗": 28484,
+ "吩": 28485,
+ "叻": 28486,
+ "埠": 28487,
+ "彰": 28488,
+ "崴": 28489,
+ "洼": 28490,
+ "诧": 28491,
+ "濡": 28492,
+ "殃": 28493,
+ "匮": 28494,
+ "歆": 28495,
+ "岚": 28496,
+ "婧": 28497,
+ "琪": 28498,
+ "宸": 28499,
+ "萱": 28500,
+ "祎": 28501,
+ "娴": 28502,
+ "雯": 28503,
+ "嫣": 28504,
+ "玮": 28505,
+ "琦": 28506,
+ "媛": 28507,
+ "婕": 28508,
+ "珂": 28509,
+ "楠": 28510,
+ "茜": 28511,
+ "嫦": 28512,
+ "曦": 28513,
+ "娥": 28514,
+ "芸": 28515,
+ "丕": 28516,
+ "鹦": 28517,
+ "鹉": 28518,
+ "憨": 28519,
+ "稱": 28520,
+ "慵": 28521,
+ "陂": 28522,
+ "擒": 28523,
+ "磺": 28524,
+ "帚": 28525,
+ "晗": 28526,
+ "铭": 28527,
+ "徵": 28528,
+ "坟": 28529,
+ "锭": 28530,
+ "腱": 28531,
+ "娄": 28532,
+ "逵": 28533,
+ "纫": 28534,
+ "σ": 28535,
+ "疥": 28536,
+ "陇": 28537,
+ "庐": 28538,
+ "朔": 28539,
+ "汹": 28540,
+ "骥": 28541,
+ "垠": 28542,
+ "宕": 28543,
+ "轩": 28544,
+ "辕": 28545,
+ "跖": 28546,
+ "涸": 28547,
+ "潴": 28548,
+ "矗": 28549,
+ "妞": 28550,
+ "幌": 28551,
+ "窘": 28552,
+ "夯": 28553,
+ "掳": 28554,
+ "鸢": 28555,
+ "雇": 28556,
+ "逮": 28557,
+ "篡": 28558,
+ "谒": 28559,
+ "笺": 28560,
+ "曙": 28561,
+ "蜴": 28562,
+ "琉": 28563,
+ "邺": 28564,
+ "奘": 28565,
+ "惦": 28566,
+ "惶": 28567,
+ "皈": 28568,
+ "怅": 28569,
+ "篷": 28570,
+ "猕": 28571,
+ "孰": 28572,
+ "肮": 28573,
+ "驭": 28574,
+ "铢": 28575,
+ "掀": 28576,
+ "婪": 28577,
+ "娲": 28578,
+ "猝": 28579,
+ "轼": 28580,
+ "桨": 28581,
+ "狡": 28582,
+ "踵": 28583,
+ "耦": 28584,
+ "丶": 28585,
+ "呱": 28586,
+ "窟": 28587,
+ "摹": 28588,
+ "蚜": 28589,
+ "蛆": 28590,
+ "琥": 28591,
+ "伎": 28592,
+ "宦": 28593,
+ "扉": 28594,
+ "ひ": 28595,
+ "叽": 28596,
+ "绫": 28597,
+ "暄": 28598,
+ "兢": 28599,
+ "ε": 28600,
+ "唧": 28601,
+ "磊": 28602,
+ "腮": 28603,
+ "釉": 28604,
+ "粽": 28605,
+ "缜": 28606,
+ "铮": 28607,
+ "浜": 28608,
+ "戎": 28609,
+ "胤": 28610,
+ "笛": 28611,
+ "袒": 28612,
+ "骇": 28613,
+ "瑛": 28614,
+ "讹": 28615,
+ "傀": 28616,
+ "荀": 28617,
+ "佚": 28618,
+ "袄": 28619,
+ "禺": 28620,
+ "溅": 28621,
+ "痂": 28622,
+ "柬": 28623,
+ "埔": 28624,
+ "汶": 28625,
+ "斐": 28626,
+ "辗": 28627,
+ "拗": 28628,
+ "鸠": 28629,
+ "颓": 28630,
+ "缎": 28631,
+ "敞": 28632,
+ "蝗": 28633,
+ "丐": 28634,
+ "佼": 28635,
+ "倔": 28636,
+ "褚": 28637,
+ "菁": 28638,
+ "毂": 28639,
+ "擂": 28640,
+ "踊": 28641,
+ "刁": 28642,
+ "曜": 28643,
+ "簸": 28644,
+ "烨": 28645,
+ "晖": 28646,
+ "枇": 28647,
+ "杷": 28648,
+ "鹃": 28649,
+ "昕": 28650,
+ "阖": 28651,
+ "浚": 28652,
+ "祯": 28653,
+ "麒": 28654,
+ "荫": 28655,
+ "彬": 28656,
+ "钡": 28657,
+ "婺": 28658,
+ "關": 28659,
+ "粕": 28660,
+ "腼": 28661,
+ "腆": 28662,
+ "鹭": 28663,
+ "忐": 28664,
+ "忑": 28665,
+ "悯": 28666,
+ "隊": 28667,
+ "鸥": 28668,
+ "獭": 28669,
+ "笠": 28670,
+ "ば": 28671,
+ "汝": 28672,
+ "荚": 28673,
+ "壑": 28674,
+ "螈": 28675,
+ "蚩": 28676,
+ "煽": 28677,
+ "辍": 28678,
+ "翟": 28679,
+ "旌": 28680,
+ "娓": 28681,
+ "衅": 28682,
+ "芋": 28683,
+ "萼": 28684,
+ "瞰": 28685,
+ "吁": 28686,
+ "較": 28687,
+ "呸": 28688,
+ "仄": 28689,
+ "汐": 28690,
+ "愕": 28691,
+ "胄": 28692,
+ "嘌": 28693,
+ "呤": 28694,
+ "羧": 28695,
+ "肼": 28696,
+ "酐": 28697,
+ "拮": 28698,
+ "吡": 28699,
+ "啶": 28700,
+ "窿": 28701,
+ "渲": 28702,
+ "冗": 28703,
+ "猾": 28704,
+ "籁": 28705,
+ "嗑": 28706,
+ "鸾": 28707,
+ "吠": 28708,
+ "钏": 28709,
+ "弼": 28710,
+ "蜻": 28711,
+ "蜓": 28712,
+ "蛹": 28713,
+ "蚯": 28714,
+ "蚓": 28715,
+ "邋": 28716,
+ "遢": 28717,
+ "運": 28718,
+ "義": 28719,
+ "佟": 28720,
+ "牟": 28721,
+ "讀": 28722,
+ "間": 28723,
+ "適": 28724,
+ "術": 28725,
+ "開": 28726,
+ "赡": 28727,
+ "酚": 28728,
+ "宥": 28729,
+ "僖": 28730,
+ "颉": 28731,
+ "腦": 28732,
+ "暹": 28733,
+ "補": 28734,
+ "覺": 28735,
+ "芮": 28736,
+ "虱": 28737,
+ "蛀": 28738,
+ "啮": 28739,
+ "镰": 28740,
+ "痈": 28741,
+ "樊": 28742,
+ "勘": 28743,
+ "飓": 28744,
+ "缉": 28745,
+ "祟": 28746,
+ "蝌": 28747,
+ "蚪": 28748,
+ "跤": 28749,
+ "竣": 28750,
+ "烬": 28751,
+ "狈": 28752,
+ "藜": 28753,
+ "岱": 28754,
+ "蟠": 28755,
+ "悼": 28756,
+ "缪": 28757,
+ "扦": 28758,
+ "腭": 28759,
+ "赃": 28760,
+ "豺": 28761,
+ "泣": 28762,
+ "旭": 28763,
+ "塾": 28764,
+ "茭": 28765,
+ "吱": 28766,
+ "黔": 28767,
+ "マ": 28768,
+ "タ": 28769,
+ "隅": 28770,
+ "朦": 28771,
+ "胧": 28772,
+ "ご": 28773,
+ "錢": 28774,
+ "聽": 28775,
+ "連": 28776,
+ "逞": 28777,
+ "犁": 28778,
+ "蚂": 28779,
+ "炔": 28780,
+ "邢": 28781,
+ "麾": 28782,
+ "犊": 28783,
+ "驹": 28784,
+ "達": 28785,
+ "酋": 28786,
+ "跷": 28787,
+ "胯": 28788,
+ "彤": 28789,
+ "煦": 28790,
+ "筐": 28791,
+ "愛": 28792,
+ "時": 28793,
+ "颧": 28794,
+ "桦": 28795,
+ "蛊": 28796,
+ "#": 28797,
+ "砺": 28798,
+ "迸": 28799,
+ "蕃": 28800,
+ "並": 28801,
+ "遊": 28802,
+ "內": 28803,
+ "記": 28804,
+ "計": 28805,
+ "缥": 28806,
+ "缈": 28807,
+ "ド": 28808,
+ "猬": 28809,
+ "誰": 28810,
+ "兖": 28811,
+ "摒": 28812,
+ "璋": 28813,
+ "烙": 28814,
+ "筏": 28815,
+ "蓼": 28816,
+ "給": 28817,
+ "ろ": 28818,
+ "樟": 28819,
+ "¥": 28820,
+ "馁": 28821,
+ "晟": 28822,
+ "姗": 28823,
+ "裨": 28824,
+ "廿": 28825,
+ "釜": 28826,
+ "轭": 28827,
+ "寰": 28828,
+ "嘟": 28829,
+ "咐": 28830,
+ "喋": 28831,
+ "跋": 28832,
+ "嬉": 28833,
+ "囤": 28834,
+ "伫": 28835,
+ "莆": 28836,
+ "許": 28837,
+ "嘘": 28838,
+ " ": 28839,
+ "囟": 28840,
+ "婶": 28841,
+ "纶": 28842,
+ "砧": 28843,
+ "锚": 28844,
+ "舷": 28845,
+ "啧": 28846,
+ "骁": 28847,
+ "龛": 28848,
+ "腩": 28849,
+ "痧": 28850,
+ "羔": 28851,
+ "蟾": 28852,
+ "蜍": 28853,
+ "馀": 28854,
+ "潍": 28855,
+ "穗": 28856,
+ "巽": 28857,
+ "堇": 28858,
+ "喹": 28859,
+ "圃": 28860,
+ "蜒": 28861,
+ "茗": 28862,
+ "葩": 28863,
+ "砾": 28864,
+ "坍": 28865,
+ "熹": 28866,
+ "匡": 28867,
+ "赈": 28868,
+ "镐": 28869,
+ "獗": 28870,
+ "阉": 28871,
+ "剿": 28872,
+ "涟": 28873,
+ "萬": 28874,
+ "祁": 28875,
+ "淌": 28876,
+ "谑": 28877,
+ "廖": 28878,
+ "恬": 28879,
+ "阡": 28880,
+ "唬": 28881,
+ "砥": 28882,
+ "诟": 28883,
+ "亟": 28884,
+ "サ": 28885,
+ "鳎": 28886,
+ "爻": 28887,
+ "瘸": 28888,
+ "谧": 28889,
+ "瘪": 28890,
+ "肱": 28891,
+ "彗": 28892,
+ "戛": 28893,
+ "俐": 28894,
+ "厮": 28895,
+ "谕": 28896,
+ "阮": 28897,
+ "扪": 28898,
+ "醚": 28899,
+ "殡": 28900,
+ "颞": 28901,
+ "俸": 28902,
+ "缨": 28903,
+ "蹴": 28904,
+ "霖": 28905,
+ "雏": 28906,
+ "箔": 28907,
+ "咄": 28908,
+ "鄱": 28909,
+ "萦": 28910,
+ "鑫": 28911,
+ "甾": 28912,
+ "篆": 28913,
+ "ū": 28914,
+ "з": 28915,
+ "ч": 28916,
+ "г": 28917,
+ "唏": 28918,
+ "馥": 28919,
+ "鄞": 28920,
+ "奄": 28921,
+ "": 28922,
+ "阪": 28923,
+ "辘": 28924,
+ "颍": 28925,
+ "飛": 28926,
+ "門": 28927,
+ "樽": 28928,
+ "雖": 28929,
+ "語": 28930,
+ "沱": 28931,
+ "詞": 28932,
+ "瞥": 28933,
+ "轲": 28934,
+ "湍": 28935,
+ "漩": 28936,
+ "嚷": 28937,
+ "簪": 28938,
+ "桀": 28939,
+ "侬": 28940,
+ "雹": 28941,
+ "昱": 28942,
+ "鳕": 28943,
+ "岷": 28944,
+ "菅": 28945,
+ "髋": 28946,
+ "锵": 28947,
+ "慷": 28948,
+ "隽": 28949,
+ "孚": 28950,
+ "邃": 28951,
+ "涣": 28952,
+ "酣": 28953,
+ "楷": 28954,
+ "呋": 28955,
+ "驸": 28956,
+ "翎": 28957,
+ "恺": 28958,
+ "楞": 28959,
+ "惮": 28960,
+ "濑": 28961,
+ "耘": 28962,
+ "組": 28963,
+ "輕": 28964,
+ "鞑": 28965,
+ "靼": 28966,
+ "峦": 28967,
+ "俨": 28968,
+ "迥": 28969,
+ "峥": 28970,
+ "亘": 28971,
+ "栉": 28972,
+ "礴": 28973,
+ "骊": 28974,
+ "匣": 28975,
+ "惆": 28976,
+ "潦": 28977,
+ "罔": 28978,
+ "钧": 28979,
+ "铵": 28980,
+ "龚": 28981,
+ "茛": 28982,
+ "佰": 28983,
+ "窖": 28984,
+ "紅": 28985,
+ "碇": 28986,
+ "黃": 28987,
+ "褒": 28988,
+ "炜": 28989,
+ "迭": 28990,
+ "❤": 28991,
+ "痞": 28992,
+ "ò": 28993,
+ "啄": 28994,
+ "潞": 28995,
+ "禀": 28996,
+ "恿": 28997,
+ "溥": 28998,
+ "轶": 28999,
+ "隍": 29000,
+ "骺": 29001,
+ "橼": 29002,
+ "潢": 29003,
+ "拴": 29004,
+ "沅": 29005,
+ "蕙": 29006,
+ "萘": 29007,
+ "倭": 29008,
+ "抨": 29009,
+ " ̄": 29010,
+ "ě": 29011,
+ "製": 29012,
+ "泷": 29013,
+ "荃": 29014,
+ "耙": 29015,
+ "顯": 29016,
+ "婢": 29017,
+ "汲": 29018,
+ "臧": 29019,
+ "嫔": 29020,
+ "佝": 29021,
+ "偻": 29022,
+ "題": 29023,
+ "堑": 29024,
+ "炳": 29025,
+ "祂": 29026,
+ "噶": 29027,
+ "佘": 29028,
+ "丨": 29029,
+ "獾": 29030,
+ "筠": 29031,
+ "皑": 29032,
+ "胥": 29033,
+ "栾": 29034,
+ "漪": 29035,
+ "蜿": 29036,
+ "嗔": 29037,
+ "叟": 29038,
+ "骰": 29039,
+ "認": 29040,
+ "淖": 29041,
+ "鹳": 29042,
+ "觀": 29043,
+ "筆": 29044,
+ "仨": 29045,
+ "識": 29046,
+ "維": 29047,
+ "遛": 29048,
+ "骡": 29049,
+ "揩": 29050,
+ "ロ": 29051,
+ "コ": 29052,
+ "シ": 29053,
+ "嫡": 29054,
+ "鞅": 29055,
+ "燮": 29056,
+ "秧": 29057,
+ "鲽": 29058,
+ "挞": 29059,
+ "罂": 29060,
+ "瀛": 29061,
+ "阂": 29062,
+ "饷": 29063,
+ "榕": 29064,
+ "隧": 29065,
+ "娑": 29066,
+ "筱": 29067,
+ "皲": 29068,
+ "設": 29069,
+ "玺": 29070,
+ "壕": 29071,
+ "儡": 29072,
+ "睽": 29073,
+ "忡": 29074,
+ "裏": 29075,
+ "怦": 29076,
+ "捍": 29077,
+ "機": 29078,
+ "莺": 29079,
+ "绢": 29080,
+ "噗": 29081,
+ "哧": 29082,
+ "濮": 29083,
+ "肟": 29084,
+ "講": 29085,
+ "挝": 29086,
+ "轉": 29087,
+ "袤": 29088,
+ "啰": 29089,
+ "膺": 29090,
+ "カ": 29091,
+ "ジ": 29092,
+ "レ": 29093,
+ "篝": 29094,
+ "フ": 29095,
+ "熠": 29096,
+ "谔": 29097,
+ "劾": 29098,
+ "泗": 29099,
+ "岖": 29100,
+ "祺": 29101,
+ "掣": 29102,
+ "怔": 29103,
+ "祉": 29104,
+ "甭": 29105,
+ "羿": 29106,
+ "嘈": 29107,
+ "涓": 29108,
+ "垩": 29109,
+ "讪": 29110,
+ "苄": 29111,
+ "浔": 29112,
+ "魇": 29113,
+ "庾": 29114,
+ "苣": 29115,
+ "б": 29116,
+ "я": 29117,
+ "報": 29118,
+ "汴": 29119,
+ "歙": 29120,
+ "箕": 29121,
+ "愫": 29122,
+ "堀": 29123,
+ "谬": 29124,
+ "黍": 29125,
+ "赦": 29126,
+ "臊": 29127,
+ "涪": 29128,
+ "谙": 29129,
+ "裱": 29130,
+ "诰": 29131,
+ "敕": 29132,
+ "娼": 29133,
+ "斡": 29134,
+ "俪": 29135,
+ "費": 29136,
+ "瞠": 29137,
+ "沌": 29138,
+ "鲱": 29139,
+ "孪": 29140,
+ "雉": 29141,
+ "懋": 29142,
+ "質": 29143,
+ "線": 29144,
+ "觑": 29145,
+ "蜷": 29146,
+ "陛": 29147,
+ "脍": 29148,
+ "跆": 29149,
+ "嗷": 29150,
+ "隼": 29151,
+ "璞": 29152,
+ "嘧": 29153,
+ "玖": 29154,
+ "靳": 29155,
+ "钊": 29156,
+ "棣": 29157,
+ "泮": 29158,
+ "歡": 29159,
+ "霓": 29160,
+ "翊": 29161,
+ "風": 29162,
+ "嗒": 29163,
+ "炀": 29164,
+ "問": 29165,
+ "葚": 29166,
+ "榻": 29167,
+ "變": 29168,
+ "衮": 29169,
+ "羅": 29170,
+ "評": 29171,
+ "ǔ": 29172,
+ "髻": 29173,
+ "佥": 29174,
+ "琰": 29175,
+ "嚓": 29176,
+ "": 29177,
+ "俾": 29178,
+ "诲": 29179,
+ "谩": 29180,
+ "贲": 29181,
+ "祇": 29182,
+ "闫": 29183,
+ "矽": 29184,
+ "舖": 29185,
+ "夔": 29186,
+ "蛱": 29187,
+ "³": 29188,
+ "桢": 29189,
+ "妲": 29190,
+ "瓒": 29191,
+ "艮": 29192,
+ "〜": 29193,
+ "嘞": 29194,
+ "扈": 29195,
+ "聂": 29196,
+ "铨": 29197,
+ "琏": 29198,
+ "濠": 29199,
+ "強": 29200,
+ "俚": 29201,
+ "磡": 29202,
+ "涿": 29203,
+ "臺": 29204,
+ "庠": 29205,
+ "秆": 29206,
+ "經": 29207,
+ "請": 29208,
+ "樣": 29209,
+ "蝽": 29210,
+ "吋": 29211,
+ "焗": 29212,
+ "蔺": 29213,
+ "ə": 29214,
+ "們": 29215,
+ "當": 29216,
+ "將": 29217,
+ "論": 29218,
+ "專": 29219,
+ "應": 29220,
+ "則": 29221,
+ "權": 29222,
+ "準": 29223,
+ "邊": 29224,
+ "實": 29225,
+ "兩": 29226,
+ "書": 29227,
+ "帶": 29228,
+ "哏": 29229,
+ "й": 29230,
+ "п": 29231,
+ "ы": 29232,
+ "ь": 29233,
+ "芈": 29234,
+ "廣": 29235,
+ "場": 29236,
+ "莒": 29237,
+ "苻": 29238,
+ "還": 29239,
+ "埗": 29240,
+ "電": 29241,
+ "東": 29242,
+ "國": 29243,
+ "動": 29244,
+ "灣": 29245,
+ "氣": 29246,
+ "見": 29247,
+ "張": 29248,
+ "圖": 29249,
+ "別": 29250,
+ "嗎": 29251,
+ "幾": 29252,
+ "妳": 29253,
+ "車": 29254,
+ "喆": 29255,
+ "潟": 29256,
+ "樂": 29257,
+ "區": 29258,
+ "該": 29259,
+ "類": 29260,
+ "節": 29261,
+ "標": 29262,
+ "寫": 29263,
+ "視": 29264,
+ "總": 29265,
+ "衞": 29266,
+ "無": 29267,
+ "價": 29268,
+ "學": 29269,
+ "試": 29270,
+ "業": 29271,
+ "師": 29272,
+ "聲": 29273,
+ "習": 29274,
+ "單": 29275,
+ "傳": 29276,
+ "簡": 29277,
+ "槃": 29278,
+ "漢": 29279,
+ "戰": 29280,
+ "員": 29281,
+ "陸": 29282,
+ "條": 29283,
+ "導": 29284,
+ "́": 29285,
+ "獨": 29286,
+ "數": 29287,
+ "畫": 29288,
+ "ل": 29289,
+ "彧": 29290,
+ "歷": 29291,
+ "█": 29292,
+ "軍": 29293,
+ "̀": 29294,
+ "暱": 29295,
+ "⭐": 29296,
+ "鳚": 29297
+ },
+ "merges": [
+ "地 球",
+ "为 什么",
+ "没 有",
+ "感 觉",
+ "重 力",
+ "作 用",
+ "一 直",
+ "指 向",
+ "因 此",
+ "只 要",
+ "远 离",
+ "人 们",
+ "感 到",
+ "请 问",
+ "这 起",
+ "交通 事故",
+ "责 任",
+ "居 多",
+ "小 车",
+ "摩托 车",
+ "发 生",
+ "事 故",
+ "红 绿灯",
+ "十字 路口",
+ "停 车",
+ "看 看",
+ "左 右",
+ "觉 得",
+ "安 全",
+ "情 况",
+ "刹 车",
+ "慢 慢",
+ "时 速",
+ "1 0",
+ "公 里",
+ "速 度",
+ "行 驶",
+ "路 口",
+ "正 中",
+ "左 边",
+ "突 然",
+ "快 速",
+ "过 来",
+ "车 头",
+ "膝 盖",
+ "脸 部",
+ "如 果",
+ "双 方",
+ "的 话",
+ "大 概",
+ "通 过",
+ "信 号",
+ "控 制",
+ "应 该",
+ "减 速",
+ "慢 性",
+ "右 边",
+ "先 行",
+ "好 像",
+ "汽 车",
+ "所 以",
+ "可 能",
+ "当 然",
+ "还 要",
+ "是 否",
+ "齐 全",
+ "饮 酒",
+ "具 体",
+ "交 警",
+ "调 查",
+ "认 定",
+ "请 教",
+ "怎 么",
+ "很 快",
+ "干 净",
+ "什 么",
+ "方 法",
+ "清 水",
+ "一 下",
+ "食 盐",
+ "反 复",
+ "直 到",
+ "黏 液",
+ "去 掉",
+ "为 止",
+ "冲 洗",
+ "最 好",
+ "一 些",
+ "下 锅",
+ "毛 孔",
+ "粗 大",
+ "怎么 办",
+ "脸 上",
+ "豆 豆",
+ "额 头",
+ "鼻 子",
+ "严 重",
+ "一 点",
+ "平 整",
+ "地 方",
+ "知 道",
+ "各 位",
+ "教 教",
+ "谢 谢",
+ "这 是",
+ "很 多",
+ "关 心",
+ "问 题",
+ "我 们",
+ "关 注",
+ "收 缩",
+ "舒 张",
+ "不止 一次",
+ "看 过",
+ "一 个",
+ "关 于",
+ "洗 脸",
+ "就 是",
+ "时 应",
+ "先 用",
+ "温 热",
+ "打 开",
+ "以 便",
+ "能 够",
+ "顺 利",
+ "洗 完",
+ "冷 水",
+ "有助 于",
+ "这 样",
+ "说 法",
+ "虽 然",
+ "肉 眼",
+ "观 察",
+ "不 过",
+ "医 生",
+ "回 答",
+ "却 是",
+ "至 今",
+ "针 对",
+ "做 出",
+ "任 何",
+ "临 床",
+ "报 告",
+ "然 而",
+ "对 于",
+ "缩 小",
+ "明 确",
+ "数 据",
+ "证 明",
+ "皮肤 科",
+ "指 出",
+ "的 确",
+ "关 键",
+ "在 于",
+ "肌 肤",
+ "细 胞",
+ "充 足",
+ "空 隙",
+ "变 小",
+ "进 而",
+ "自 然",
+ "只 是",
+ "原 本",
+ "明 显",
+ "几 乎",
+ "看 不见",
+ "属 于",
+ "任 务",
+ "仔 细",
+ "发 现",
+ "年 轻",
+ "纹 理",
+ "字 形",
+ "彼 此",
+ "来 回",
+ "穿 梭",
+ "线 条",
+ "保 住",
+ "水 分",
+ "厚 实",
+ "老 化",
+ "变 成",
+ "平 行",
+ "无 法",
+ "两 大",
+ "弹 性",
+ "可 以",
+ "减 少",
+ "阻 塞",
+ "养 成",
+ "清 理",
+ "角 质",
+ "习 惯",
+ "不 要",
+ "等 到",
+ "粉 刺",
+ "黑 头",
+ "现 象",
+ "处 理",
+ "以 往",
+ "许 多",
+ "总 是",
+ "焦 点",
+ "仅 仅",
+ "放 在",
+ "清 洁",
+ "部 分",
+ "重 要",
+ "但 是",
+ "组 织",
+ "方 面",
+ "一 致",
+ "公 认",
+ "成 分",
+ "主 要",
+ "功 能",
+ "调 整",
+ "角 化",
+ "过 程",
+ "去 除",
+ "表 层",
+ "变 得",
+ "平 滑",
+ "使 用",
+ "浓 度",
+ "成 效",
+ "患 者",
+ "进 行",
+ "3 %",
+ "限 制",
+ "2 %",
+ "比 如",
+ "I I",
+ "精 致",
+ "细 致",
+ "精 华",
+ "含 有",
+ "不 同",
+ "比 例",
+ "帮 助",
+ "角质 层",
+ "全 面",
+ "改 善",
+ "肤 质",
+ "另 外",
+ "保 湿",
+ "干 性",
+ "面 临",
+ "危 机",
+ "大 部分",
+ "是 因为",
+ "保 养",
+ "不 当",
+ "所 致",
+ "来 说",
+ "适 合",
+ "自 己",
+ "造 成",
+ "表 皮",
+ "正 常",
+ "长 期",
+ "堆 积",
+ "变 大",
+ "除 了",
+ "成 为",
+ "必 要",
+ "标 榜",
+ "产 品",
+ "同 时",
+ "形 成",
+ "原 因",
+ "引 起",
+ "后 天",
+ "皮 肤",
+ "皮 脂",
+ "分 泌",
+ "旺 盛",
+ "平 时",
+ "及 时",
+ "护 理",
+ "天 天",
+ "清 除",
+ "灰 尘",
+ "污 垢",
+ "堵 塞",
+ "多 年",
+ "长 痘",
+ "多 次",
+ "发 作",
+ "痘 痘",
+ "外 界",
+ "寄 生",
+ "寄生 虫",
+ "不 断",
+ "繁 殖",
+ "客 气",
+ "看 起来",
+ "就 象",
+ "办 法",
+ "特 色",
+ "美 容",
+ "达 到",
+ "刺 激",
+ "激 活",
+ "辅 以",
+ "正 确",
+ "家 庭",
+ "保 持",
+ "细 腻",
+ "每 天",
+ "本 草",
+ "按 摩",
+ "几 分钟",
+ "几分 钟",
+ "垃 圾",
+ "珍珠 粉",
+ "并 且",
+ "保 留",
+ "少 量",
+ "保 证",
+ "不 再",
+ "光 滑",
+ "时 要",
+ "蒸 汽",
+ "导 出",
+ "容 易",
+ "有 效",
+ "防 止",
+ "定 期",
+ "天 然",
+ "精 油",
+ "烦 恼",
+ "务 必",
+ "做 好",
+ "不 会",
+ "因 为",
+ "导 致",
+ "渐 渐",
+ "认 为",
+ "不 错",
+ "朋 友",
+ "注 意",
+ "几 年",
+ "进 入",
+ "皱 纹",
+ "起 来",
+ "行 动",
+ "类 型",
+ "油 性",
+ "油性 皮肤",
+ "混合 性",
+ "部 位",
+ "特 别",
+ "过 剩",
+ "毛 囊",
+ "膨 胀",
+ "随 着",
+ "年 龄",
+ "增 长",
+ "制 造",
+ "上 层",
+ "之 后",
+ "外 层",
+ "方 式",
+ "使 得",
+ "脱 落",
+ "致 使",
+ "扩 大",
+ "化妆 水",
+ "起 到",
+ "收 敛",
+ "效 果",
+ "毛 巾",
+ "冷 敷",
+ "专 用",
+ "冰 箱",
+ "几 秒钟",
+ "几秒 钟",
+ "水 果",
+ "用 来",
+ "它 们",
+ "柔 软",
+ "抑 制",
+ "油 脂",
+ "多 重",
+ "功 效",
+ "收 紧",
+ "柠檬 汁",
+ "几 滴",
+ "产 生",
+ "不 可",
+ "直 接",
+ "涂 抹",
+ "事 先",
+ "准 备",
+ "小 时",
+ "清 爽",
+ "鸡 蛋",
+ "橄榄 油",
+ "打 散",
+ "加 入",
+ "半 个",
+ "一 点点",
+ "一点 点",
+ "充 分",
+ "搅 拌",
+ "均 匀",
+ "二 者",
+ "混 合",
+ "平 日",
+ "面 膜",
+ "储 存",
+ "一 周",
+ "促 进",
+ "栗 子",
+ "蜂 蜜",
+ "面 部",
+ "富 有",
+ "治 疗",
+ "癫 痫",
+ "权 威",
+ "医 院",
+ "哪 些",
+ "癫痫 病",
+ "时 候",
+ "很 长",
+ "时 间",
+ "不 是",
+ "一 两天",
+ "一两 天",
+ "治 好",
+ "而 且",
+ "一 两个",
+ "一两 个",
+ "想 要",
+ "那 么",
+ "就 要",
+ "专 业",
+ "只 有",
+ "有 没有",
+ "先 进",
+ "设 备",
+ "这 些",
+ "赶 紧",
+ "找 到",
+ "正 规",
+ "以 外",
+ "治 病",
+ "一 样",
+ "选 择",
+ "事 情",
+ "疾 病",
+ "有 着",
+ "专 家",
+ "才 能",
+ "得 到",
+ "先 要",
+ "病 情",
+ "确 定",
+ "清 楚",
+ "然 后",
+ "根 据",
+ "好 转",
+ "降压 药",
+ "两 种",
+ "各 有",
+ "特 点",
+ "哪 种",
+ "服 用",
+ "1 80",
+ "18 0",
+ "9 5",
+ "推 荐",
+ "无 尽",
+ "工 会",
+ "你 们",
+ "解 散",
+ "成 员",
+ "副 会长",
+ "财 产",
+ "几 千",
+ "真 是",
+ "人 心",
+ "老 师",
+ "明 天",
+ "散 户",
+ "卖 出",
+ "主 力",
+ "资 金",
+ "周 三",
+ "该 股",
+ "处 于",
+ "上 市",
+ "以 来",
+ "低 迷",
+ "状 态",
+ "成交 量",
+ "现 在",
+ "也 许",
+ "介 入",
+ "形 态",
+ "还 会",
+ "便 宜",
+ "筹 码",
+ "以 后",
+ "收 集",
+ "不 足以",
+ "不足 以",
+ "地 步",
+ "建 议",
+ "等 等",
+ "股 票",
+ "将 来",
+ "看 好",
+ "短 线",
+ "操 作",
+ "标 志",
+ "趋 势",
+ "城 内",
+ "还 是",
+ "例 如",
+ "t he",
+ "th e",
+ "o f",
+ "越 南",
+ "中 国",
+ "南 面",
+ "综 合",
+ "字 典",
+ "还 有",
+ "两 个",
+ "例 句",
+ "欧 洲",
+ "南 部",
+ "美 国",
+ "古 代",
+ "官 职",
+ "常 用",
+ "以 下",
+ "词 语",
+ "一 定",
+ "授 予",
+ "某 种",
+ "任 命",
+ "封 建",
+ "不 到",
+ "史 记",
+ "调 动",
+ "一 般",
+ "提 升",
+ "郎 中",
+ "流 放",
+ "夫 人",
+ "特 指",
+ "在 外",
+ "长 安",
+ "外 地",
+ "选 拔",
+ "提 拔",
+ "九 江",
+ "太 守",
+ "有 罪",
+ "得 以",
+ "降 级",
+ "京 城",
+ "任 职",
+ "司 马",
+ "封建 社会",
+ "大 臣",
+ "年 老",
+ "请 求",
+ "辞 职",
+ "意 思",
+ "身 体",
+ "回 到",
+ "家 乡",
+ "密 度",
+ "小 于",
+ "小 球",
+ "倾 斜",
+ "下 降",
+ "给 出",
+ "解 题",
+ "步 骤",
+ "题 目",
+ "转 动",
+ "方 向",
+ "运 动",
+ "水 中",
+ "设 有",
+ "体 积",
+ "相 同",
+ "水 球",
+ "这 个",
+ "同 一",
+ "位 置",
+ "距 离",
+ "由 于",
+ "大 于",
+ "质 量",
+ "满 足",
+ "受 到",
+ "合 力",
+ "提 供",
+ "这 时",
+ "m v",
+ "需 要",
+ "最 终",
+ "最 近",
+ "哪 里",
+ "沙 发",
+ "家 具",
+ "地 址",
+ "中 华",
+ "大 街",
+ "超 市",
+ "讲 解",
+ "如图 所示",
+ "直 径",
+ "两 端",
+ "小 张",
+ "小 王",
+ "出 发",
+ "他 们",
+ "第 一次",
+ "第一 次",
+ "相 遇",
+ "8 0",
+ "第 二次",
+ "第二 次",
+ "6 0",
+ "周 长",
+ "方 程",
+ "解 答",
+ "长 为",
+ "3 60",
+ "36 0",
+ "路 程",
+ "等 于",
+ "其 中",
+ "之 一",
+ "A B",
+ "A C",
+ "C D",
+ "个 人",
+ "增 加",
+ "两 次",
+ "A D",
+ "B C",
+ "文 档",
+ "一 页",
+ "文 字",
+ "怎 样",
+ "布 满",
+ "右 键",
+ "段 落",
+ "里 面",
+ "字 体",
+ "加 大",
+ "大 事",
+ "武 汉",
+ "接 到",
+ "群 众",
+ "分 局",
+ "天 桥",
+ "炸 弹",
+ "民 警",
+ "一 起",
+ "现 场",
+ "桥 梁",
+ "红 色",
+ "拆 开",
+ "报 纸",
+ "包 裹",
+ "最 后",
+ "果 然",
+ "一 对",
+ "警 察",
+ "表 示",
+ "严 肃",
+ "追 究",
+ "报 警",
+ "着 实",
+ "忽 悠",
+ "以 为",
+ "简 单",
+ "地 理",
+ "基础 知识",
+ "填 空",
+ "100 %",
+ "考 点",
+ "知 识",
+ "清 单",
+ "地 图",
+ "面 对",
+ "标 的",
+ "箭 头",
+ "指 示",
+ "方 格",
+ "辨 别",
+ "北 纬",
+ "纬 度",
+ "数 值",
+ "向 北",
+ "递 增",
+ "向 东",
+ "向 西",
+ "南 北",
+ "极 为",
+ "中 心",
+ "标 出",
+ "自 转",
+ "东 西",
+ "东 经",
+ "度 数",
+ "增 大",
+ "减 小",
+ "反 之",
+ "概 念",
+ "实 地",
+ "程 度",
+ "形 式",
+ "线 段",
+ "用 途",
+ "地 点",
+ "实 际",
+ "大 小",
+ "比 较",
+ "分 母",
+ "范 围",
+ "内 容",
+ "粗 略",
+ "详 细",
+ "高 低",
+ "起 伏",
+ "高 度",
+ "海 拔",
+ "定 义",
+ "地 形",
+ "密 集",
+ "稀 疏",
+ "种 类",
+ "山 顶",
+ "盆 地",
+ "山 谷",
+ "1 00",
+ "10 0",
+ "厘 米",
+ "代 表",
+ "千 米",
+ "不 太好",
+ "不太 好",
+ "地 面",
+ "某 个",
+ "高 出",
+ "海 平面",
+ "初 一",
+ "下 体",
+ "很 痒",
+ "怎么 回事",
+ "正 好",
+ "例 假",
+ "是 不是",
+ "关 系",
+ "开 始",
+ "得 病",
+ "告 诉",
+ "我 下",
+ "这 种",
+ "天 气",
+ "皮 疹",
+ "没 关系",
+ "大 腿",
+ "附 近",
+ "出 汗",
+ "那 里",
+ "潮 湿",
+ "那 种",
+ "薄 荷",
+ "卫生 巾",
+ "A BC",
+ "AB C",
+ "手 机",
+ "型 号",
+ "飞 行",
+ "模 式",
+ "关 掉",
+ "或 者",
+ "忘 记",
+ "密 码",
+ "保 存",
+ "重 新",
+ "连 接",
+ "希 望",
+ "满 意",
+ "好 评",
+ "紧 急",
+ "避孕 药",
+ "月 经",
+ "推 迟",
+ "多 久",
+ "已 经",
+ "各 人",
+ "体 质",
+ "担 心",
+ "怀 孕",
+ "药 店",
+ "买 个",
+ "早 早",
+ "试 纸",
+ "检 测",
+ "七 天",
+ "结 果",
+ "采 纳",
+ "霉菌 性",
+ "阴道 炎",
+ "会 上",
+ "感 染",
+ "胎 儿",
+ "目 前",
+ "可能 性",
+ "较 大",
+ "2 5",
+ "五 天",
+ "霉 菌",
+ "复 发",
+ "出 来",
+ "不 能",
+ "用 药",
+ "不 痒",
+ "白 带",
+ "恶 心",
+ "完 全",
+ "我 能",
+ "阴 道",
+ "尽 快",
+ "H CG",
+ "无 论",
+ "与 否",
+ "清 洗",
+ "一般 说来",
+ "影 响",
+ "治 愈",
+ "母 鸡",
+ "交 配",
+ "如 何",
+ "受 精",
+ "小 鸡",
+ "有 个",
+ "相 对",
+ "完 成",
+ "外 表",
+ "好 象",
+ "肛 门",
+ "其 实",
+ "解 剖",
+ "一 只",
+ "尿 道",
+ "哺乳 动物",
+ "基本 上",
+ "雄 性",
+ "差 异",
+ "很 大",
+ "插 入",
+ "居 中",
+ "字 号",
+ "5 00",
+ "50 0",
+ "下 方",
+ "显 示",
+ "解 决",
+ "高 手",
+ "指 导",
+ "写 出",
+ "多 谢",
+ "菜 单",
+ "符 号",
+ "图 标",
+ "改 变",
+ "就行 了",
+ "我 试",
+ "快 点",
+ "长 高",
+ "1 60",
+ "16 0",
+ "摄 入",
+ "钙 质",
+ "牛 奶",
+ "酸 奶",
+ "有 益",
+ "跑 步",
+ "篮 球",
+ "高 等",
+ "每 日",
+ "以 免",
+ "错 过",
+ "晚 上",
+ "生 长",
+ "市 面上",
+ "中文 名",
+ "英文 名",
+ "本 人",
+ "释 义",
+ "平 凡",
+ "安 静",
+ "非 常",
+ "友 善",
+ "女 孩",
+ "美 丽",
+ "甜 美",
+ "受 欢迎",
+ "1 6",
+ "宝 宝",
+ "牙 齿",
+ "我 家",
+ "身 高",
+ "体 重",
+ "2 8",
+ "脚 掌",
+ "有 些",
+ "白 色",
+ "破 皮",
+ "右 脚",
+ "像 是",
+ "经 验",
+ "人 事",
+ "一 种",
+ "缺 乏",
+ "青 菜",
+ "手 足",
+ "脱 皮",
+ "软 膏",
+ "第 二个",
+ "第二 个",
+ "空 气",
+ "干 燥",
+ "等 待",
+ "期 间",
+ "湿 润",
+ "战 场",
+ "盗 贼",
+ "为 了",
+ "踏 上",
+ "喜 欢",
+ "超 级",
+ "F S",
+ "技 能",
+ "胜 率",
+ "基 本",
+ "经 常",
+ "反 而",
+ "1 000",
+ "10 00",
+ "100 0",
+ "L R",
+ "陷 阱",
+ "B T",
+ "郁 闷",
+ "怎么 样",
+ "中 立",
+ "说 实话",
+ "对 方",
+ "单 挑",
+ "不 好",
+ "法 术",
+ "轻 易",
+ "复 活",
+ "战 士",
+ "过 去",
+ "助 攻",
+ "不 管",
+ "目 标",
+ "拼 命",
+ "尝 试",
+ "敌 方",
+ "除 非",
+ "装 备",
+ "运 气",
+ "否 则",
+ "很 难",
+ "杀 掉",
+ "一 次",
+ "就 算",
+ "回 去",
+ "就 行",
+ "腹 泻",
+ "见 效",
+ "奶 粉",
+ "已 有",
+ "性 别",
+ "奶 奶",
+ "检 查",
+ "大 便",
+ "按 照",
+ "用 量",
+ "孩 子",
+ "吃 药",
+ "之 类",
+ "为 主",
+ "确 实",
+ "不 愈",
+ "考 虑",
+ "乳 糖",
+ "配 方",
+ "一 元",
+ "车 间",
+ "工 人",
+ "生 产",
+ "两 头",
+ "一 套",
+ "1 2",
+ "1 8",
+ "多 少",
+ "一 天",
+ "刚 好",
+ "配 套",
+ "要 求",
+ "2 1",
+ "气 体",
+ "分 别",
+ "溶 液",
+ "出 现",
+ "下 述",
+ "紫 色",
+ "橙 色",
+ "无 色",
+ "蓝 色",
+ "加 热",
+ "恢 复",
+ "浑 浊",
+ "澄 清",
+ "淡 黄色",
+ "沉 淀",
+ "酸 性",
+ "工 作",
+ "职 业",
+ "赚 钱",
+ "一 门",
+ "成 功",
+ "努 力",
+ "机 遇",
+ "先 天",
+ "条 件",
+ "重 庆",
+ "常 规",
+ "物理 疗法",
+ "较 少",
+ "三 百",
+ "五 百",
+ "花 费",
+ "下 来",
+ "留 下",
+ "疤 痕",
+ "此 类",
+ "疗 法",
+ "费 用",
+ "患 病",
+ "内 部",
+ "女 性",
+ "生殖 道",
+ "采 用",
+ "手 术",
+ "其 他",
+ "大 家",
+ "最 为",
+ "病 毒",
+ "数 量",
+ "价 格",
+ "略有 不同",
+ "收 费",
+ "标 准",
+ "各 地",
+ "几 百",
+ "目 的",
+ "健 康",
+ "一 切",
+ "西 方",
+ "经济 学",
+ "论 文",
+ "这 方面",
+ "尽 量",
+ "京 都",
+ "出 名",
+ "网 站",
+ "上 古",
+ "运动 会",
+ "有 人",
+ "作 弊",
+ "下 午",
+ "系 统",
+ "提 示",
+ "可 是",
+ "每 次",
+ "这 次",
+ "几 秒",
+ "具体 情况",
+ "装 满",
+ "下 线",
+ "第二 天",
+ "马 上",
+ "上 线",
+ "物 品",
+ "活 动",
+ "第 一",
+ "分 为",
+ "四 个",
+ "环 节",
+ "初 步",
+ "了 解",
+ "销 售",
+ "顾 问",
+ "带 到",
+ "客 户",
+ "分 钟",
+ "视 频",
+ "介 绍",
+ "集 团",
+ "历 史",
+ "品 牌",
+ "诞 生",
+ "历 程",
+ "企 业",
+ "理 念",
+ "哲 学",
+ "国 际",
+ "合作 伙伴",
+ "第 二",
+ "体 验",
+ "剧 场",
+ "接 下来",
+ "短 片",
+ "影 片",
+ "共 有",
+ "两 部",
+ "时 长",
+ "模 拟",
+ "消费 者",
+ "感 受",
+ "融 入",
+ "第 三",
+ "互 动",
+ "观 看",
+ "人 员",
+ "顾 客",
+ "一 共",
+ "每 组",
+ "一 台",
+ "3 2",
+ "电 脑",
+ "屏 幕",
+ "操 控",
+ "接 近",
+ "ip ad",
+ "集 成",
+ "项 目",
+ "包 括",
+ "研 发",
+ "团 队",
+ "车 身",
+ "颜 色",
+ "车 辆",
+ "核心 技术",
+ "演 示",
+ "测 试",
+ "2 0",
+ "第 四",
+ "整 车",
+ "技 术",
+ "身 边",
+ "随 时",
+ "示 范",
+ "前 面",
+ "看 似",
+ "鸡 肋",
+ "真 的",
+ "感 兴趣",
+ "做 个",
+ "愉 快",
+ "真 有",
+ "这 么",
+ "建 立",
+ "武 器",
+ "手 上",
+ "老 婆",
+ "万 一",
+ "上 去",
+ "水 平",
+ "肯 定",
+ "随 便",
+ "取 消",
+ "几 次",
+ "恭 喜",
+ "事实 证明",
+ "有 所",
+ "人 物",
+ "所 谓",
+ "I D",
+ "幸 运",
+ "合 成",
+ "强 化",
+ "以 前",
+ "一 身",
+ "呵 呵",
+ "看 来",
+ "相 信",
+ "裁 缝",
+ "玩 家",
+ "实 验",
+ "专 门",
+ "曾 经",
+ "石 头",
+ "哈 哈",
+ "升 级",
+ "仓 库",
+ "存 放",
+ "安 排",
+ "多 么",
+ "合 理",
+ "各 自",
+ "发 挥",
+ "强 项",
+ "加 油",
+ "安 装",
+ "高 分",
+ "X P",
+ "指 点",
+ "用 户",
+ "熟 悉",
+ "Windows XP",
+ "分 区",
+ "不 仅仅",
+ "不仅 仅",
+ "一 件",
+ "首 先",
+ "转 换",
+ "支 持",
+ "中 文",
+ "出 错",
+ "说 不定",
+ "修 复",
+ "相 关",
+ "一般 来说",
+ "再 用",
+ "分 出",
+ "O K",
+ "光 盘",
+ "放 入",
+ "光 驱",
+ "引 导",
+ "启 动",
+ "控制 台",
+ "运 行",
+ "命 令",
+ "建议 您",
+ "举 动",
+ "费 力",
+ "讨 好",
+ "九 年",
+ "相 似",
+ "图 形",
+ "梯 形",
+ "AB CD",
+ "ABC D",
+ "分 成",
+ "A E",
+ "华 夏",
+ "公 司",
+ "广 发",
+ "理 财",
+ "南 方",
+ "基 金",
+ "你 好",
+ "原 名",
+ "时 期",
+ "生 于",
+ "浙 江",
+ "吴 国",
+ "之 际",
+ "献 给",
+ "宠 爱",
+ "迷 惑",
+ "无 心",
+ "掩 护",
+ "表 现",
+ "爱 国",
+ "女 子",
+ "高 尚",
+ "思 想",
+ "传 说",
+ "后 人",
+ "怀 念",
+ "儿 子",
+ "学 期",
+ "一 位",
+ "体 育",
+ "关系 密切",
+ "高 一",
+ "一 所",
+ "学 得",
+ "相 当",
+ "学 习",
+ "兴 趣",
+ "成 绩",
+ "对 此",
+ "没 见",
+ "有 时",
+ "即 便",
+ "答 应",
+ "反 应",
+ "上 课",
+ "课 本",
+ "两 眼",
+ "根 本",
+ "失 望",
+ "那 个",
+ "女 生",
+ "着 急",
+ "解决 办法",
+ "我 该",
+ "小 孩",
+ "心理 医生",
+ "转 到",
+ "学 校",
+ "沟 通",
+ "较 为",
+ "平 等",
+ "交 流",
+ "教 训",
+ "学习 成绩",
+ "女 孩子",
+ "女孩 子",
+ "这 件",
+ "叙 述",
+ "母 亲",
+ "青春 期",
+ "男 孩子",
+ "男孩 子",
+ "父 亲",
+ "合 适",
+ "好 好",
+ "毕 竟",
+ "高 中",
+ "潜 意识",
+ "强 烈",
+ "当 成",
+ "成年 人",
+ "更 好",
+ "足 够",
+ "尊 重",
+ "反 感",
+ "反 叛",
+ "心 理",
+ "试 想",
+ "愿 意",
+ "看 待",
+ "眼 光",
+ "而 是",
+ "家 长",
+ "强 势",
+ "姿 态",
+ "庆 幸",
+ "严 厉",
+ "缓 和",
+ "语 气",
+ "激 起",
+ "更 为",
+ "以 上",
+ "算 是",
+ "分 析",
+ "下 面",
+ "主 意",
+ "仅 供参考",
+ "爸 爸",
+ "交 到",
+ "欢 迎",
+ "家 里",
+ "一 方面",
+ "一方 面",
+ "锻 炼",
+ "人际 交往",
+ "能 力",
+ "硬 性",
+ "反 对",
+ "交 往",
+ "异 性",
+ "暗 中",
+ "压 抑",
+ "与 其",
+ "不 如",
+ "包 容",
+ "所 有",
+ "千万 别",
+ "单 独",
+ "人 际",
+ "不 用",
+ "转 学",
+ "说 句",
+ "笑 话",
+ "这 里",
+ "至 少",
+ "吸 引",
+ "吸 引力",
+ "吸引 力",
+ "这 话",
+ "父 母",
+ "做 到",
+ "一 半",
+ "道 理",
+ "在 意",
+ "讲 道理",
+ "激 励",
+ "自尊 心",
+ "打 击",
+ "举 个",
+ "例 子",
+ "原 来",
+ "所 在",
+ "重 点",
+ "99 %",
+ "记 忆",
+ "那 年",
+ "年 级",
+ "学 生",
+ "大 学",
+ "我 读",
+ "8 7",
+ "很 少",
+ "读 书",
+ "考 取",
+ "初 中",
+ "毕 业",
+ "全 年",
+ "结 束",
+ "班 级",
+ "倒 数",
+ "第 五",
+ "不 想",
+ "后 来",
+ "想 想",
+ "全 市",
+ "高 二",
+ "恋 爱",
+ "当 时",
+ "甚 至",
+ "早 恋",
+ "女 友",
+ "至 于",
+ "以 及",
+ "走 过",
+ "弯 路",
+ "体 会",
+ "辛 苦",
+ "1 1",
+ "钢 铁",
+ "3 00",
+ "30 0",
+ "4 00",
+ "40 0",
+ "2 00",
+ "20 0",
+ "鼻 炎",
+ "鼻 塞",
+ "鼻 涕",
+ "黄 色",
+ "睡 觉",
+ "多 大",
+ "儿 童",
+ "青 少年",
+ "多 发",
+ "群 体",
+ "太 小",
+ "自 身",
+ "调 解",
+ "呼吸 系统",
+ "敏 感",
+ "脆 弱",
+ "一个 月",
+ "还 好",
+ "不 了",
+ "鼻 腔",
+ "分泌 物",
+ "妨 碍",
+ "呼 吸",
+ "不 像",
+ "大 人",
+ "似 的",
+ "舒 服",
+ "非 得",
+ "实 在",
+ "忍 不住",
+ "打 个",
+ "出 去",
+ "会 得",
+ "试 着",
+ "气 味",
+ "味 道",
+ "没 事",
+ "味 觉",
+ "消 失",
+ "热 水",
+ "杯 子",
+ "小 心",
+ "祛 痘",
+ "长 痘痘",
+ "长痘 痘",
+ "刺激 性",
+ "太 强",
+ "破 坏",
+ "平 常",
+ "熬 夜",
+ "喝 点",
+ "枕 头",
+ "颈椎 病",
+ "颈 椎",
+ "人 体",
+ "弯 曲",
+ "2 3",
+ "支 撑",
+ "生 理",
+ "怎样 才能",
+ "内 心",
+ "强 大",
+ "学 会",
+ "独 处",
+ "常 说",
+ "忍 受",
+ "孤 独",
+ "下 班",
+ "放 学",
+ "计 划",
+ "之 外",
+ "利 用",
+ "放 松",
+ "深 入",
+ "乐 观",
+ "遇 到",
+ "依 然",
+ "原 有",
+ "风 度",
+ "幽 默",
+ "平 和",
+ "心 态",
+ "敏 捷",
+ "思 维",
+ "思考 问题",
+ "解决 问题",
+ "规 划",
+ "思 路",
+ "勇 气",
+ "毅 力",
+ "来 源",
+ "自 我",
+ "积 蓄",
+ "力 量",
+ "接 受",
+ "考 验",
+ "要 是",
+ "想 着",
+ "记 者",
+ "期 望",
+ "必 须",
+ "做 人",
+ "原 则",
+ "精 神",
+ "独 立",
+ "也 就是说",
+ "干 扰",
+ "拥 有",
+ "依 赖",
+ "生 存",
+ "树 立",
+ "世界 观",
+ "人生 观",
+ "价值 观",
+ "生 命",
+ "轨 迹",
+ "主 线",
+ "下 去",
+ "性 格",
+ "行 为",
+ "生 活",
+ "结 局",
+ "摆 脱",
+ "懒 惰",
+ "负 责",
+ "负 担",
+ "抱 怨",
+ "别 人",
+ "一 方",
+ "想 法",
+ "实 现",
+ "寄 托",
+ "身 上",
+ "舞 台",
+ "检 验",
+ "2 4",
+ "名 人",
+ "全 国",
+ "观 众",
+ "整 个",
+ "智 慧",
+ "语 言",
+ "表 达",
+ "观 点",
+ "描 述",
+ "愿 景",
+ "任何 人",
+ "因 素",
+ "受 阻",
+ "认 识",
+ "三 个",
+ "自 从",
+ "每 隔",
+ "或 是",
+ "几 天",
+ "话 题",
+ "从 来",
+ "电 话",
+ "聊 天",
+ "见 面",
+ "适 当",
+ "主 动",
+ "共 同",
+ "寻 找",
+ "多 些",
+ "幸 福",
+ "付 出",
+ "好 处",
+ "水 壶",
+ "洗 净",
+ "开 水",
+ "听 说",
+ "松 软",
+ "美 味",
+ "一 片",
+ "完 后",
+ "米 粒",
+ "用 水",
+ "晾 干",
+ "继 续",
+ "注意 事项",
+ "必 需",
+ "再 生",
+ "制 作",
+ "矿 泉水",
+ "公 斤",
+ "自来 水",
+ "浸 泡",
+ "煮 沸",
+ "可 口",
+ "冲 泡",
+ "茶 叶",
+ "咖 啡",
+ "爽 口",
+ "容 器",
+ "玻璃 瓶",
+ "维 持",
+ "花 瓶",
+ "鲜 艳",
+ "持 久",
+ "上 海",
+ "哪 家",
+ "2 010",
+ "20 10",
+ "201 0",
+ "20 12",
+ "201 2",
+ "连 续",
+ "获 得",
+ "十 大",
+ "不 孕",
+ "不 育",
+ "专科 医院",
+ "称 号",
+ "20 15",
+ "201 5",
+ "荣 获",
+ "上海 市",
+ "星 级",
+ "教 授",
+ "优 秀",
+ "诊 疗",
+ "从 事",
+ "教 学",
+ "3 0",
+ "师 从",
+ "我 国",
+ "著 名",
+ "博士 生",
+ "导 师",
+ "第 十一",
+ "第十 一",
+ "享 受",
+ "政 府",
+ "现 任",
+ "业 务",
+ "院 长",
+ "学 科",
+ "腹腔 镜",
+ "培 训",
+ "主 任",
+ "医 师",
+ "生 殖",
+ "共 和",
+ "交叉 口",
+ "冬 天",
+ "进 补",
+ "夏 天",
+ "适 宜",
+ "大 量",
+ "有 时候",
+ "有时 候",
+ "吃 些",
+ "清 淡",
+ "秋 季",
+ "过 量",
+ "有 害",
+ "有 病",
+ "加 重",
+ "脾 胃",
+ "肝 脏",
+ "夏 季",
+ "冷 饮",
+ "多 有",
+ "减 弱",
+ "这 时候",
+ "这时 候",
+ "承 受",
+ "紊 乱",
+ "药 物",
+ "食 物",
+ "做 法",
+ "科 学",
+ "高 血压",
+ "萝 卜",
+ "健 胃",
+ "消 食",
+ "山 药",
+ "日 常",
+ "食 用",
+ "芝 麻",
+ "花 生",
+ "红 枣",
+ "每 个",
+ "身体 状况",
+ "补 品",
+ "燕 窝",
+ "人 参",
+ "并 非",
+ "每 种",
+ "对 象",
+ "适应 症",
+ "实 用",
+ "滋 补",
+ "肉 类",
+ "牛 羊肉",
+ "经 过",
+ "尚 未",
+ "完全 恢复",
+ "过 于",
+ "油 腻",
+ "食 品",
+ "不 易",
+ "消化 吸收",
+ "体 内",
+ "过 多",
+ "糖 类",
+ "物 质",
+ "诱 发",
+ "饮 食",
+ "调 养",
+ "养 生",
+ "气 温",
+ "流 失",
+ "多 汁",
+ "富 含",
+ "沐 浴",
+ "前 后",
+ "适 量",
+ "饮 水",
+ "体 力",
+ "消 耗",
+ "后 应",
+ "饮 用",
+ "盐 水",
+ "每 餐",
+ "瘦 身",
+ "护 肤",
+ "鱼 肉",
+ "鸭 肉",
+ "莲 子",
+ "丝 瓜",
+ "豆 腐",
+ "首 选",
+ "食 材",
+ "荷 叶",
+ "主 角",
+ "点 击",
+ "居 里",
+ "温 度",
+ "高 于",
+ "失 去",
+ "转 变",
+ "四 种",
+ "金 属",
+ "室 温",
+ "低 温",
+ "姓 名",
+ "身份 证",
+ "号 码",
+ "哪 个",
+ "未 成年",
+ "许 可",
+ "您 好",
+ "正 式",
+ "登 记",
+ "默 认",
+ "未 成年人",
+ "未成年 人",
+ "制 约",
+ "领 取",
+ "奖 品",
+ "执 行",
+ "告诉 您",
+ "审 核",
+ "成 年",
+ "差 不多",
+ "不 必",
+ "超 过",
+ "疲 劳",
+ "谢谢 您",
+ "诊 断",
+ "幻 觉",
+ "妄 想",
+ "存 在",
+ "症 状",
+ "心理 治疗",
+ "胆 结石",
+ "成 份",
+ "结 石",
+ "之 所以",
+ "胆 汁",
+ "变 异",
+ "含 量",
+ "过 少",
+ "溶 解",
+ "逐 渐",
+ "凝 聚",
+ "本 质",
+ "内 在",
+ "代 谢",
+ "异 常",
+ "从 而",
+ "进 一步",
+ "恶 化",
+ "循 环",
+ "吸 收",
+ "多 余",
+ "增 多",
+ "休 克",
+ "急 性",
+ "胆囊 炎",
+ "胰腺 炎",
+ "常 见",
+ "并发 症",
+ "几 种",
+ "中 毒",
+ "胆 道",
+ "梗 阻",
+ "细 菌",
+ "毒 素",
+ "上 腹",
+ "疼 痛",
+ "黄 疸",
+ "高 热",
+ "面色 苍白",
+ "四 肢",
+ "冰 冷",
+ "血 压",
+ "出 血",
+ "胆 管",
+ "发 炎",
+ "脓 肿",
+ "侵 蚀",
+ "血 管",
+ "剧 烈",
+ "绞 痛",
+ "吐 血",
+ "严 重者",
+ "严重 者",
+ "向 上",
+ "扩 散",
+ "寒 战",
+ "全 身",
+ "乏 力",
+ "胆 囊",
+ "坏 死",
+ "穿 孔",
+ "腹 膜炎",
+ "腹膜 炎",
+ "一 旦",
+ "脓 性",
+ "流 入",
+ "腹 腔",
+ "尤 其",
+ "腹 痛",
+ "加 剧",
+ "腹 肌",
+ "压 痛",
+ "紧 张",
+ "进 货",
+ "那 些",
+ "大 批",
+ "试 试",
+ "广 州",
+ "西 路",
+ "工 厂",
+ "库 存",
+ "辐 射",
+ "防 护",
+ "通 常",
+ "防 辐射",
+ "而 成",
+ "板 材",
+ "用 于",
+ "环 境",
+ "施 工",
+ "医 用",
+ "X 光",
+ "C T",
+ "射 线",
+ "隔 音",
+ "材 料",
+ "抵 挡",
+ "应 用",
+ "医 学",
+ "研 究",
+ "工 程",
+ "保 障",
+ "广泛 应用",
+ "锅 炉",
+ "压 力",
+ "管 道",
+ "航空 航天",
+ "机 械",
+ "军 工",
+ "电 力",
+ "电 子",
+ "多 个",
+ "行 业",
+ "工 作者",
+ "工作 者",
+ "危 害",
+ "现 今",
+ "同 类",
+ "进 口",
+ "可 减轻",
+ "三 十",
+ "重 量",
+ "外 观",
+ "性 能",
+ "更 佳",
+ "心 疼",
+ "拜 托",
+ "看 得",
+ "太 少",
+ "争 取",
+ "不得 了",
+ "难 道",
+ "男 生",
+ "美 女",
+ "越 是",
+ "女 神",
+ "且 不说",
+ "找 个",
+ "女 朋友",
+ "暗 恋",
+ "幼 稚",
+ "值 得",
+ "保 护",
+ "一 生",
+ "机 会",
+ "放 弃",
+ "贷 款",
+ "今 年",
+ "好 多",
+ "收 益",
+ "2 5%",
+ "25 %",
+ "八 月",
+ "明 年",
+ "投 资",
+ "打 算",
+ "风 险",
+ "小 点",
+ "银 行",
+ "到 手",
+ "麻 烦",
+ "1 5",
+ "利 息",
+ "一 年",
+ "1 5%",
+ "15 %",
+ "20 %",
+ "太 难",
+ "这 年头",
+ "毛 色",
+ "为 何",
+ "名 称",
+ "非 洲",
+ "后 腿",
+ "耳 朵",
+ "20 07",
+ "200 7",
+ "盛 大",
+ "区 别",
+ "软 件",
+ "免 费",
+ "下 载",
+ "0.0 1",
+ "如 题",
+ "5 4",
+ "中 型",
+ "坦 克",
+ "毫 米",
+ "5 5",
+ "6 2",
+ "苏 联",
+ "主 板",
+ "主 机",
+ "开 关",
+ "故 障",
+ "短 路",
+ "鼻 梁",
+ "难 看",
+ "即 使",
+ "糟 糕",
+ "不 妨",
+ "老 是",
+ "胸 闷",
+ "4 0",
+ "讲 话",
+ "不 够",
+ "一 段时间",
+ "一段 时间",
+ "为 此",
+ "没 什么",
+ "不 知",
+ "主 观",
+ "轻 者",
+ "重 者",
+ "难 受",
+ "似 乎",
+ "呼吸 困难",
+ "器 官",
+ "功能 性",
+ "最 早",
+ "病 因",
+ "后 果",
+ "一般 来讲",
+ "不 仅",
+ "生 理性",
+ "生理 性",
+ "某 些",
+ "病 理性",
+ "病理 性",
+ "呼吸 道",
+ "气 管",
+ "支 气管",
+ "肿 瘤",
+ "狭 窄",
+ "甲状腺 肿",
+ "纵 隔",
+ "肺 部",
+ "支 气管炎",
+ "支气管 炎",
+ "哮 喘",
+ "气 胸",
+ "心 脏",
+ "先 天性",
+ "先天 性",
+ "心脏 病",
+ "风湿 性",
+ "病 变",
+ "体 液",
+ "酸 碱",
+ "平 衡",
+ "失 调",
+ "专 科",
+ "积 极",
+ "今 天",
+ "M M",
+ "肺 炎",
+ "高 烧",
+ "咳 嗽",
+ "小 叶",
+ "未 必",
+ "手 段",
+ "确 诊",
+ "血 液",
+ "白 细胞",
+ "计 数",
+ "可 达",
+ "20 000",
+ "200 00",
+ "2000 0",
+ "30 000",
+ "300 00",
+ "3000 0",
+ "中 性",
+ "粒 细胞",
+ "80 %",
+ "本 病",
+ "可 见",
+ "大 片",
+ "阴 影",
+ "典 型",
+ "分 布",
+ "限 于",
+ "大 多数",
+ "大多 数",
+ "片 状",
+ "感染 性",
+ "抗 炎",
+ "电 信",
+ "黄 金",
+ "价 位",
+ "3 50",
+ "35 0",
+ "4 20",
+ "42 0",
+ "做 生意",
+ "本 事",
+ "q q",
+ "学 学",
+ "不算 什么",
+ "两 天",
+ "嘉 实",
+ "稳 健",
+ "分 红",
+ "净 值",
+ "两 支",
+ "策 略",
+ "有 点",
+ "一 支",
+ "指 数",
+ "型 基金",
+ "追 踪",
+ "后 市",
+ "经 济",
+ "极 端",
+ "彻 底",
+ "现代 汉语",
+ "词 典",
+ "有 关",
+ "原 文",
+ "用 尽",
+ "牌 子",
+ "五 一",
+ "入 手",
+ "一 款",
+ "娱 乐",
+ "丰 富",
+ "MP 3",
+ "录 音",
+ "相 册",
+ "亲 自",
+ "火 爆",
+ "樱 桃",
+ "新浪 网",
+ "新 浪",
+ "天 堂",
+ "小 雨",
+ "点 儿",
+ "游 戏",
+ "名 字",
+ "评 论",
+ "宫 颈",
+ "白 斑",
+ "妇科 疾病",
+ "子 宫颈",
+ "子宫 颈",
+ "灰 白色",
+ "透 明",
+ "斑 块",
+ "癌 变",
+ "黑 色素",
+ "黑色 素",
+ "退 化",
+ "死 亡",
+ "色 素",
+ "到 处",
+ "两 侧",
+ "呈 现",
+ "乳 白色",
+ "侵 犯",
+ "嘴 唇",
+ "手 部",
+ "手 臂",
+ "腿 部",
+ "生殖 器",
+ "放 心",
+ "奖 金",
+ "缴 纳",
+ "个人 所得税",
+ "哪 位",
+ "职 务",
+ "发 明",
+ "取 得",
+ "员 工",
+ "奖 励",
+ "收 入",
+ "劳 务",
+ "报 酬",
+ "工 资",
+ "所 得",
+ "偶 然",
+ "使用 权",
+ "这 句",
+ "诗 句",
+ "完 整",
+ "如 下",
+ "记 不清",
+ "时 代",
+ "执 着",
+ "文 人",
+ "这 首",
+ "太 太",
+ "门 外",
+ "豆 子",
+ "洗 脚",
+ "生 姜",
+ "银 子",
+ "头 上",
+ "一 朵",
+ "微 博",
+ "类 似",
+ "空 间",
+ "主 页",
+ "发 个",
+ "消 息",
+ "设 置",
+ "修 改",
+ "菩 提",
+ "社会 主义",
+ "解 放",
+ "生产 力",
+ "发 展",
+ "消 灭",
+ "剥 削",
+ "消 除",
+ "打 胎",
+ "上 千",
+ "胚 胎",
+ "发 育",
+ "就 诊",
+ "当 地",
+ "情 形",
+ "数 字",
+ "提 醒",
+ "涉 及",
+ "生 育",
+ "结 合",
+ "安全 性",
+ "一 家",
+ "有所 不同",
+ "专业 性",
+ "几 级",
+ "等 级",
+ "5 0",
+ "港 口",
+ "熟 练",
+ "被 动",
+ "全 力",
+ "前 途",
+ "大 虾",
+ "多 加",
+ "气 功",
+ "后 面",
+ "前 期",
+ "很 差",
+ "厉 害",
+ "地 下",
+ "魔 女",
+ "光 环",
+ "入 口",
+ "随 机",
+ "进 去",
+ "换 个",
+ "攻 防",
+ "深 处",
+ "双 倍",
+ "声 望",
+ "第 一个",
+ "第一 个",
+ "礼 拜",
+ "阿 拉",
+ "休 息",
+ "凌 晨",
+ "下 周",
+ "服务 器",
+ "维 护",
+ "页 面",
+ "查 看",
+ "参 加",
+ "大 酒店",
+ "1 30",
+ "13 0",
+ "步 行",
+ "加油 站",
+ "乘 坐",
+ "专 线",
+ "下 车",
+ "地 铁",
+ "号 线",
+ "南 站",
+ "酒 店",
+ "同 意",
+ "认 同",
+ "少 数",
+ "解 释",
+ "其 一",
+ "竞 技",
+ "象 征",
+ "身 份",
+ "区 分",
+ "新 手",
+ "小 白",
+ "其 二",
+ "热 衷",
+ "虚 荣",
+ "可 耻",
+ "可 笑",
+ "暂 且",
+ "谈 论",
+ "荣 誉",
+ "征 战",
+ "无 双",
+ "兄 弟",
+ "成 果",
+ "譬 如",
+ "上 面",
+ "令 人",
+ "它 会",
+ "以 至于",
+ "以至 于",
+ "不 配",
+ "好 听",
+ "欠 缺",
+ "实 战",
+ "队 友",
+ "默 契",
+ "心 中",
+ "最 低",
+ "战 绩",
+ "成 都",
+ "将 军",
+ "适 应",
+ "杀 人",
+ "到 底",
+ "素 质",
+ "光 荣",
+ "真 正",
+ "还 应",
+ "具 备",
+ "众 人",
+ "赞 同",
+ "耻 辱",
+ "回 归",
+ "更 加",
+ "小 弟",
+ "见 解",
+ "无 非",
+ "一 句",
+ "本 身",
+ "善 恶",
+ "家 教",
+ "人 为",
+ "越来越 少",
+ "局 势",
+ "单 单",
+ "站 台",
+ "标 题",
+ "自 杀",
+ "这 门",
+ "聚 集",
+ "再 说",
+ "这 类",
+ "价 钱",
+ "老 百姓",
+ "意 见",
+ "只 能",
+ "站 点",
+ "民 众",
+ "反 映",
+ "美 观",
+ "好 看",
+ "前 端",
+ "申 购",
+ "代 码",
+ "费 率",
+ "固 定",
+ "持 有",
+ "越 长",
+ "越 低",
+ "联 赛",
+ "足 彩",
+ "延 期",
+ "比 赛",
+ "3 10",
+ "31 0",
+ "北 京",
+ "上 午",
+ "发 布",
+ "通 知",
+ "计 算",
+ "1 20",
+ "12 0",
+ "事 宜",
+ "各 省",
+ "自治 区",
+ "确 认",
+ "原 定",
+ "场 次",
+ "胜 负",
+ "1 4",
+ "任 选",
+ "全 场",
+ "进 球",
+ "发 行",
+ "管 理",
+ "规 定",
+ "决 定",
+ "上 述",
+ "比赛 结果",
+ "为 准",
+ "信 息",
+ "同 期",
+ "十 二月",
+ "十二 月",
+ "一 日",
+ "今 晚",
+ "哪 能",
+ "看 到",
+ "查 询",
+ "剩 余",
+ "点 数",
+ "第 一种",
+ "第一 种",
+ "看 见",
+ "第二 种",
+ "下 图",
+ "礼 物",
+ "玩 具",
+ "4 3",
+ "4 1",
+ "1 15",
+ "11 5",
+ "加 点",
+ "不 敢",
+ "级 别",
+ "据 说",
+ "无 敌",
+ "攻 击",
+ "全 部",
+ "入 味",
+ "用 料",
+ "牛 肉",
+ "豆瓣 酱",
+ "酱 油",
+ "少 许",
+ "7 5",
+ "切 成",
+ "炒 锅",
+ "上 火",
+ "烧 热",
+ "松 散",
+ "高 汤",
+ "移 至",
+ "出 锅",
+ "风 味",
+ "相 传",
+ "清 朝",
+ "同 治",
+ "年 间",
+ "店 主",
+ "外 号",
+ "烹 制",
+ "喜 爱",
+ "名 声",
+ "独 到",
+ "高 三",
+ "数学 题",
+ "急 求",
+ "在 线",
+ "磁 盘",
+ "病毒 感染",
+ "单 位",
+ "比 特",
+ "函 数",
+ "显 然",
+ "增长 率",
+ "提 炼",
+ "不 等式",
+ "无 视",
+ "护 卫",
+ "记 得",
+ "上 次",
+ "p k",
+ "打 到",
+ "记 错",
+ "详 解",
+ "前 排",
+ "后 排",
+ "受 伤",
+ "发 动",
+ "互 相",
+ "角 色",
+ "反 击",
+ "帮 派",
+ "怎么 弄",
+ "功 德",
+ "累 积",
+ "每 周",
+ "选 定",
+ "功 臣",
+ "帐 户",
+ "先 生",
+ "各 种",
+ "价 值",
+ "道 具",
+ "高 级",
+ "套 餐",
+ "成 功率",
+ "成功 率",
+ "兑 换",
+ "失 败",
+ "活 力",
+ "补 偿",
+ "差 点",
+ "转 运",
+ "好 运",
+ "手 写",
+ "讲 义",
+ "购 买",
+ "相 应",
+ "家 人",
+ "出 事",
+ "脑 子",
+ "总 要",
+ "忧 虑",
+ "悲 观",
+ "空 闲",
+ "偶 尔",
+ "听 听",
+ "轻 松",
+ "音 乐",
+ "记 住",
+ "9 0",
+ "档 案",
+ "人 才",
+ "部 门",
+ "盖 章",
+ "办 理",
+ "帮帮 我",
+ "街 道",
+ "计划 生育",
+ "办公 室",
+ "实 践",
+ "之 内",
+ "反 正",
+ "有 空",
+ "结婚 证",
+ "户口 本",
+ "所在 地",
+ "老 公",
+ "户 口",
+ "一 张",
+ "听 课",
+ "4 5",
+ "理 论",
+ "代 办",
+ "社 区",
+ "母 子",
+ "检查 一下",
+ "保 健",
+ "粉 红色",
+ "粉红 色",
+ "本 本",
+ "产 检",
+ "出 生",
+ "带 回",
+ "维 拉",
+ "乌 鸡",
+ "保 险",
+ "半 年前",
+ "半年 前",
+ "合 同",
+ "到 期",
+ "没 法",
+ "高 人",
+ "打 电话",
+ "城 市",
+ "归 还",
+ "国 家",
+ "不 得",
+ "社会 保险",
+ "证 件",
+ "协 商",
+ "劳 动",
+ "仲 裁",
+ "申 请",
+ "离 职",
+ "打 出",
+ "养老 保险",
+ "转 移",
+ "允 许",
+ "帐 号",
+ "政 策",
+ "自 动",
+ "合 并",
+ "咨 询",
+ "大 大",
+ "委 托",
+ "交 易",
+ "窗 口",
+ "跳 出",
+ "插 件",
+ "关 闭",
+ "I E",
+ "拦 截",
+ "说 好",
+ "进 不去",
+ "形 容",
+ "气 质",
+ "世 界",
+ "何 种",
+ "女 人",
+ "词 汇",
+ "温 柔",
+ "漂 亮",
+ "可 爱",
+ "清 纯",
+ "成 熟",
+ "优 雅",
+ "浪 漫",
+ "热 情",
+ "魅 力",
+ "内 涵",
+ "什么 样",
+ "能 干",
+ "古 典",
+ "美 人",
+ "狂 热",
+ "抛 开",
+ "容 貌",
+ "不 说",
+ "欣 赏",
+ "茉 莉",
+ "花 儿",
+ "依 旧",
+ "绽 放",
+ "界 定",
+ "素 养",
+ "审 美",
+ "意 识",
+ "领 悟",
+ "诠 释",
+ "固 然",
+ "令人 难忘",
+ "具 有",
+ "善 良",
+ "作 为",
+ "潇 洒",
+ "理 由",
+ "男 人",
+ "缺 少",
+ "资 质",
+ "低 头",
+ "不 胜",
+ "莲 花",
+ "诗 经",
+ "美 好",
+ "外 型",
+ "温 和",
+ "加 上",
+ "或 许",
+ "众 多",
+ "男 性",
+ "心 目",
+ "一 首",
+ "十 二",
+ "明 亮",
+ "幻 影",
+ "闪 亮",
+ "显 得",
+ "可 怜",
+ "去 年",
+ "那 样",
+ "灰 色",
+ "头 发",
+ "颤 抖",
+ "心 头",
+ "声 音",
+ "想 象",
+ "惭 愧",
+ "粗 糙",
+ "很 小",
+ "快 乐",
+ "由 此",
+ "侧 面",
+ "看 出",
+ "美 貌",
+ "征 服",
+ "眼 睛",
+ "心 灵",
+ "不知 不觉",
+ "足 以",
+ "融 化",
+ "美 德",
+ "挑 剔",
+ "心 里",
+ "大 为",
+ "充 满",
+ "憧 憬",
+ "感 性",
+ "理 性",
+ "中 来",
+ "明 白",
+ "季 节",
+ "变 迁",
+ "轮 回",
+ "将 会",
+ "人 间",
+ "带 来",
+ "深 情",
+ "温 馨",
+ "和 谐",
+ "诱 人",
+ "难 以",
+ "优 点",
+ "特 长",
+ "完 美",
+ "丧 失",
+ "人 生",
+ "长 久",
+ "伙 伴",
+ "跟 着",
+ "岁 月",
+ "老 人",
+ "绝 不会",
+ "绝不 会",
+ "旁 人",
+ "整 形",
+ "韵 味",
+ "实 质",
+ "如 此",
+ "不 尽",
+ "文字 描述",
+ "人 人",
+ "面 前",
+ "说 话",
+ "包 含",
+ "深 刻",
+ "生 硬",
+ "表 演",
+ "本 体",
+ "散 发",
+ "可 不是",
+ "可不 是",
+ "真 假",
+ "之 分",
+ "本 能",
+ "相 伴",
+ "终 结",
+ "听 到",
+ "几 千年",
+ "几千 年",
+ "文 化",
+ "传 统",
+ "很多 很多",
+ "有 意思",
+ "有意 思",
+ "悲 哀",
+ "上 班",
+ "几 个",
+ "结 婚",
+ "脾 气",
+ "她 们",
+ "动 辄",
+ "婚 前",
+ "不 顾",
+ "形 象",
+ "没 多久",
+ "折 磨",
+ "小 事",
+ "打 架",
+ "发 起",
+ "想 到",
+ "字 眼",
+ "独 有",
+ "思 考",
+ "语 调",
+ "更 具",
+ "感染 力",
+ "马克 思",
+ "最 大",
+ "如 今",
+ "歧 视",
+ "地 位",
+ "遗 憾",
+ "当 今",
+ "现 代",
+ "社 会",
+ "不得 不",
+ "承 认",
+ "谈 到",
+ "男 士",
+ "心 痛",
+ "无 奈",
+ "应 当",
+ "当今 社会",
+ "追 求",
+ "人 格",
+ "一 面",
+ "何 况",
+ "正 如",
+ "之 间",
+ "春 风",
+ "忧 愁",
+ "理 解",
+ "关 怀",
+ "无 疑",
+ "爱 情",
+ "世 上",
+ "男 子",
+ "接 触",
+ "意味 着",
+ "最 能",
+ "打 动",
+ "尽 管",
+ "不同 于",
+ "平 静",
+ "湖 泊",
+ "是 从",
+ "清 风",
+ "雪 花",
+ "冬 季",
+ "一 场",
+ "舒 展",
+ "春 天",
+ "纤 细",
+ "轻 轻",
+ "抚 摸",
+ "愈 合",
+ "青 春",
+ "醒 来",
+ "痛 苦",
+ "甜 蜜",
+ "诗 意",
+ "缓 缓",
+ "轻轻 地",
+ "身 旁",
+ "扩 展",
+ "宽 松",
+ "归 属",
+ "特 有",
+ "正 是",
+ "美 学",
+ "赋 予",
+ "最 佳",
+ "韵 律",
+ "独 特",
+ "加 之",
+ "性 情",
+ "统 一",
+ "鲜 明",
+ "对 比",
+ "构 成",
+ "一 道",
+ "风 景",
+ "使 人",
+ "品 味",
+ "着 迷",
+ "微 妙",
+ "美 的",
+ "性 感",
+ "展 现",
+ "爱 慕",
+ "优 美",
+ "体 态",
+ "流 逝",
+ "总 会",
+ "消 瘦",
+ "抽 象",
+ "美 感",
+ "永 恒",
+ "北 方",
+ "绝 世",
+ "落 叶",
+ "明 珠",
+ "珊 瑚",
+ "光 彩",
+ "答 案",
+ "管理 员",
+ "不 见",
+ "爱 问",
+ "符 合",
+ "规 则",
+ "删 除",
+ "阅 读",
+ "网 友",
+ "互 助",
+ "问 答",
+ "平 台",
+ "参 与",
+ "分 享",
+ "利 益",
+ "良 好",
+ "法 规",
+ "无 关",
+ "发 言",
+ "强 制",
+ "提 交",
+ "扣 除",
+ "处 罚",
+ "停 用",
+ "账 号",
+ "无论 是",
+ "发 表",
+ "承 担",
+ "谨 慎",
+ "共 享",
+ "网 络",
+ "编 辑",
+ "服 务",
+ "移 除",
+ "举 报",
+ "权 利",
+ "关键 点",
+ "论 坛",
+ "性 质",
+ "嘻 嘻",
+ "笼 统",
+ "以 至",
+ "回答 者",
+ "无法 回答",
+ "外 语",
+ "说 明",
+ "纯 粹",
+ "网络 游戏",
+ "带 有",
+ "调 侃",
+ "QQ 号",
+ "联系 方式",
+ "提 问",
+ "聊 聊天",
+ "聊聊 天",
+ "找 人",
+ "短 时间",
+ "句 型",
+ "人 口",
+ "日 本",
+ "韩 国",
+ "实际 意义",
+ "路 过",
+ "网 上",
+ "不 发",
+ "种 族",
+ "肤 色",
+ "性 取向",
+ "宗 教",
+ "民 族",
+ "地 域",
+ "残 疾",
+ "状 况",
+ "回 复",
+ "每 位",
+ "使用 者",
+ "警 告",
+ "不 便",
+ "敬 请",
+ "见 谅",
+ "更 新",
+ "公 告",
+ "禁 止",
+ "下 列",
+ "违 反",
+ "现 行",
+ "法律 法规",
+ "仇 恨",
+ "宣 扬",
+ "邪 教",
+ "色 情",
+ "暴 力",
+ "犯 罪",
+ "官 员",
+ "侮 辱",
+ "他 人",
+ "伤 害",
+ "侵 害",
+ "合法 权益",
+ "法 律",
+ "行 政",
+ "宣 传",
+ "广 告",
+ "浏 览",
+ "格 式",
+ "栏 目",
+ "主 题",
+ "其 它",
+ "当 前",
+ "禁 用",
+ "封 号",
+ "重 复",
+ "秩 序",
+ "非常 明显",
+ "转 载",
+ "版 权",
+ "非 法",
+ "攻击 性",
+ "言 论",
+ "冒 充",
+ "工作 人员",
+ "意 义",
+ "昵 称",
+ "违法 行为",
+ "诉 讼",
+ "协 助",
+ "主 管",
+ "不 问",
+ "游 记",
+ "统 计",
+ "最 快",
+ "太 久",
+ "优 先",
+ "内 存",
+ "分 配",
+ "一 部分",
+ "一部 分",
+ "流 畅",
+ "管理 器",
+ "进 程",
+ "对 应",
+ "程 序",
+ "优先 级",
+ "搞 笑",
+ "妈 妈",
+ "小 猪",
+ "也 好",
+ "小 狗",
+ "外 人",
+ "武 士",
+ "崇 拜",
+ "歌 迷",
+ "偶 像",
+ "开 办",
+ "购 物",
+ "手 续",
+ "注 册",
+ "0 8",
+ "新 区",
+ "我 想",
+ "问 下",
+ "坐 骑",
+ "直 线",
+ "划 算",
+ "空 中",
+ "新 出",
+ "属 性",
+ "加 成",
+ "哺乳 期",
+ "雪 山",
+ "止 痛",
+ "手 腕",
+ "喂 奶",
+ "关 节",
+ "错 位",
+ "很 痛",
+ "软 组织",
+ "药 品",
+ "中 药",
+ "川 芎",
+ "桃 仁",
+ "红 花",
+ "麝 香",
+ "病 症",
+ "活 血",
+ "消 肿",
+ "风湿性 关节炎",
+ "痛 风",
+ "骨质 增生",
+ "肢 体",
+ "肿 胀",
+ "神经 性",
+ "头 痛",
+ "风 湿",
+ "关节 炎",
+ "小 宝宝",
+ "孕 妇",
+ "用 法",
+ "挤 出",
+ "药 剂",
+ "患 处",
+ "早日 康复",
+ "硬 币",
+ "交 了",
+ "小 岛",
+ "宝 石",
+ "P S",
+ "摧 毁",
+ "偷 袭",
+ "新 版",
+ "指 定",
+ "私 密",
+ "私 信",
+ "大 自然",
+ "提 前",
+ "多 长时间",
+ "多长 时间",
+ "预 约",
+ "偏 好",
+ "赶 上",
+ "衣 服",
+ "以 内",
+ "分 店",
+ "情 绪",
+ "不 定",
+ "卫 生",
+ "角 度",
+ "查 找",
+ "Q Q",
+ "临 时",
+ "会 话",
+ "头 像",
+ "彩 色",
+ "隐 身",
+ "好 友",
+ "而 已",
+ "点 开",
+ "新 建",
+ "联系 人",
+ "T M",
+ "输 入",
+ "空白 处",
+ "右 击",
+ "简 洁",
+ "列 表",
+ "要 选",
+ "企 鹅",
+ "单 击",
+ "脱 发",
+ "能 过",
+ "如何 治",
+ "多 数",
+ "锁 定",
+ "头 皮",
+ "萎 缩",
+ "中 医",
+ "对 策",
+ "下 手",
+ "会 长",
+ "会 出",
+ "第二 季",
+ "漫 画",
+ "快 要",
+ "完 结",
+ "动 漫",
+ "播 出",
+ "网 页",
+ "精 通",
+ "运 用",
+ "稍 稍",
+ "重 装",
+ "更 改",
+ "涂 料",
+ "反 馈",
+ "机 体",
+ "染 色",
+ "错 误",
+ "手 动",
+ "客户 端",
+ "计算 机",
+ "文件 夹",
+ "验证 码",
+ "多 种",
+ "比如 说",
+ "途 中",
+ "代 理",
+ "单 纯",
+ "不管 怎么",
+ "绝 对",
+ "传 奇",
+ "变 为",
+ "开 通",
+ "忍 者",
+ "想 开",
+ "P K",
+ "防 御",
+ "暗 杀",
+ "生命 力",
+ "奇 迹",
+ "不 算",
+ "不 加",
+ "石 化",
+ "洁 净",
+ "L Z",
+ "列 举",
+ "超 强",
+ "再 就是",
+ "因 果",
+ "练 级",
+ "必 备",
+ "配 合",
+ "舞 者",
+ "男 友",
+ "相 处",
+ "半 年",
+ "种种 原因",
+ "别 扭",
+ "折 腾",
+ "同 事",
+ "感 情",
+ "基 础",
+ "动 不动",
+ "动 摇",
+ "生 气",
+ "考 察",
+ "期 限",
+ "哥 哥",
+ "姐 姐",
+ "提 出",
+ "他 会",
+ "补 充",
+ "仙 剑",
+ "R MB",
+ "刚 才",
+ "钱 包",
+ "多 元",
+ "新 车",
+ "转 向",
+ "好 不好",
+ "7 2",
+ "1 200",
+ "12 00",
+ "120 0",
+ "总 共",
+ "1 44",
+ "14 4",
+ "徽 章",
+ "早 上",
+ "爸 妈",
+ "爷爷 奶奶",
+ "买 不到",
+ "科 斯",
+ "顶 级",
+ "不 怕",
+ "马 丁",
+ "葡 萄",
+ "既 然",
+ "买 好",
+ "记 录",
+ "P D",
+ "创 造",
+ "官 方",
+ "回 来",
+ "销 量",
+ "杀毒 软件",
+ "瑞 星",
+ "相 比",
+ "复 杂",
+ "凑 合",
+ "信 任",
+ "卡 巴",
+ "杀 毒",
+ "安全 卫士",
+ "自 带",
+ "首 要",
+ "干 嘛",
+ "强 调",
+ "只 会",
+ "没 用",
+ "绝对 值",
+ "如 图",
+ "几 何",
+ "直 观",
+ "角度 看",
+ "图 像",
+ "导 数",
+ "表 明",
+ "一 侧",
+ "另 一侧",
+ "不 变",
+ "猫 咪",
+ "谈 谈",
+ "c at",
+ "兔 子",
+ "an d",
+ "携 带",
+ "幼 虫",
+ "梳 理",
+ "时 会",
+ "传染 病",
+ "肚 子",
+ "拉 稀",
+ "点 点",
+ "成 虫",
+ "小 猫",
+ "贫 血",
+ "咬 伤",
+ "过 敏",
+ "皮肤 病",
+ "疙 瘩",
+ "往 往",
+ "红 肿",
+ "那 时",
+ "女 儿",
+ "培 养",
+ "一 粒",
+ "黑 色",
+ "细 细",
+ "打 着",
+ "脚 踝",
+ "上 用",
+ "梳 子",
+ "消 化",
+ "逗 号",
+ "水 里",
+ "上 会",
+ "血 色",
+ "棕 色",
+ "生命 周期",
+ "宿 主",
+ "吸 血",
+ "产 卵",
+ "去 过",
+ "地 毯",
+ "到 来",
+ "震 动",
+ "两 年",
+ "天 内",
+ "暖 气",
+ "杀 死",
+ "杀 灭",
+ "市 场",
+ "有效 期",
+ "立 刻",
+ "袋 子",
+ "扔 掉",
+ "大大 减少",
+ "房 子",
+ "长 成",
+ "污 染",
+ "长 效",
+ "房 屋",
+ "一 步",
+ "加 以",
+ "缝 隙",
+ "墙 角",
+ "遵 循",
+ "出 没",
+ "太 阳",
+ "宠 物",
+ "外 出",
+ "选 用",
+ "坚 持",
+ "周 围",
+ "更 换",
+ "有 限",
+ "脖 子",
+ "国 内",
+ "篇 文章",
+ "提 到",
+ "有 机",
+ "不 宜",
+ "厌 食",
+ "洗 掉",
+ "无 效",
+ "国 产",
+ "机 理",
+ "迅 速",
+ "渗透 到",
+ "皮 下",
+ "药 效",
+ "持续 时间",
+ "严 格",
+ "超 出",
+ "说明 书",
+ "皮肤 过敏",
+ "国 外",
+ "无 害",
+ "孵 化",
+ "六个 月",
+ "注 射",
+ "激 素",
+ "2 000",
+ "20 00",
+ "200 0",
+ "b y",
+ "拿 来",
+ "做 成",
+ "有 毒",
+ "化学 物质",
+ "麻 醉",
+ "正 在",
+ "不 让",
+ "传 染",
+ "培训 班",
+ "工程 师",
+ "首 页",
+ "课 程",
+ "师 资",
+ "校 园",
+ "授 课",
+ "报 名",
+ "热 线",
+ "0 10",
+ "01 0",
+ "机 构",
+ "北京 市",
+ "分 校",
+ "招 生",
+ "原 价",
+ "报 价",
+ "教 育",
+ "学 院",
+ "直 属",
+ "全 民",
+ "事业 单位",
+ "位 于",
+ "成 立",
+ "规 模",
+ "教学 质量",
+ "合 作",
+ "开 设",
+ "中 小学",
+ "中小 学",
+ "唯 一",
+ "设 计",
+ "动 画",
+ "艺 术",
+ "研究 院",
+ "多 媒体",
+ "案 例",
+ "需 求",
+ "D C",
+ "森 林",
+ "解决 方案",
+ "结 构",
+ "邮件 地址",
+ "传 递",
+ "邮 件",
+ "协 议",
+ "邮 箱",
+ "特 性",
+ "垃圾 邮件",
+ "防 范",
+ "构 建",
+ "分布 式",
+ "办 公",
+ "路 由",
+ "线 路",
+ "5 000",
+ "50 00",
+ "500 0",
+ "点 至",
+ "累 计",
+ "小 说",
+ "桌 面",
+ "资 料",
+ "链 接",
+ "稍 微",
+ "盗 版",
+ "申 报",
+ "本 月",
+ "减 去",
+ "抵 扣",
+ "税 款",
+ "合 计",
+ "税 收",
+ "我 要",
+ "增值 税",
+ "附 加",
+ "19 82",
+ "2 2",
+ "星 座",
+ "阴 历",
+ "正 品",
+ "护肤 品",
+ "代 购",
+ "不 少",
+ "泰 国",
+ "缓 慢",
+ "黄 连",
+ "解 毒",
+ "生 病",
+ "辣 椒",
+ "抽 烟",
+ "清热 解毒",
+ "蔬 菜",
+ "绿 茶",
+ "每 年",
+ "快 到",
+ "预 防",
+ "调 理",
+ "避 免",
+ "频 繁",
+ "血 常规",
+ "多 喝水",
+ "相关 性",
+ "持 股",
+ "最 小",
+ "风 格",
+ "阿尔 法",
+ "优 势",
+ "大 盘",
+ "成 长",
+ "组 合",
+ "几 只",
+ "业 绩",
+ "银 色",
+ "黎 明",
+ "亡 灵",
+ "怪 物",
+ "换 取",
+ "T L",
+ "S T",
+ "提 高",
+ "瘟 疫",
+ "教 堂",
+ "符 文",
+ "短 发",
+ "发 质",
+ "发 型",
+ "图 片",
+ "完 毕",
+ "双 击",
+ "大 区",
+ "登 陆",
+ "物 理",
+ "加 速度",
+ "加速 度",
+ "子 弹",
+ "最 高点",
+ "最高 点",
+ "最大 值",
+ "定 律",
+ "此 时",
+ "1 3",
+ "大 城市",
+ "生日 礼物",
+ "一 双",
+ "乔 丹",
+ "运动 鞋",
+ "补 丁",
+ "版 本",
+ "那 位",
+ "老 大",
+ "解 说",
+ "不 行",
+ "算 命",
+ "恐 惧",
+ "楼 上",
+ "好 事",
+ "最 起码",
+ "皇 帝",
+ "虔 诚",
+ "佛 教徒",
+ "佛教 徒",
+ "某种 意义",
+ "遭 遇",
+ "如 来",
+ "真 实",
+ "前 要",
+ "信 仰",
+ "长 寿",
+ "金 刚",
+ "坚 固",
+ "究 竟",
+ "众 生",
+ "出 自",
+ "品 质",
+ "聪 明",
+ "说 到底",
+ "带 给",
+ "推 开",
+ "佛 教",
+ "全 新",
+ "碰 巧",
+ "几 句",
+ "缘 分",
+ "网 址",
+ "电子 商务",
+ "买 点",
+ "方 便",
+ "开 放",
+ "5 8",
+ "银行 卡",
+ "信 誉",
+ "出 过",
+ "值 班",
+ "投 诉",
+ "即 可",
+ "腰 疼",
+ "腰 椎",
+ "尿 常规",
+ "进 不了",
+ "文 件",
+ "退 出",
+ "界 面",
+ "告 知",
+ "稳 定",
+ "路 径",
+ "window s",
+ "残 留",
+ "添 加",
+ "ex e",
+ "再 次",
+ "后 台",
+ "up date",
+ "d el",
+ "de l",
+ "选 项",
+ "2 50",
+ "25 0",
+ "1 50",
+ "15 0",
+ "芹 菜",
+ "干 辣椒",
+ "豆 瓣",
+ "味 精",
+ "姜 片",
+ "清 汤",
+ "制作 方法",
+ "薄 片",
+ "装 入",
+ "料 酒",
+ "拌 匀",
+ "花 椒",
+ "出 色",
+ "捞 出",
+ "锅 内",
+ "原 油",
+ "装 盘",
+ "汤 汁",
+ "粘 稠",
+ "白 菜",
+ "锅 中",
+ "不 开",
+ "肉 片",
+ "筷 子",
+ "装 配",
+ "撒 上",
+ "随 即",
+ "浓 厚",
+ "麻 辣",
+ "香 味",
+ "道 菜",
+ "技术 性",
+ "难 度",
+ "辅 料",
+ "酸 菜",
+ "原 料",
+ "中 段",
+ "一 袋",
+ "洗 洗",
+ "豆 芽",
+ "生 菜",
+ "放 进去",
+ "放进 去",
+ "四 川",
+ "若 干",
+ "依 据",
+ "口 味",
+ "淀 粉",
+ "放 过",
+ "现 成",
+ "可 用",
+ "鱼 片",
+ "一 边",
+ "待 用",
+ "切 丝",
+ "两 段",
+ "两 三个",
+ "翻 炒",
+ "一 会",
+ "加 水",
+ "盖 上",
+ "锅 盖",
+ "分 开",
+ "盖 子",
+ "煮 开",
+ "闻 到",
+ "尝 尝",
+ "葱 花",
+ "起 锅",
+ "好 吃",
+ "同 样",
+ "车 型",
+ "全 是",
+ "事 儿",
+ "行 走",
+ "轮 子",
+ "扭 矩",
+ "输 出",
+ "可 变",
+ "路 面",
+ "浪 费",
+ "扭 力",
+ "车 轮",
+ "正 统",
+ "H 2",
+ "卫 士",
+ "显 卡",
+ "画 面",
+ "最小 化",
+ "降 到",
+ "最 差",
+ "极 限",
+ "特 工",
+ "光 头",
+ "白 人",
+ "黑 人",
+ "越 狱",
+ "一 架",
+ "右 侧",
+ "昏 迷",
+ "一 针",
+ "一 集",
+ "驾驶 员",
+ "第 一集",
+ "第一 集",
+ "编 写",
+ "文学 史",
+ "十 分",
+ "感 谢",
+ "上 下",
+ "上 传",
+ "点 卡",
+ "华 东",
+ "鼠 标",
+ "挽 回",
+ "转 过",
+ "客 服",
+ "耐 心",
+ "苹 果",
+ "洛 克",
+ "要 说",
+ "注 重",
+ "差异 化",
+ "民 法",
+ "选择 题",
+ "有限 责任",
+ "社 团",
+ "法 人",
+ "公 益",
+ "态 度",
+ "联 系",
+ "立 即",
+ "不 理",
+ "样 子",
+ "宝 贝",
+ "磨 牙",
+ "每天 晚上",
+ "毛 病",
+ "遗 传",
+ "消化 不良",
+ "蛔 虫",
+ "小 儿",
+ "上 要",
+ "做 些",
+ "易 消化",
+ "肠 蠕动",
+ "较 慢",
+ "肠 道",
+ "天 下",
+ "午 餐",
+ "号 称",
+ "骗 人",
+ "人 气",
+ "官方 网站",
+ "举 行",
+ "投 票",
+ "赠 送",
+ "收 获",
+ "N PC",
+ "NP C",
+ "总 之",
+ "道 士",
+ "狗 狗",
+ "心 情",
+ "从 不",
+ "内 向",
+ "高 兴",
+ "无 聊",
+ "当 兵",
+ "上 学",
+ "网 吧",
+ "没 意思",
+ "以下 几点",
+ "离 开",
+ "迷 茫",
+ "千 万",
+ "饮 用水",
+ "饮用 水",
+ "烧 开",
+ "生 成",
+ "致 癌",
+ "一 定量",
+ "一定 量",
+ "增 高",
+ "氧 化",
+ "缺 氧",
+ "窒 息",
+ "北 美洲",
+ "北美 洲",
+ "西 北",
+ "北 面",
+ "湖 面",
+ "面 积",
+ "平方 公里",
+ "深 度",
+ "河 流",
+ "注 入",
+ "岛 屿",
+ "公 园",
+ "波 斯",
+ "群 岛",
+ "稀 少",
+ "水 质",
+ "清 澈",
+ "季节 性",
+ "旅 游",
+ "矿 物",
+ "人 工",
+ "法 国",
+ "探险 家",
+ "取 自",
+ "法 语",
+ "学 历",
+ "大 学生",
+ "大学 生",
+ "初中 生",
+ "相 爱",
+ "未 来",
+ "亲 戚",
+ "估 计",
+ "媳 妇",
+ "养 活",
+ "念 头",
+ "退 休",
+ "帮 帮忙",
+ "帮帮 忙",
+ "身体 健康",
+ "职 称",
+ "高 校",
+ "图书 馆",
+ "除 去",
+ "打 球",
+ "可 行",
+ "方 案",
+ "种 种",
+ "综合 征",
+ "克 服",
+ "乐 趣",
+ "生 机",
+ "忙 碌",
+ "老年 人",
+ "当 做",
+ "自 已",
+ "集 体",
+ "协 会",
+ "保持 良好",
+ "人际 关系",
+ "思想 家",
+ "哲 学家",
+ "哲学 家",
+ "有 事",
+ "得 意",
+ "从 中",
+ "益 处",
+ "度 过",
+ "晚 年",
+ "生 意",
+ "人 家",
+ "打 工",
+ "做 点",
+ "帮 忙",
+ "新 兴",
+ "创业 者",
+ "青 睐",
+ "深 受",
+ "A A",
+ "挺 不错",
+ "脐 带",
+ "B 超",
+ "姐 妹",
+ "当 初",
+ "胎 心",
+ "胎 动",
+ "顺 产",
+ "太 大",
+ "多 月",
+ "照 片",
+ "半 月",
+ "公 国",
+ "作 者",
+ "未 知",
+ "T he",
+ "19 93",
+ "199 3",
+ "南 斯拉夫",
+ "官方 语言",
+ "通 用",
+ "德 语",
+ "民 间",
+ "口 语",
+ "居 民",
+ "信 奉",
+ "天 主教",
+ "首 都",
+ "西 北部",
+ "西北 部",
+ "德 国",
+ "比利 时",
+ "接 壤",
+ "海 洋",
+ "大 陆",
+ "气 候",
+ "平均 气温",
+ "平 均",
+ "降 水量",
+ "降水 量",
+ "公元 前",
+ "部 族",
+ "居 住",
+ "公 元",
+ "入 侵",
+ "先 后",
+ "王 国",
+ "帝 国",
+ "神 圣",
+ "罗马 帝国",
+ "阿 登",
+ "伯 爵",
+ "公 爵",
+ "世 纪",
+ "统 治",
+ "会 议",
+ "荷 兰",
+ "国 王",
+ "兼 任",
+ "大 公",
+ "德 意志",
+ "同 盟",
+ "伦 敦",
+ "协 定",
+ "1 9",
+ "实 行",
+ "18 90",
+ "年 前",
+ "大 战",
+ "占 领",
+ "19 84",
+ "次 年",
+ "北 约",
+ "19 58",
+ "西 部",
+ "北 部",
+ "地 势",
+ "高 地",
+ "布 尔",
+ "普 拉",
+ "5 50",
+ "55 0",
+ "平 原",
+ "中 游",
+ "左 岸",
+ "支 流",
+ "寒 冷",
+ "枯 竭",
+ "覆盖 率",
+ "土 地",
+ "看 下",
+ "十 月",
+ "大 哥",
+ "6 8",
+ "体 魄",
+ "2 100",
+ "21 00",
+ "210 0",
+ "负 重",
+ "武 林",
+ "外 传",
+ "游 侠",
+ "增 益",
+ "加 满",
+ "拉 开",
+ "差 距",
+ "追 杀",
+ "逃 跑",
+ "挂 机",
+ "琢 磨",
+ "剩 下",
+ "无 用",
+ "有 钱",
+ "抗 性",
+ "超 高",
+ "沉 默",
+ "乃 至",
+ "差 别",
+ "对 手",
+ "6 1",
+ "持 续",
+ "满 级",
+ "最 高",
+ "单 体",
+ "8 00",
+ "80 0",
+ "警 戒",
+ "太 低",
+ "用 处",
+ "道 德",
+ "斗 志",
+ "加 到",
+ "眩 晕",
+ "虚 弱",
+ "神 仙",
+ "负 面",
+ "释 放",
+ "关键 时刻",
+ "居 家",
+ "旅 行",
+ "招 牌",
+ "血 量",
+ "7 5%",
+ "75 %",
+ "施 放",
+ "配 有",
+ "生 物",
+ "总 结",
+ "指 教",
+ "春 雨",
+ "六 月",
+ "中 秋",
+ "流 产",
+ "星 期",
+ "流 血",
+ "还 用",
+ "人 流",
+ "不 适",
+ "复 查",
+ "工 科",
+ "博 士",
+ "奋 斗",
+ "省 会",
+ "考 前",
+ "认 真",
+ "中 考",
+ "50 000",
+ "500 00",
+ "5000 0",
+ "男 孩",
+ "短 信",
+ "高 考",
+ "中 间",
+ "饭 店",
+ "受 不了",
+ "不得 已",
+ "全 家",
+ "兄弟 姐妹",
+ "书 生",
+ "诸 位",
+ "通 报",
+ "讲 个",
+ "故 事",
+ "干 部",
+ "无论 如何",
+ "姑 娘",
+ "回 家",
+ "开 会",
+ "放 下",
+ "伤 心",
+ "出 门",
+ "上 网",
+ "家 伙",
+ "好 人",
+ "哪 有",
+ "小 女孩",
+ "我 刚",
+ "日 子",
+ "生 日",
+ "眼 泪",
+ "流 氓",
+ "接 着",
+ "吃 饭",
+ "庆 祝",
+ "现 实",
+ "不 足",
+ "成就 感",
+ "寻 求",
+ "黑 社会",
+ "要 么",
+ "街 头",
+ "讲 过",
+ "半 天",
+ "在 家",
+ "领 导",
+ "发生 冲突",
+ "第 一位",
+ "第一 位",
+ "吸 毒",
+ "得 不到",
+ "重 视",
+ "碰 到",
+ "远 不如",
+ "反 省",
+ "尊 敬",
+ "赞 美",
+ "一个 男孩",
+ "7 0",
+ "数 学",
+ "下 滑",
+ "外 面",
+ "对 待",
+ "做 饭",
+ "干 什么",
+ "小 男孩",
+ "好 坏",
+ "次 要",
+ "唱 歌",
+ "明 星",
+ "这 边",
+ "总 在",
+ "指 责",
+ "否 定",
+ "那 边",
+ "基本 功",
+ "英 语",
+ "叫 做",
+ "谴 责",
+ "回 头",
+ "昨 天",
+ "假 如",
+ "儿 女",
+ "更 要",
+ "讲 究",
+ "收 到",
+ "男 同学",
+ "纸 条",
+ "心 事",
+ "淡 化",
+ "写 信",
+ "事 是",
+ "中 学",
+ "来 到",
+ "暗 示",
+ "周 期",
+ "应 对",
+ "技 巧",
+ "储 备",
+ "长 短",
+ "倾 听",
+ "欧洲 杯",
+ "小 组",
+ "九 个",
+ "第 一名",
+ "第一 名",
+ "第二 名",
+ "抽 签",
+ "波 兰",
+ "本 次",
+ "出 线",
+ "分 组",
+ "球 队",
+ "世界 杯",
+ "排 名",
+ "积 分",
+ "葡萄 牙",
+ "俄 罗斯",
+ "希 腊",
+ "捷 克",
+ "瑞 典",
+ "瑞 士",
+ "丹 麦",
+ "罗马 尼亚",
+ "芬 兰",
+ "挪 威",
+ "白 俄罗斯",
+ "威尔 士",
+ "黑 山",
+ "冰 岛",
+ "哈萨克 斯坦",
+ "第 六",
+ "仪 式",
+ "获 胜",
+ "平 局",
+ "输 球",
+ "得 分",
+ "支 队",
+ "顺 序",
+ "客 场",
+ "小组 赛",
+ "公 平",
+ "竞 赛",
+ "判 定",
+ "各 个",
+ "五 名",
+ "淘汰 赛",
+ "对 阵",
+ "形 势",
+ "排 位",
+ "参 照",
+ "国家 队",
+ "种 子",
+ "晋 级",
+ "一 条",
+ "两 队",
+ "回 合",
+ "共 计",
+ "客 队",
+ "打 成",
+ "点 球",
+ "足 协",
+ "承 办",
+ "决 赛",
+ "阶 段",
+ "A 1",
+ "B 1",
+ "C 1",
+ "A 2",
+ "B 2",
+ "A 4",
+ "足 球",
+ "系 数",
+ "日 程",
+ "采 取",
+ "第 一轮",
+ "第一 轮",
+ "第二 轮",
+ "第三 轮",
+ "交 战",
+ "数 都",
+ "四分 之一",
+ "半 决赛",
+ "胜 者",
+ "赛 程",
+ "20 11",
+ "201 1",
+ "2 6",
+ "2 9",
+ "日 到",
+ "S S",
+ "困 惑",
+ "新 技能",
+ "本 来",
+ "毛 毛",
+ "妖 精",
+ "费 劲",
+ "算 了",
+ "老 总",
+ "我 会",
+ "凤 凰",
+ "W X",
+ "M G",
+ "厕 所",
+ "电 视",
+ "老 虎",
+ "身 后",
+ "干 掉",
+ "法 师",
+ "别 提",
+ "最 强",
+ "平 庸",
+ "估 价",
+ "能 卖",
+ "下 个",
+ "加 密",
+ "我 用",
+ "代 言",
+ "永 久",
+ "隐 私",
+ "动 态",
+ "I P",
+ "拨 号",
+ "近 来",
+ "IP 地址",
+ "开 头",
+ "网 速",
+ "才 行",
+ "所 述",
+ "宽 带",
+ "机 房",
+ "服务器 端",
+ "关 机",
+ "开 机",
+ "两 台",
+ "冲 突",
+ "只 好",
+ "保 暖",
+ "深 圳",
+ "监 控",
+ "摄像 机",
+ "科 技",
+ "有限 公司",
+ "品 种",
+ "摄像 头",
+ "红 外",
+ "帮 到",
+ "买 车",
+ "8 6",
+ "极 速",
+ "3 30",
+ "33 0",
+ "开 过",
+ "百 万",
+ "加 速",
+ "急 速",
+ "天 蝎",
+ "可 否",
+ "电 压",
+ "线 圈",
+ "供 电",
+ "同 名",
+ "接 入",
+ "电 路",
+ "一 根",
+ "二 次",
+ "端 的",
+ "线 上",
+ "计 量",
+ "电 流",
+ "用 电",
+ "那 有",
+ "建 筑",
+ "装 饰",
+ "无 意",
+ "好 奇",
+ "两 者",
+ "走 开",
+ "百 度",
+ "室 内",
+ "布 置",
+ "平 面",
+ "展 示",
+ "建筑 物",
+ "源 码",
+ "比 尔",
+ "盖 茨",
+ "战 略",
+ "仍 然",
+ "阐 明",
+ "缘 由",
+ "场 景",
+ "微 软",
+ "清 晰",
+ "20 02",
+ "200 2",
+ "后 缀",
+ "着 手",
+ "产品 名称",
+ "20 03",
+ "200 3",
+ "惟 一",
+ "开发 工具",
+ "事实 上",
+ "代 号",
+ "20 05",
+ "200 5",
+ "看 成",
+ "一 组",
+ "MS N",
+ "订 阅",
+ "特 征",
+ "手 表",
+ "高 质量",
+ "时 尚",
+ "昂 贵",
+ "联 通",
+ "几 点",
+ "解释 一下",
+ "事 物",
+ "连接 起来",
+ "外 部",
+ "套 件",
+ "P C",
+ "I T",
+ "商 务",
+ "面 向",
+ "基 于",
+ "X ML",
+ "We b",
+ "整 合",
+ "灵 活性",
+ "灵活 性",
+ "创 建",
+ "开 发",
+ "部 署",
+ "主 席",
+ "竞 争",
+ "竞争 对手",
+ "更 快",
+ "转 化",
+ "作 出",
+ "事 实",
+ "厂 商",
+ "名 词",
+ "有 趣",
+ "认 可",
+ "不同 之处",
+ "技术 人员",
+ "之 上",
+ "新 一代",
+ "变 化",
+ "高 性能",
+ "应用 程序",
+ "精 确",
+ "公 共",
+ "调 用",
+ "核 心",
+ "F or",
+ "企业 级",
+ "程序 开发",
+ "重 用",
+ "共 性",
+ "访 问",
+ "日 志",
+ "移 动",
+ "智 能",
+ "浏览 器",
+ "赞 扬",
+ "一 票",
+ "何 必",
+ "呐 喊",
+ "差 劲",
+ "鄙 视",
+ "实际 上",
+ "9 99",
+ "99 9",
+ "3 6",
+ "4 2",
+ "3 9",
+ "接 过",
+ "北 边",
+ "对 话",
+ "澳 洲",
+ "普 通",
+ "一 流",
+ "门 槛",
+ "名 校",
+ "哪些 方面",
+ "更 高",
+ "误 区",
+ "毕业 生",
+ "满意 度",
+ "极 低",
+ "三 星",
+ "评 估",
+ "何 为",
+ "同 学",
+ "x x",
+ "分 给",
+ "不 时",
+ "H D",
+ "便 会",
+ "联 想",
+ "讲 师",
+ "设 想",
+ "相对 论",
+ "学生 会",
+ "不 满",
+ "人 少",
+ "激 烈",
+ "困 难",
+ "难 得",
+ "就 业",
+ "教 给",
+ "前 提",
+ "扎 实",
+ "学 到",
+ "这 点",
+ "假 设",
+ "两 人",
+ "相 等",
+ "应 聘",
+ "面 试",
+ "名 气",
+ "一 块",
+ "很 强",
+ "别 的",
+ "来 得",
+ "本 文",
+ "本 站",
+ "留 学",
+ "讨 论",
+ "拷 贝",
+ "不 留",
+ "卸 载",
+ "魔 法",
+ "优化 大师",
+ "放 到",
+ "回收 站",
+ "清 空",
+ "机 器",
+ "盘 中",
+ "痕 迹",
+ "有 过",
+ "展 开",
+ "解 法",
+ "行 列",
+ "交 换",
+ "公 式",
+ "变 换",
+ "激活 码",
+ "复制 粘贴",
+ "数据 量",
+ "理 想",
+ "试 一下",
+ "按 钮",
+ "事 件",
+ "声 明",
+ "变 量",
+ "O n",
+ "刷 新",
+ "I n",
+ "每 条",
+ "写 入",
+ "简 称",
+ "T o",
+ "I f",
+ "忽 略",
+ "2 56",
+ "25 6",
+ "金 额",
+ "大 写",
+ "财 富",
+ "支 付",
+ "消 费",
+ "急 需",
+ "5 173",
+ "51 73",
+ "客户 服务",
+ "感谢 您",
+ "海 马",
+ "海 藻",
+ "性 生活",
+ "游 泳",
+ "直 立",
+ "摆 动",
+ "背 鳍",
+ "前 进",
+ "育 儿",
+ "用 作",
+ "性 功能",
+ "衰 竭",
+ "中 部",
+ "催 生",
+ "英 文",
+ "发 音",
+ "缺 失",
+ "求 解",
+ "准 确",
+ "目 录",
+ "环 形",
+ "跑 道",
+ "每 分钟",
+ "停 下来",
+ "停下 来",
+ "首 次",
+ "追 上",
+ "抱 歉",
+ "大 师",
+ "建筑 面积",
+ "1 05",
+ "10 5",
+ "平 米",
+ "9 2",
+ "餐 桌",
+ "橱 柜",
+ "旁 边",
+ "屋 子",
+ "拥 挤",
+ "户 型",
+ "书 房",
+ "出 差",
+ "周 六",
+ "今天 上午",
+ "不 停",
+ "餐 厅",
+ "阳 台",
+ "客 厅",
+ "玻 璃",
+ "房 间",
+ "白 天",
+ "铝 合金",
+ "红 线",
+ "卧 室",
+ "落 地",
+ "窗 帘",
+ "暂 时",
+ "练 习",
+ "英语 口语",
+ "外 国人",
+ "外国 人",
+ "不 要紧",
+ "不要 紧",
+ "不 光",
+ "听 懂",
+ "母 语",
+ "人 有",
+ "突 破",
+ "说 错",
+ "自 尊",
+ "敢 于",
+ "加 强",
+ "新 闻",
+ "听 力",
+ "积 累",
+ "而 言",
+ "当 天",
+ "单 词",
+ "自我 感觉",
+ "英语 老师",
+ "很 漂亮",
+ "取 值",
+ "已 知",
+ "分 辨",
+ "人 会",
+ "一 再",
+ "试 问",
+ "会 想",
+ "迟 早",
+ "资 格",
+ "好 比",
+ "如果 说",
+ "爱 上",
+ "良 心",
+ "起 码",
+ "不论 是",
+ "所 有人",
+ "所有 人",
+ "大 葱",
+ "切 碎",
+ "搅拌 机",
+ "制 成",
+ "形 状",
+ "成 型",
+ "固 化",
+ "包 装",
+ "订 购",
+ "胶 带",
+ "经 营",
+ "自 行车",
+ "自行 车",
+ "电 动车",
+ "电动 车",
+ "微 型",
+ "贵 州",
+ "存 钱",
+ "开 户",
+ "不 去",
+ "网 点",
+ "存 折",
+ "留 在",
+ "这样 的话",
+ "询 问",
+ "填 写",
+ "授 权",
+ "拿 到",
+ "出 钱",
+ "下 次",
+ "磨 损",
+ "磁 场",
+ "经 络",
+ "不 通",
+ "不 信",
+ "针对 性",
+ "人 民",
+ "挺 大",
+ "经常 出现",
+ "使用 寿命",
+ "机 子",
+ "部 件",
+ "有 无",
+ "优 化",
+ "硬 盘",
+ "注册 表",
+ "来 看",
+ "硬 件",
+ "电 源",
+ "CP U",
+ "风 扇",
+ "散 热",
+ "奇 怪",
+ "柴 油",
+ "排 放",
+ "冒 出来",
+ "发 动机",
+ "发动 机",
+ "精 细",
+ "外 国",
+ "降 低",
+ "社 交",
+ "想 一想",
+ "改 进",
+ "图 书",
+ "杂 志",
+ "多元 化",
+ "心 理学",
+ "心理 学",
+ "开 店",
+ "十 年",
+ "跪 求",
+ "肿 痛",
+ "发 热",
+ "受 限",
+ "脊 柱",
+ "食 指",
+ "中 指",
+ "僵 硬",
+ "西 药",
+ "离 子",
+ "导 入",
+ "西 医",
+ "尚 无",
+ "对 症",
+ "镇 痛",
+ "麻 木",
+ "类 药物",
+ "积 液",
+ "给 予",
+ "局 部",
+ "抽 取",
+ "封 闭",
+ "当 选",
+ "保 守",
+ "就 医",
+ "中 线",
+ "医 药",
+ "基本 面",
+ "盘 子",
+ "重 组",
+ "预 期",
+ "近 期",
+ "上 升",
+ "通 道",
+ "自动 关机",
+ "笔记 本",
+ "蓝 屏",
+ "一大 堆",
+ "动 静",
+ "重新 安装",
+ "排 除",
+ "重装 系统",
+ "维 修",
+ "扬 州",
+ "特 产",
+ "烟 花",
+ "三 月",
+ "这 座",
+ "城 中",
+ "园 林",
+ "秀 丽",
+ "风 光",
+ "悠 久",
+ "少 不了",
+ "备 受",
+ "产 地",
+ "古 籍",
+ "记 述",
+ "中 是",
+ "一 颗",
+ "高 档",
+ "装 饰品",
+ "装饰 品",
+ "收 藏",
+ "作 品",
+ "仿 制",
+ "青 铜",
+ "造 型",
+ "更 能",
+ "体 现",
+ "题 材",
+ "广 泛",
+ "打 破",
+ "单 调",
+ "构 图",
+ "景 物",
+ "相 结合",
+ "多 层次",
+ "多层 次",
+ "更 是",
+ "观 赏",
+ "花 卉",
+ "用 品",
+ "技 艺",
+ "精 湛",
+ "色 彩",
+ "绚 丽",
+ "实用 性",
+ "划 分",
+ "啤 酒",
+ "工 艺",
+ "镶 嵌",
+ "流 行",
+ "地 区",
+ "点 缀",
+ "美 化",
+ "唐 代",
+ "兴 盛",
+ "自 古",
+ "历 代",
+ "文 章",
+ "诗 人",
+ "演 出",
+ "写 下",
+ "千 年",
+ "相互 作用",
+ "图 案",
+ "粘 贴",
+ "面 料",
+ "延 续",
+ "直到 现在",
+ "沿 用",
+ "此 法",
+ "艺 人",
+ "密切 关系",
+ "战 争",
+ "后 代",
+ "技 师",
+ "探 索",
+ "口 感",
+ "韧 性",
+ "一 体",
+ "绿 叶",
+ "甜 度",
+ "色 泽",
+ "甜 味",
+ "适 中",
+ "已 成",
+ "亲 友",
+ "郊 区",
+ "青 山",
+ "质 地",
+ "优 良",
+ "本 市",
+ "四 季",
+ "供 应",
+ "尤 为",
+ "蛋 黄",
+ "排 卵",
+ "煮 熟",
+ "蛋 白",
+ "一 说",
+ "以 此",
+ "师 傅",
+ "得 名",
+ "白 糖",
+ "麦 芽",
+ "手 工",
+ "精 制",
+ "香 甜",
+ "江 南",
+ "品 尝",
+ "赞 赏",
+ "从 此",
+ "列 为",
+ "四 方",
+ "19 27",
+ "西 湖",
+ "一等 奖",
+ "鸡 肉",
+ "清 香",
+ "商 标",
+ "礼 品",
+ "鲜 美",
+ "明 代",
+ "易 于",
+ "糕 点",
+ "圆 形",
+ "改 为",
+ "方 形",
+ "更 名",
+ "又 名",
+ "面 粉",
+ "麻 油",
+ "香 料",
+ "发 酵",
+ "多 层",
+ "折 叠",
+ "文 火",
+ "烘 烤",
+ "调 味",
+ "日常 生活",
+ "四 大",
+ "畅 销",
+ "国 内外",
+ "国内 外",
+ "工 序",
+ "腌 制",
+ "黄 瓜",
+ "历史 悠久",
+ "清 代",
+ "列 入",
+ "宫 廷",
+ "早 晚",
+ "19 03",
+ "190 3",
+ "三 年",
+ "1 911",
+ "19 11",
+ "奖 章",
+ "19 31",
+ "北 平",
+ "19 79",
+ "评 为",
+ "江苏 省",
+ "厂 家",
+ "两 家",
+ "位 居",
+ "宋 代",
+ "水 系",
+ "泉 水",
+ "酿 造",
+ "健 身",
+ "菜 系",
+ "组成 部分",
+ "小 吃",
+ "点 心",
+ "温 水",
+ "面 团",
+ "面 条",
+ "多 变",
+ "擅 长",
+ "覆 盖",
+ "各 式",
+ "多 以",
+ "配 以",
+ "趋 于",
+ "新 鲜",
+ "突 出",
+ "兼 有",
+ "浓 郁",
+ "实 惠",
+ "包 子",
+ "翡 翠",
+ "糯 米",
+ "卷 子",
+ "火 烧",
+ "桂 花",
+ "馄 饨",
+ "美 食",
+ "新 世界",
+ "大 厦",
+ "皇 宫",
+ "一 份",
+ "清 新",
+ "心 境",
+ "西班牙 语",
+ "问 问",
+ "海 南",
+ "海 边",
+ "海 棠",
+ "热 门",
+ "旅游 景点",
+ "交 通",
+ "并 不多",
+ "乘 以",
+ "恰 好",
+ "老 二",
+ "传递 信息",
+ "万 分",
+ "梦 到",
+ "男 朋友",
+ "分 不清",
+ "恐 怖",
+ "梦 见",
+ "灾 难",
+ "降 临",
+ "少 女",
+ "无 能",
+ "订 婚",
+ "青 年",
+ "人 来",
+ "提 过",
+ "打 扰",
+ "睡 眠",
+ "事 业",
+ "病 人",
+ "康 复",
+ "商 人",
+ "失 眠",
+ "睡 着",
+ "妻 子",
+ "入 睡",
+ "夫 妻",
+ "一 把",
+ "剪 刀",
+ "底 下",
+ "时 节",
+ "要 少",
+ "螃 蟹",
+ "姜 蒜",
+ "切 忌",
+ "呕 吐",
+ "营养 不良",
+ "心 慌",
+ "记忆 力",
+ "减 退",
+ "四肢 无力",
+ "措 施",
+ "铁 质",
+ "肾 脏",
+ "黄 豆",
+ "番 茄",
+ "黑 木耳",
+ "香 菇",
+ "紫 菜",
+ "桃 子",
+ "桂 圆",
+ "葡萄 干",
+ "祖 国",
+ "早 期",
+ "妊 娠",
+ "寒 凉",
+ "不 利",
+ "堕 胎",
+ "甲 鱼",
+ "称 为",
+ "滋 阴",
+ "营 养",
+ "菜 肴",
+ "较 强",
+ "因 而",
+ "之 力",
+ "更 强",
+ "忌 食",
+ "又 称",
+ "薏 米",
+ "同 源",
+ "之 物",
+ "子 宫",
+ "平滑 肌",
+ "兴 奋",
+ "促 使",
+ "草 药",
+ "次 数",
+ "强 度",
+ "盲 目",
+ "吃 喝",
+ "胡 乱",
+ "损 害",
+ "母 体",
+ "八 点",
+ "不 多",
+ "脂 肪",
+ "增 强",
+ "血 脂",
+ "升 高",
+ "分 解",
+ "血 症",
+ "倾 向",
+ "脱 水",
+ "头 昏",
+ "蛋 蛋",
+ "类 食品",
+ "蛋白 质",
+ "磷 脂",
+ "营养 素",
+ "有害 物质",
+ "腹 胀",
+ "食 欲",
+ "头 晕",
+ "疲 倦",
+ "高 蛋白",
+ "孕 期",
+ "补 钙",
+ "出 世",
+ "患 儿",
+ "前 倾",
+ "主 动脉",
+ "主动 脉",
+ "健 美",
+ "摄 取",
+ "就 够",
+ "早 孕",
+ "减 轻",
+ "学 者",
+ "酸 度",
+ "分 裂",
+ "增 殖",
+ "突 变",
+ "畸 形",
+ "过 度",
+ "吸 附",
+ "患 有",
+ "综合 症",
+ "浮 肿",
+ "蛋白 尿",
+ "晕 眩",
+ "危 及",
+ "母 婴",
+ "高 糖",
+ "血 糖",
+ "偏 高",
+ "生 出",
+ "过 重",
+ "发生 率",
+ "偏 低",
+ "服 食",
+ "扩 张",
+ "充 血",
+ "内 分泌",
+ "水 肿",
+ "再 者",
+ "胃 肠道",
+ "胃肠 道",
+ "胃 胀",
+ "便 秘",
+ "不 吃",
+ "着 床",
+ "分 化",
+ "染色 体",
+ "断 裂",
+ "停 止",
+ "遗传 性",
+ "弱 智",
+ "另 一方面",
+ "另一方 面",
+ "毒 性",
+ "妇 女",
+ "木 材",
+ "煤 炭",
+ "燃 料",
+ "散 发出",
+ "散发 出",
+ "细胞 核",
+ "核 酸",
+ "油 炸",
+ "高 温",
+ "营养 价值",
+ "常 吃",
+ "摄入 量",
+ "胎 盘",
+ "大 脑",
+ "障 碍",
+ "痴 呆",
+ "胃肠 功能",
+ "胃 肠",
+ "胃 液",
+ "机 能",
+ "现代 医学",
+ "饮 料",
+ "添加 剂",
+ "土 豆",
+ "发 芽",
+ "警 惕",
+ "播 种",
+ "贮 存",
+ "无 脑",
+ "孕 前",
+ "期 内",
+ "热 性",
+ "胡 椒",
+ "调味 品",
+ "大 开",
+ "胃 口",
+ "有 利",
+ "痔 疮",
+ "山 楂",
+ "本 品",
+ "开 胃",
+ "现 已",
+ "菠 菜",
+ "含 铁",
+ "补 血",
+ "草 酸",
+ "微量 元素",
+ "婴 儿",
+ "及 其",
+ "营养 成分",
+ "不 高",
+ "排 出",
+ "缺 锌",
+ "生长 发育",
+ "为 宜",
+ "饱 腹",
+ "发 胖",
+ "动 物",
+ "饲 料",
+ "极 大",
+ "特 殊",
+ "加 工",
+ "皮 蛋",
+ "制 品",
+ "丢 失",
+ "禁 忌",
+ "不良 影响",
+ "海 带",
+ "荸 荠",
+ "进 食",
+ "羊 肉",
+ "狗 肉",
+ "麻 雀",
+ "香 菜",
+ "荔 枝",
+ "杏 仁",
+ "洗 头",
+ "前 先",
+ "大 风",
+ "觉 醒",
+ "必 然",
+ "通 顺",
+ "秘 诀",
+ "末 端",
+ "顶 部",
+ "顺 着",
+ "或 用",
+ "装 有",
+ "绝 不",
+ "头 顶",
+ "来 自",
+ "损 伤",
+ "摩 擦",
+ "洗 衣",
+ "泡 沫",
+ "用 力",
+ "手 指",
+ "只 用",
+ "垂 直",
+ "擦 干",
+ "学 问",
+ "两 条",
+ "第 一条",
+ "第一 条",
+ "第二 条",
+ "极 度",
+ "充满 活力",
+ "藤 原",
+ "人 选",
+ "人 数",
+ "看 不到",
+ "难 怪",
+ "演 技",
+ "吓 人",
+ "演 戏",
+ "简 直",
+ "博 文",
+ "播放 器",
+ "发表 文章",
+ "文本 框",
+ "正 文",
+ "勾 选",
+ "源 代码",
+ "换 上",
+ "r c",
+ "播 放",
+ "宽 度",
+ "灵 活",
+ "整 数",
+ "电子 邮件",
+ "自 助",
+ "一 系列",
+ "静 态",
+ "组 成",
+ "自 主",
+ "功能 强大",
+ "互动 性",
+ "建 设",
+ "之 多",
+ "恐 怕",
+ "一 一",
+ "传 媒",
+ "高 速",
+ "注意 力",
+ "媒 体",
+ "开 拓",
+ "自 由",
+ "音 频",
+ "log o",
+ "模 板",
+ "自由 选择",
+ "背景 音乐",
+ "喜 好",
+ "访问 者",
+ "自 行",
+ "问 卷",
+ "十 一",
+ "推 广",
+ "十 三",
+ "十 四",
+ "十 五",
+ "使用 率",
+ "预 售",
+ "火 车票",
+ "火车 票",
+ "预 留",
+ "车 票",
+ "车 站",
+ "发 售",
+ "焦虑 症",
+ "显 著",
+ "焦 虑",
+ "中 医院",
+ "中医 院",
+ "落 户",
+ "西 南",
+ "实验 室",
+ "这 家",
+ "公立 医院",
+ "医 保",
+ "定 点",
+ "早 点",
+ "周 边",
+ "下 雪",
+ "下 场",
+ "大 雪",
+ "第 一场",
+ "第一 场",
+ "迟 到",
+ "工 业",
+ "敌 人",
+ "解 开",
+ "三 次",
+ "墙 壁",
+ "舞 蹈",
+ "蝴 蝶",
+ "误 解",
+ "五 个",
+ "机 关",
+ "照 相机",
+ "照相 机",
+ "角 落",
+ "墙 上",
+ "谜 题",
+ "升 到",
+ "戒 指",
+ "手 镯",
+ "和 平",
+ "天 龙",
+ "大 刀",
+ "首 饰",
+ "极 品",
+ "魔 杖",
+ "方 子",
+ "规 律",
+ "印 度",
+ "公 布",
+ "人口 普查",
+ "为 期",
+ "三 周",
+ "19 91",
+ "199 1",
+ "大 规模",
+ "普 查",
+ "城 镇",
+ "村 庄",
+ "截 至",
+ "总 人口",
+ "参考 资料",
+ "家 族",
+ "3 15",
+ "31 5",
+ "1 08",
+ "10 8",
+ "引 发",
+ "阴 虚",
+ "低 热",
+ "全身 性",
+ "防 治",
+ "食 性",
+ "猪 肉",
+ "答 复",
+ "松 子",
+ "黑 豆",
+ "小 米",
+ "小 麦",
+ "此 外",
+ "戒 烟",
+ "几 张",
+ "正 版",
+ "夜 生活",
+ "出 新",
+ "期 待",
+ "翻 译",
+ "嘴 里",
+ "溃 疡",
+ "嘴 巴",
+ "刷 牙",
+ "牙 刷",
+ "化 疗",
+ "口腔 溃疡",
+ "口 腔",
+ "棉 签",
+ "创 面",
+ "温 开水",
+ "副 作用",
+ "复发 性",
+ "人 群",
+ "患病 率",
+ "周期 性",
+ "局限 性",
+ "自 愈",
+ "多 见",
+ "波 及",
+ "咽 部",
+ "粘 膜",
+ "病 程",
+ "延 长",
+ "数 目",
+ "缩 短",
+ "溃疡 性",
+ "过敏 反应",
+ "常见 病",
+ "辛 辣",
+ "主要 症状",
+ "椭 圆形",
+ "椭圆 形",
+ "单 发",
+ "自 发",
+ "边 缘",
+ "整 齐",
+ "纤维 素",
+ "天 后",
+ "转 入",
+ "发 于",
+ "多 于",
+ "发 病",
+ "牙 龈",
+ "孤 立",
+ "多 处",
+ "劳 累",
+ "迁 延",
+ "数 年",
+ "数 十年",
+ "数十 年",
+ "前 者",
+ "舌 苔",
+ "淋巴 结",
+ "后 者",
+ "伴 有",
+ "手 心",
+ "多 梦",
+ "剥 落",
+ "免 疫",
+ "不 良",
+ "起 居",
+ "有 节",
+ "多样 化",
+ "多 食",
+ "煎 炸",
+ "房 事",
+ "切 勿",
+ "用 心",
+ "操 劳",
+ "失 常",
+ "而 致",
+ "自 治",
+ "毫 克",
+ "金银 花",
+ "麦 冬",
+ "生 地",
+ "连 服",
+ "上 药",
+ "细 末",
+ "调 匀",
+ "虚 实",
+ "本 方",
+ "主 治",
+ "白 萝卜",
+ "喝 汤",
+ "绿 豆",
+ "毫 升",
+ "浓 茶",
+ "漱 口",
+ "误 诊",
+ "慎 用",
+ "表 面",
+ "乳 头",
+ "突 起",
+ "菜 花",
+ "底 部",
+ "硬 块",
+ "晒 太阳",
+ "好 几年",
+ "好几 年",
+ "每 到",
+ "滋 养",
+ "胡 萝卜",
+ "玫 瑰",
+ "花 瓣",
+ "浸 入",
+ "适 用",
+ "过敏 性",
+ "3 7",
+ "加 盖",
+ "纱 布",
+ "滋 润",
+ "蛋 清",
+ "果 汁",
+ "西 瓜",
+ "香 蕉",
+ "养 分",
+ "芦 荟",
+ "补 水",
+ "60 %",
+ "70 %",
+ "人 称",
+ "40 %",
+ "年 代",
+ "科 学家",
+ "科学 家",
+ "全 球",
+ "频 率",
+ "确 切",
+ "暴 露",
+ "化 学",
+ "看 上去",
+ "紧 绷",
+ "条 纹",
+ "脂 质",
+ "积 聚",
+ "诱 因",
+ "当 人",
+ "越 高",
+ "抗 过敏",
+ "绝 经",
+ "若干 年",
+ "发 出",
+ "缺 水",
+ "警 报",
+ "室 友",
+ "跳 舞",
+ "涂 上",
+ "带 走",
+ "生活 习惯",
+ "两 到",
+ "洗 涤",
+ "肥 皂",
+ "洗 澡",
+ "蒸 发",
+ "发 痒",
+ "过敏 原",
+ "化学 品",
+ "反 过来",
+ "年 纪",
+ "水 份",
+ "寒 冬",
+ "汗 水",
+ "抵抗 力",
+ "睡眠 不足",
+ "血液 循环",
+ "变 差",
+ "减 肥",
+ "偏 食",
+ "过 高",
+ "过 热",
+ "香 皂",
+ "清洁 剂",
+ "雌 激素",
+ "呈现 出",
+ "过 后",
+ "尽 早",
+ "采取 措施",
+ "瘙 痒",
+ "不 太",
+ "避 开",
+ "空 调",
+ "湿 度",
+ "细 小",
+ "天气 晴朗",
+ "日 照",
+ "云 层",
+ "遮 挡",
+ "气候 变化",
+ "汗 液",
+ "关键 在于",
+ "真 皮",
+ "外 侧",
+ "一 层",
+ "迟 缓",
+ "现代 人",
+ "抗 衰老",
+ "失 水",
+ "出 水",
+ "秋 天",
+ "碱 性",
+ "疗 效",
+ "秘 方",
+ "一 盆",
+ "同 居",
+ "范 畴",
+ "无 罪",
+ "过 分",
+ "凡 事",
+ "性 关系",
+ "男 女",
+ "分 手",
+ "心 爱",
+ "勉 强",
+ "肉 体",
+ "常 常",
+ "不 愿",
+ "处 女",
+ "不 肯",
+ "婚 后",
+ "第 三项",
+ "第三 项",
+ "离 婚",
+ "性 行为",
+ "丈 夫",
+ "婚 姻",
+ "两 倍",
+ "嫁 给",
+ "美 满",
+ "回 忆",
+ "往 事",
+ "比 不上",
+ "情 人",
+ "i t",
+ "t o",
+ "a n",
+ "康复 训练",
+ "残疾 人",
+ "权 力",
+ "农 村",
+ "太阳 能",
+ "热水 器",
+ "村 民",
+ "售后 服务",
+ "淋 浴",
+ "时 能",
+ "室 外",
+ "早 晨",
+ "情人 节",
+ "追溯 到",
+ "来 源于",
+ "来源 于",
+ "鸟 类",
+ "风 俗",
+ "盒 子",
+ "抽 到",
+ "节 日",
+ "纪 念",
+ "基督 教",
+ "古 罗马",
+ "传教 士",
+ "冒 险",
+ "传 播",
+ "被 捕",
+ "入 狱",
+ "感 动",
+ "封 信",
+ "处 死",
+ "一 棵",
+ "小伙 子",
+ "精 美",
+ "工艺 品",
+ "鲜 花",
+ "爱 人",
+ "爱 意",
+ "送 给",
+ "一 盒",
+ "通 俗",
+ "苦 涩",
+ "相 互",
+ "夹 杂",
+ "快 感",
+ "仿 佛",
+ "温 暖",
+ "体 能",
+ "祝 愿",
+ "祝 福",
+ "专 利",
+ "某 位",
+ "表 白",
+ "3 3",
+ "高 层",
+ "景 观",
+ "开 阔",
+ "噪 音",
+ "废 气",
+ "下 雨",
+ "漏 水",
+ "间 隔",
+ "元 宝",
+ "狮 子",
+ "3 5",
+ "哪 儿",
+ "电话 号码",
+ "语 音",
+ "某 某",
+ "起 诉",
+ "官 司",
+ "诈 骗",
+ "香 港",
+ "x xxx",
+ "xx xx",
+ "xxx x",
+ "位 数",
+ "手机 号码",
+ "手机号 码",
+ "足 球队",
+ "足球 队",
+ "纳 入",
+ "云 南",
+ "发 觉",
+ "说 不出",
+ "脑 袋",
+ "清 醒",
+ "灵 魂",
+ "体 外",
+ "胳 膊",
+ "那 会",
+ "学 医",
+ "暂 停",
+ "受 压",
+ "月 初",
+ "特 地",
+ "相 片",
+ "印 象",
+ "面 对面",
+ "面对 面",
+ "说 些",
+ "最 美",
+ "相 见",
+ "该 不该",
+ "嫌 弃",
+ "苦 恼",
+ "害 怕",
+ "帮 帮",
+ "刚 看",
+ "背 叛",
+ "比较 严重",
+ "不 介意",
+ "一 口气",
+ "一口 气",
+ "介 意",
+ "正 整数",
+ "平均 数",
+ "1 7",
+ "留 言",
+ "中 央",
+ "V S",
+ "雅 典",
+ "汉 堡",
+ "自 觉",
+ "开 心",
+ "搬 家",
+ "西 安",
+ "搬 迁",
+ "总 部",
+ "设 在",
+ "英 国",
+ "2 001",
+ "20 01",
+ "200 1",
+ "遍 布",
+ "想 得到",
+ "看 法",
+ "原 文中",
+ "原文 中",
+ "帖 子",
+ "追 加",
+ "变 态",
+ "用 到",
+ "在 场",
+ "蜀 山",
+ "飞 鸟",
+ "月 光",
+ "参 考",
+ "攻 略",
+ "电子 书",
+ "起 家",
+ "偶 有",
+ "一 声",
+ "听 取",
+ "粉 红",
+ "之 前",
+ "发 过",
+ "M B",
+ "8 5",
+ "永 远",
+ "开 玩笑",
+ "发现 自己",
+ "在 乎",
+ "一 人",
+ "言 行",
+ "小 妹",
+ "不 该",
+ "总 想",
+ "谈 不上",
+ "计 较",
+ "坦 然",
+ "露 出",
+ "十 足",
+ "明 知",
+ "透 露",
+ "秘 密",
+ "随 意",
+ "世 人",
+ "8 8",
+ "越 过",
+ "其 他人",
+ "其他 人",
+ "上 限",
+ "楼 主",
+ "老 区",
+ "50 %",
+ "变 身",
+ "下 限",
+ "改 了",
+ "改 用",
+ "升 值",
+ "贬 值",
+ "风 暴",
+ "保 值",
+ "变 现",
+ "成 交",
+ "不 远",
+ "支 架",
+ "粥 样",
+ "缺 血性",
+ "缺血 性",
+ "冠 脉",
+ "硬 化",
+ "心肌 缺血",
+ "常见 疾病",
+ "危 险",
+ "吸 烟",
+ "肥 胖",
+ "沉 着",
+ "管 腔",
+ "心 绞痛",
+ "外科 手术",
+ "激 光",
+ "心 肌",
+ "回 顾",
+ "19 67",
+ "静 脉",
+ "奠 定",
+ "19 74",
+ "率 先",
+ "开 展",
+ "辅 助",
+ "血 栓",
+ "住 院",
+ "较 长",
+ "跳 动",
+ "无 需",
+ "心 功能",
+ "较 差",
+ "此 项",
+ "尚 有",
+ "普 及",
+ "1 987",
+ "19 87",
+ "巨 大",
+ "挑 战",
+ "微 创",
+ "显 现",
+ "切 口",
+ "近 年来",
+ "近年 来",
+ "杂 交",
+ "适 于",
+ "造 影",
+ "主 干",
+ "高 位",
+ "远 端",
+ "通 畅",
+ "m m",
+ "穿 刺",
+ "术 后",
+ "溶 栓",
+ "动 脉",
+ "起 源",
+ "弥漫 性",
+ "心 衰",
+ "不 全",
+ "低 下",
+ "肾 功能",
+ "移 植",
+ "人 造",
+ "远 期",
+ "缓 解",
+ "90 %",
+ "生存 率",
+ "9 5%",
+ "95 %",
+ "闭 塞",
+ "进 展",
+ "创 伤",
+ "特 定",
+ "死亡 率",
+ "10 %",
+ "不良 反应",
+ "高 危",
+ "导 管",
+ "相 近",
+ "受 累",
+ "单 一",
+ "局 限",
+ "受 损",
+ "各种 因素",
+ "本 着",
+ "内 科",
+ "放 置",
+ "见 到",
+ "外 科",
+ "制 定",
+ "日 后",
+ "恒 定",
+ "既 有",
+ "必 定",
+ "血 流",
+ "此 种",
+ "棘 手",
+ "综上 所述",
+ "着 想",
+ "牢 记",
+ "宗 旨",
+ "手 脚",
+ "全 套",
+ "2 7",
+ "直 肠",
+ "脱 垂",
+ "益 气",
+ "黄 芪",
+ "6 00",
+ "60 0",
+ "取 汁",
+ "药 液",
+ "3 000",
+ "30 00",
+ "300 0",
+ "2 500",
+ "25 00",
+ "250 0",
+ "置 于",
+ "坐 浴",
+ "补 气",
+ "没 错",
+ "字 样",
+ "改 成",
+ "方向 键",
+ "P age",
+ "液 晶",
+ "显示 屏",
+ "亮 点",
+ "外 力",
+ "荆 州",
+ "三 国",
+ "襄 阳",
+ "中 原",
+ "洛 阳",
+ "开 封",
+ "直 通",
+ "一 是",
+ "长 江",
+ "刘 备",
+ "一 行",
+ "这 条",
+ "二 是",
+ "水 道",
+ "路 线",
+ "当 年",
+ "顶 点",
+ "人 类",
+ "繁 华",
+ "两 处",
+ "东 吴",
+ "曹 操",
+ "手 中",
+ "这 才",
+ "所 说",
+ "落 后",
+ "懂 得",
+ "抬 头",
+ "走 路",
+ "出现 异常",
+ "脑 部",
+ "抗 癫痫",
+ "不 佳",
+ "引 进",
+ "万 能",
+ "饰 品",
+ "一 楼",
+ "吉 祥",
+ "中 路",
+ "珠 宝",
+ "深圳 市",
+ "20 06",
+ "200 6",
+ "营业 时间",
+ "0 0",
+ "东 门",
+ "步行 街",
+ "有 用",
+ "钟 表",
+ "城 里",
+ "普通 人",
+ "普 遍",
+ "一 群",
+ "单 数",
+ "复 数",
+ "开 车",
+ "出 租车",
+ "出租 车",
+ "司 机",
+ "行 车",
+ "英 雄",
+ "行 使",
+ "交通 规则",
+ "边 上",
+ "行 人",
+ "轮 胎",
+ "自 检",
+ "于 是",
+ "内存 条",
+ "插 槽",
+ "各 异",
+ "时 常",
+ "损 坏",
+ "重 启",
+ "死 机",
+ "多 方面",
+ "多方 面",
+ "CM OS",
+ "出 厂",
+ "接触 不良",
+ "异 物",
+ "松 动",
+ "牢 固",
+ "变 形",
+ "失 效",
+ "橡 皮",
+ "擦 拭",
+ "一 遍",
+ "仔细 观察",
+ "工 具",
+ "兼 容",
+ "容 量",
+ "芯 片",
+ "判 断",
+ "怀 疑",
+ "重 症",
+ "肌 无力",
+ "拖 延",
+ "登 入",
+ "移 民",
+ "一 点儿",
+ "一点 儿",
+ "锦 标",
+ "山 路",
+ "S P",
+ "这 车",
+ "总 体",
+ "中 后期",
+ "起 步",
+ "一辆 车",
+ "后 期",
+ "抗 衡",
+ "改 装",
+ "照 样",
+ "拿 下",
+ "K ing",
+ "车 队",
+ "开 除",
+ "悬 崖",
+ "神 奇",
+ "杰克 逊",
+ "电 影",
+ "降 价",
+ "售 价",
+ "同 一时间",
+ "同一 时间",
+ "刚 出",
+ "价格 比",
+ "6 000",
+ "60 00",
+ "600 0",
+ "一分 钱",
+ "玩 游戏",
+ "卡 卡",
+ "巴 黎",
+ "外 省",
+ "所 学",
+ "公 立",
+ "好 些",
+ "文 凭",
+ "大使 馆",
+ "一 大",
+ "产 业",
+ "诺贝尔 奖",
+ "尼 斯",
+ "马 赛",
+ "里 昂",
+ "里 尔",
+ "战 斗",
+ "咽喉 炎",
+ "吃 水果",
+ "急性 期",
+ "卧 床",
+ "粉 尘",
+ "口 罩",
+ "口腔 卫生",
+ "病 菌",
+ "柠 檬",
+ "甘 蔗",
+ "清 热",
+ "室内 空气",
+ "流 通",
+ "长 时间",
+ "中 度",
+ "糜 烂",
+ "会 变",
+ "重 度",
+ "查 出",
+ "炎 症",
+ "异 味",
+ "肥 大",
+ "时 才",
+ "我 前",
+ "刚 买",
+ "白 酒",
+ "一 团",
+ "皮 革",
+ "研究 员",
+ "皮 鞋",
+ "定 型",
+ "两 块",
+ "缝 合",
+ "脚 跟",
+ "脚 趾",
+ "朝 阳",
+ "大 夫",
+ "鞋 子",
+ "拇 指",
+ "外 翻",
+ "不 慎",
+ "买 到",
+ "业内 人士",
+ "供 参考",
+ "面 霜",
+ "软 化",
+ "变 软",
+ "物 体",
+ "几 遍",
+ "原 理",
+ "可行 性",
+ "寿 命",
+ "几 款",
+ "研 制",
+ "附 着",
+ "脚 部",
+ "酸 痛",
+ "蔗 糖",
+ "卵 磷脂",
+ "系 列",
+ "均 衡",
+ "优 质",
+ "脂肪 酸",
+ "叶 酸",
+ "矿 物质",
+ "矿物 质",
+ "严 密",
+ "确 保",
+ "三 层",
+ "高 科技",
+ "纯 度",
+ "氮 气",
+ "类 别",
+ "幼 儿",
+ "摘 要",
+ "研究 成果",
+ "婴 幼儿",
+ "智 力",
+ "委员 会",
+ "食 谱",
+ "规 格",
+ "表 格",
+ "3 8.5",
+ "天 津",
+ "松 江",
+ "五 月",
+ "开 业",
+ "开发 商",
+ "交界 处",
+ "开 场",
+ "暑 期",
+ "放 假",
+ "一 到",
+ "面 具",
+ "一 轮",
+ "做 爱",
+ "气 氛",
+ "西 餐",
+ "作 法",
+ "那 本",
+ "一 本",
+ "沙 拉",
+ "主 菜",
+ "甜 点",
+ "l e",
+ "ma in",
+ "不用 说",
+ "甜 品",
+ "洋 葱",
+ "黄 油",
+ "黑 胡椒",
+ "红 酒",
+ "鸡 汤",
+ "加 盐",
+ "菠 萝",
+ "沙拉 酱",
+ "切 片",
+ "面 包",
+ "馒 头",
+ "代 替",
+ "三 明治",
+ "键 盘",
+ "蘑 菇",
+ "o k",
+ "打 碎",
+ "填 入",
+ "烤 箱",
+ "配 菜",
+ "金 黄色",
+ "金黄 色",
+ "一 刀",
+ "切 断",
+ "趴 在",
+ "整 理",
+ "先 说",
+ "说 个",
+ "无 所谓",
+ "胡椒 粉",
+ "白 醋",
+ "罐 头",
+ "蒸 熟",
+ "去 皮",
+ "奶 油",
+ "低 脂肪",
+ "低脂 肪",
+ "茄 子",
+ "罗 勒",
+ "番茄 酱",
+ "切 块",
+ "小 火",
+ "南 瓜",
+ "红 薯",
+ "大 块",
+ "油 菜",
+ "倒 入",
+ "如 同",
+ "都 行",
+ "低 热量",
+ "低热 量",
+ "橙 子",
+ "制 冷",
+ "不 爱",
+ "配 料",
+ "青 椒",
+ "火 腿",
+ "香 草",
+ "之 中",
+ "不 然",
+ "液 体",
+ "勺 子",
+ "冷 冻",
+ "到 时候",
+ "球 状",
+ "大 拇指",
+ "指 尖",
+ "西 式",
+ "炒 饭",
+ "一 番",
+ "燃 烧",
+ "一会 儿",
+ "熄 灭",
+ "o r",
+ "k now",
+ "o me",
+ "mo re",
+ "f or",
+ "牛 排",
+ "芥 末",
+ "你 别",
+ "鉴 别",
+ "手 掌",
+ "辣椒 粉",
+ "咖 喱",
+ "加 一点",
+ "香 油",
+ "一 首歌",
+ "一首 歌",
+ "星 光",
+ "我 心",
+ "歌 手",
+ "银 幕",
+ "世 间",
+ "重 叠",
+ "面 孔",
+ "默 默",
+ "六 岁",
+ "喜 剧",
+ "鼓 掌",
+ "终 于",
+ "真 理",
+ "时 光",
+ "影 像",
+ "动 人",
+ "情 感",
+ "直 至",
+ "某 日",
+ "留 着",
+ "迷 人",
+ "片 段",
+ "珍 惜",
+ "眼 前",
+ "两 地",
+ "始 终",
+ "遇 上",
+ "阳 光",
+ "笑 容",
+ "体 贴",
+ "照 顾",
+ "欺 骗",
+ "做 手术",
+ "隐 瞒",
+ "想 起",
+ "对 不起",
+ "亲 爱",
+ "谈 恋爱",
+ "投 入",
+ "难 过",
+ "考虑 一下",
+ "深 深",
+ "愧 疚",
+ "房 贷",
+ "信 用",
+ "商 量",
+ "面 色",
+ "气 喘",
+ "虚 寒",
+ "运 算",
+ "字 母",
+ "多项 式",
+ "统 称",
+ "x 2",
+ "2 a",
+ "3 x",
+ "2 n",
+ "报 考",
+ "分辨 率",
+ "缺 点",
+ "打 人",
+ "战 术",
+ "何 不",
+ "水 晶",
+ "压 制",
+ "威 力",
+ "主 人",
+ "1 5000",
+ "15 000",
+ "150 00",
+ "1500 0",
+ "反 弹",
+ "几 率",
+ "五 种",
+ "4 000",
+ "40 00",
+ "400 0",
+ "月 工资",
+ "公 章",
+ "保险 公司",
+ "十 字",
+ "没 钱",
+ "命 中",
+ "t est",
+ "i n",
+ "h asa",
+ "An d",
+ "虚 拟",
+ "驱 动",
+ "装 置",
+ "超 导",
+ "庞 大",
+ "证 实",
+ "全 世界",
+ "B BC",
+ "BB C",
+ "伊 朗",
+ "多 人",
+ "举 止",
+ "电 器",
+ "欧 美",
+ "年轻 人",
+ "批 发",
+ "花 纹",
+ "老 头",
+ "极 力",
+ "岁 数",
+ "再 有",
+ "军 官",
+ "少 将",
+ "军 衔",
+ "不 怎么样",
+ "不怎么 样",
+ "开 个",
+ "命 运",
+ "原 谅",
+ "后 悔",
+ "欣 喜",
+ "激 动",
+ "思 念",
+ "清 晨",
+ "蜗 牛",
+ "沿 着",
+ "树 干",
+ "夜 间",
+ "到 达",
+ "透 支",
+ "付 费",
+ "工 行",
+ "辩 证",
+ "大 全",
+ "大 成",
+ "2 x",
+ "可 知",
+ "频 道",
+ "收藏 夹",
+ "登 录",
+ "诸 如",
+ "星 际",
+ "改 写",
+ "a i",
+ "写 过",
+ "想象 力",
+ "杀伤 力",
+ "杀 手",
+ "对 抗",
+ "废 话",
+ "附 件",
+ "备 份",
+ "嘿 嘿",
+ "1 09",
+ "10 9",
+ "1 10",
+ "11 0",
+ "炫 耀",
+ "A I",
+ "d ll",
+ "解 压",
+ "放 个",
+ "语 句",
+ "台 下",
+ "主 程序",
+ "写 得",
+ "总 算",
+ "暴 雪",
+ "编辑 器",
+ "农 民",
+ "改 动",
+ "第 一段",
+ "第一 段",
+ "I II",
+ "II I",
+ "注 释",
+ "i d",
+ "of f",
+ "m in",
+ "mi n",
+ "秒 钟",
+ "啥 意思",
+ "m ax",
+ "ma x",
+ "基 地",
+ "多 线程",
+ "这 段",
+ "编程 语言",
+ "往 下",
+ "两 句",
+ "一下 子",
+ "意 愿",
+ "今 后",
+ "并 行",
+ "防 守",
+ "进 攻",
+ "a dd",
+ "ad d",
+ "队 伍",
+ "你 家",
+ "d o",
+ "一 段",
+ "全 过程",
+ "合 乎",
+ "语 法",
+ "上 级",
+ "齿 轮",
+ "安 心",
+ "替 代",
+ "烦 人",
+ "好 心",
+ "ma p",
+ "一 幅",
+ "t op",
+ "to p",
+ "机 制",
+ "建 造",
+ "在 内",
+ "发 呆",
+ "挨 打",
+ "占 据",
+ "切 实",
+ "前 行",
+ "精 力",
+ "编 译",
+ "歌 曲",
+ "杭 州",
+ "肝 病",
+ "同 济",
+ "杭州 市",
+ "旗 舰",
+ "广 场",
+ "魔 王",
+ "经验 值",
+ "一 倍",
+ "比 较慢",
+ "比较 慢",
+ "防火 墙",
+ "张 杰",
+ "存 档",
+ "恶 魔",
+ "哪 怕",
+ "各位 朋友",
+ "拜 年",
+ "如 意",
+ "平 安",
+ "富 贵",
+ "有 余",
+ "新年 快乐",
+ "中 锋",
+ "卡 住",
+ "掌 握",
+ "时 刻",
+ "弹 跳",
+ "训 练",
+ "上 涨",
+ "蜜 蜂",
+ "个 性",
+ "魅 族",
+ "华 为",
+ "荣 耀",
+ "千 元",
+ "红 米",
+ "最 新",
+ "配 置",
+ "搭 载",
+ "处理 器",
+ "架 构",
+ "主 频",
+ "配 上",
+ "1 300",
+ "13 00",
+ "130 0",
+ "像 素",
+ "机 身",
+ "厚 度",
+ "内 置",
+ "R AM",
+ "材 质",
+ "一 代",
+ "鼓 励",
+ "动 力",
+ "不 贵",
+ "充 电",
+ "外 形",
+ "大 力",
+ "很 火",
+ "官 网",
+ "拍 照",
+ "索 尼",
+ "摩 托",
+ "三 天",
+ "放 屁",
+ "胀 气",
+ "多 点",
+ "排 便",
+ "掉 线",
+ "巨 人",
+ "靴 子",
+ "一 米",
+ "个 子",
+ "来 往",
+ "不 怎么",
+ "老 年",
+ "交 谈",
+ "家庭 环境",
+ "顾 及",
+ "不 至于",
+ "走 向",
+ "共 用",
+ "氧 原子",
+ "管理 人员",
+ "账 户",
+ "生产 成本",
+ "成 本",
+ "各 项",
+ "间 接",
+ "计 入",
+ "科 目",
+ "周 岁",
+ "法 定",
+ "19 80",
+ "总 局",
+ "财政 部",
+ "职 工",
+ "5 9",
+ "6 7",
+ "工作 日",
+ "一 地",
+ "料 理",
+ "配 偶",
+ "子 女",
+ "批 准",
+ "酌 情",
+ "一 至",
+ "远 近",
+ "自 理",
+ "最 长",
+ "查 阅",
+ "X X",
+ "条 例",
+ "待 遇",
+ "男女 双方",
+ "可 视",
+ "假 期",
+ "休 假",
+ "发 票",
+ "淘宝 网",
+ "老 板",
+ "保 修",
+ "不 解",
+ "纳税 人",
+ "效 用",
+ "日 期",
+ "出 场",
+ "20 09",
+ "200 9",
+ "买 入",
+ "粉 色",
+ "女 王",
+ "同 级",
+ "变 白",
+ "D J",
+ "商 店",
+ "工 匠",
+ "拉 大",
+ "非 要",
+ "小 节",
+ "干 涉",
+ "好 玩",
+ "罢 了",
+ "作 息",
+ "按 时",
+ "早 起",
+ "冻 结",
+ "卖 家",
+ "违 规",
+ "店 铺",
+ "退 回",
+ "跳 水",
+ "下 肢",
+ "大 小便",
+ "大小 便",
+ "失 禁",
+ "脊 髓",
+ "骨 折",
+ "及 早",
+ "站 立",
+ "体 位",
+ "低 血压",
+ "排 泄",
+ "泌尿 系",
+ "神 经",
+ "存 款",
+ "只 求",
+ "开放 式",
+ "花 钱",
+ "坐 车",
+ "地 震",
+ "概 率",
+ "非常 低",
+ "红 利",
+ "债 券",
+ "试 验",
+ "赞 成",
+ "进 步",
+ "君 子",
+ "变 革",
+ "替 补",
+ "主 教练",
+ "主教 练",
+ "美 元",
+ "下 跌",
+ "底 线",
+ "大 幅度",
+ "大幅 度",
+ "多 天",
+ "许可 证",
+ "中 应",
+ "板 块",
+ "词 是",
+ "比 分",
+ "战 胜",
+ "一 队",
+ "逆 境",
+ "送 到",
+ "发 达",
+ "排 尿",
+ "血 尿",
+ "消炎 药",
+ "不 长",
+ "皇 家",
+ "排 石",
+ "剂 量",
+ "成 人",
+ "喝 水",
+ "葡萄 糖",
+ "早 日",
+ "恢复 健康",
+ "t m",
+ "显 存",
+ "AM D",
+ "5 12",
+ "51 2",
+ "1 G",
+ "混 混",
+ "刚 刚",
+ "合 格",
+ "夸 张",
+ "我 哥",
+ "内 测",
+ "2 G",
+ "但 会",
+ "不 爽",
+ "鬼 子",
+ "德 军",
+ "冲 锋",
+ "二 战",
+ "美 军",
+ "突 击",
+ "袭 击",
+ "喜剧 片",
+ "抗 日",
+ "五 年",
+ "组 装",
+ "忽 然",
+ "用 手",
+ "大 声",
+ "弹 簧",
+ "共 振",
+ "其 次",
+ "噪 声",
+ "迁 移",
+ "派 遣",
+ "迁 往",
+ "接 收",
+ "心 仪",
+ "项目 管理",
+ "必要 性",
+ "实 施",
+ "人 力",
+ "资源 管理",
+ "采 购",
+ "人力 资源",
+ "秉 承",
+ "一 贯",
+ "定 位",
+ "借 用",
+ "运 营",
+ "运 作",
+ "效 率",
+ "最大 化",
+ "效 应",
+ "技术 手段",
+ "调 研",
+ "流 程",
+ "编 制",
+ "编 程",
+ "辅 导",
+ "修 正",
+ "三 大",
+ "领 域",
+ "软件 开发",
+ "一 线",
+ "资 讯",
+ "多 家",
+ "协 作",
+ "兼容 性",
+ "速 率",
+ "十个 月",
+ "试 用",
+ "小 勺",
+ "喂 食",
+ "信 心",
+ "强 迫",
+ "条件 反射",
+ "嘴 边",
+ "拒 绝",
+ "摇 头",
+ "厌 恶",
+ "地 用",
+ "大 哭",
+ "一 餐",
+ "身 心",
+ "饥 饿",
+ "甜 食",
+ "辅 食",
+ "肉 汤",
+ "花 样",
+ "面 食",
+ "调 换",
+ "新 奇",
+ "多种 类型",
+ "饼 干",
+ "蛋 糕",
+ "应 有",
+ "心情 愉快",
+ "用 餐",
+ "常 会",
+ "一顿 饭",
+ "专 心",
+ "一 口",
+ "眼 中",
+ "关 乎",
+ "之 争",
+ "家 中",
+ "乖 乖",
+ "抓 住",
+ "弱 点",
+ "因 应",
+ "察 觉",
+ "避免 出现",
+ "零 食",
+ "吃 零食",
+ "吃 不下",
+ "一 顿",
+ "坐 下",
+ "排 斥",
+ "当 作",
+ "成 就",
+ "饮食 习惯",
+ "小 孩子",
+ "小孩 子",
+ "模 仿",
+ "极 强",
+ "遵 守",
+ "定 时",
+ "全 家人",
+ "全家 人",
+ "一 同",
+ "定 量",
+ "一 味",
+ "活 动量",
+ "活动 量",
+ "抗 拒",
+ "选 购",
+ "餐 具",
+ "欲 望",
+ "如 能",
+ "取 代",
+ "米 饭",
+ "丰 盛",
+ "餐 点",
+ "买 菜",
+ "不 但",
+ "增 添",
+ "趣味 性",
+ "活 泼",
+ "消 毒",
+ "冷 却",
+ "乳 酸",
+ "胃 肠炎",
+ "胃肠 炎",
+ "痢 疾",
+ "止 泻",
+ "米 汤",
+ "大 米",
+ "过 滤",
+ "再 加",
+ "捣 碎",
+ "熟 透",
+ "7 00",
+ "70 0",
+ "纤 维",
+ "果 胶",
+ "茶 水",
+ "红 茶",
+ "内 含",
+ "咖啡 因",
+ "利 尿",
+ "杀 菌",
+ "消 炎",
+ "探 讨",
+ "出 口",
+ "未 经",
+ "本 国",
+ "商 品",
+ "退 货",
+ "结果 表明",
+ "宝 贵",
+ "不 饱和",
+ "陆 地",
+ "动 植物",
+ "名 叫",
+ "营养 物质",
+ "鱼 类",
+ "贝 类",
+ "迄 今",
+ "淡水 鱼",
+ "不 免",
+ "鲑 鱼",
+ "万 里",
+ "南 极",
+ "所 含",
+ "脑 细胞",
+ "传 导",
+ "突 触",
+ "重 大",
+ "细胞 膜",
+ "延 伸",
+ "长 出",
+ "思维 能力",
+ "制 剂",
+ "此 处",
+ "所 指",
+ "所 用",
+ "降 血脂",
+ "优 异",
+ "高 密度",
+ "脂 蛋白",
+ "壁 上",
+ "沉 积",
+ "延 缓",
+ "活 性",
+ "偏 头痛",
+ "复 方",
+ "降 压",
+ "有益 于",
+ "有 意识",
+ "有意 识",
+ "有 利于",
+ "有利 于",
+ "8 %",
+ "私 立",
+ "路 上",
+ "两 只",
+ "逃 走",
+ "自然 选择",
+ "诛 仙",
+ "气 血",
+ "魔 力",
+ "幻 想",
+ "评 价",
+ "区 里",
+ "小 区",
+ "代理 商",
+ "目 光",
+ "网 游",
+ "长 远",
+ "不 难",
+ "宋 朝",
+ "宋 江",
+ "无 人",
+ "玩 法",
+ "京 师",
+ "之 地",
+ "抖 动",
+ "姿 势",
+ "动 作",
+ "器 具",
+ "上 架",
+ "汉 族",
+ "盛 行",
+ "原 材料",
+ "分 类",
+ "发 声",
+ "凡 是",
+ "最 多",
+ "贯 穿",
+ "尺 寸",
+ "公 分",
+ "过 大",
+ "组 合成",
+ "组合 成",
+ "科学 技术",
+ "橡 胶",
+ "塑 料",
+ "更 长",
+ "无 声",
+ "灯 光",
+ "旋 转",
+ "通 关",
+ "睡 得",
+ "安 稳",
+ "被 子",
+ "跟 上",
+ "着 凉",
+ "打 牌",
+ "记 不住",
+ "诀 窍",
+ "无穷 的",
+ "午 睡",
+ "一 名",
+ "宿 舍",
+ "中 午",
+ "做 作业",
+ "做作 业",
+ "两 点",
+ "做 梦",
+ "叫 醒",
+ "梦 境",
+ "同 一个",
+ "同一 个",
+ "睡 醒",
+ "浑 身",
+ "无 力",
+ "充 斥",
+ "意 志",
+ "中 断",
+ "切 换",
+ "相 反",
+ "换 成",
+ "学 说",
+ "渴 望",
+ "地 说",
+ "植 物",
+ "根 系",
+ "组 件",
+ "数据 传输",
+ "关 联",
+ "选 中",
+ "按 着",
+ "昨天 晚上",
+ "左 腿",
+ "经 历",
+ "测 量",
+ "缺 钙",
+ "两 岁",
+ "钙 片",
+ "胸 腔",
+ "胸 痛",
+ "胸 部",
+ "疾 患",
+ "增强 体质",
+ "抗 病",
+ "体育 锻炼",
+ "太极 拳",
+ "引 流",
+ "再次 出现",
+ "洁 面",
+ "依 次",
+ "乳 液",
+ "防 晒",
+ "自 制",
+ "厚 重",
+ "买 卖",
+ "联 合",
+ "亏 了",
+ "玩 玩",
+ "历史 记录",
+ "证券 公司",
+ "委 屈",
+ "旅 馆",
+ "客 栈",
+ "马 尾",
+ "十 里",
+ "海 鲜",
+ "景 色",
+ "沙 滩",
+ "广 东",
+ "日 出",
+ "日 落",
+ "南 海",
+ "一 号",
+ "大 妈",
+ "大 海",
+ "清 明",
+ "死 者",
+ "从 小",
+ "误 会",
+ "屁 股",
+ "起 初",
+ "老 爸",
+ "难 题",
+ "认 清",
+ "加 班",
+ "太 累",
+ "导 航",
+ "醒 目",
+ "大 字",
+ "这 篇",
+ "音 效",
+ "喇 叭",
+ "听 见",
+ "声 卡",
+ "问 号",
+ "感叹 号",
+ "爱 过",
+ "好 感",
+ "个人 资料",
+ "血 统",
+ "微软 公司",
+ "首 席",
+ "设计 师",
+ "商 业",
+ "互 联网",
+ "互联 网",
+ "领导 者",
+ "截 止",
+ "亿 美元",
+ "7 8",
+ "总 数",
+ "0 00",
+ "00 0",
+ "19 55",
+ "长 大",
+ "律 师",
+ "继 母",
+ "教 师",
+ "董 事",
+ "就读 于",
+ "小 学",
+ "19 73",
+ "哈佛 大学",
+ "执行 官",
+ "结 成",
+ "哈 佛",
+ "第 一台",
+ "第一 台",
+ "三 年级",
+ "三年 级",
+ "19 75",
+ "信 念",
+ "易 用",
+ "省 钱",
+ "富 于",
+ "经 费",
+ "1 999",
+ "19 99",
+ "199 9",
+ "一 书",
+ "计算机 技术",
+ "崭 新",
+ "本 书",
+ "出 版",
+ "赢 得",
+ "赞 誉",
+ "纽约 时报",
+ "今 日",
+ "畅销 书",
+ "19 95",
+ "199 5",
+ "名 列",
+ "排行 榜",
+ "两 本书",
+ "两本 书",
+ "捐 献",
+ "热 爱",
+ "董事 会",
+ "一 员",
+ "专 注",
+ "分 子",
+ "投资 人",
+ "资 源",
+ "私 人",
+ "摄 影",
+ "先 锋",
+ "轨 道",
+ "卫 星",
+ "双 向",
+ "慈善 事业",
+ "捐 赠",
+ "2 40",
+ "24 0",
+ "医 疗",
+ "教育 领域",
+ "科技 进步",
+ "全 人类",
+ "受 益",
+ "购 置",
+ "低 收入",
+ "发 放",
+ "19 94",
+ "199 4",
+ "高尔夫 球",
+ "皇 冠",
+ "此 致",
+ "敬 礼",
+ "束 缚",
+ "迎 来",
+ "大 型",
+ "天 赋",
+ "比 起",
+ "煎 熬",
+ "牧 师",
+ "气 息",
+ "十 个",
+ "背 负",
+ "重 物",
+ "四 处",
+ "烟 火",
+ "巢 穴",
+ "记 载",
+ "古 时",
+ "成 龙",
+ "大 叫",
+ "随 之",
+ "x i",
+ "形 似",
+ "石 碑",
+ "求 救",
+ "眼 神",
+ "坐 在",
+ "裙 子",
+ "不 安",
+ "寄 宿",
+ "决 不",
+ "悲 惨",
+ "被 盗",
+ "问 过",
+ "试试 看",
+ "一 律",
+ "管 用",
+ "日 语",
+ "饭 后",
+ "依 靠",
+ "也 罢",
+ "去 查",
+ "家里 人",
+ "科 室",
+ "不 好意思",
+ "不好 意思",
+ "没 能",
+ "一 类",
+ "圣诞 节",
+ "发 短信",
+ "口 气",
+ "冷 淡",
+ "脸 色",
+ "陷 入",
+ "想 念",
+ "猜 测",
+ "要 不然",
+ "肤 浅",
+ "银 行业",
+ "银行 业",
+ "课 题",
+ "大 纲",
+ "金 融",
+ "研究 所",
+ "刊 物",
+ "油 箱",
+ "取 出",
+ "块 钱",
+ "爆 炸",
+ "管 子",
+ "掉 落",
+ "拆 卸",
+ "陶 瓷",
+ "刷 卡",
+ "店 里",
+ "退 款",
+ "拜 仁",
+ "就 别",
+ "指 望",
+ "胜 利",
+ "场 面",
+ "一 球",
+ "盘 口",
+ "有点 像",
+ "贝 里",
+ "强 奸",
+ "轻 微",
+ "反 抗",
+ "按 住",
+ "双 手",
+ "床 上",
+ "指 纹",
+ "比较 复杂",
+ "男 方",
+ "误 认为",
+ "女 方",
+ "刑 法",
+ "死 刑",
+ "公共 场所",
+ "二 人",
+ "重 伤",
+ "严重 后果",
+ "误 以为",
+ "主 体",
+ "20 08",
+ "200 8",
+ "劳动 法",
+ "值得 注意",
+ "有 何",
+ "代表 性",
+ "到 位",
+ "J J",
+ "不 疼",
+ "一个 多月",
+ "一个多 月",
+ "猴 子",
+ "阴 茎",
+ "丘 疹",
+ "特 效",
+ "解 脱",
+ "生理 功能",
+ "珍 珠",
+ "翻 倍",
+ "名 义",
+ "抢 救",
+ "透 过",
+ "一 堆",
+ "废 墟",
+ "间 隙",
+ "上 身",
+ "向 前",
+ "古 人",
+ "诡 异",
+ "救 援",
+ "伸 手",
+ "冲 着",
+ "几 下",
+ "回 应",
+ "走 到",
+ "队 长",
+ "尸 体",
+ "把 手",
+ "身 子",
+ "摸 索",
+ "活 着",
+ "庇 护",
+ "一 部",
+ "下 意识",
+ "一 刻",
+ "落 泪",
+ "伟 大",
+ "无 私",
+ "这 位",
+ "共和 国",
+ "咽 喉",
+ "咽 炎",
+ "吃 点",
+ "泡 水",
+ "电 气",
+ "土 木",
+ "易 学",
+ "文 科",
+ "讲 得",
+ "更 难",
+ "同 等",
+ "两 款",
+ "相 差",
+ "太 远",
+ "7 000",
+ "70 00",
+ "700 0",
+ "皮 带",
+ "防 水",
+ "蓝 宝石",
+ "日 历",
+ "纯 正",
+ "售 后",
+ "指 针",
+ "详细 描述",
+ "参 数",
+ "长 度",
+ "外 壳",
+ "带 宽",
+ "计 时",
+ "佩 戴",
+ "买 来",
+ "虚拟 内存",
+ "老 手",
+ "翻译 成",
+ "9 9",
+ "很难 说",
+ "网 通",
+ "底 盘",
+ "东 风",
+ "省 油",
+ "铃 木",
+ "车 祸",
+ "病 房",
+ "拍 片",
+ "那 次",
+ "报 销",
+ "10 000",
+ "100 00",
+ "1000 0",
+ "8 000",
+ "80 00",
+ "800 0",
+ "会 计",
+ "现 金",
+ "收 据",
+ "原 先",
+ "隔 天",
+ "前 天",
+ "力 气",
+ "感 冒",
+ "一 包",
+ "感冒 药",
+ "三角 形",
+ "正 弦",
+ "定 理",
+ "B D",
+ "化 解",
+ "t an",
+ "ta n",
+ "元 气",
+ "安 神",
+ "倦 怠",
+ "健 忘",
+ "阳 痿",
+ "尿 频",
+ "实 证",
+ "神 马",
+ "化妆 品",
+ "水 资源",
+ "纯 净",
+ "全 都",
+ "深 层",
+ "本 地",
+ "录 制",
+ "传 到",
+ "网 易",
+ "博 客",
+ "摆 摊",
+ "爷 爷",
+ "上 街",
+ "咱 们",
+ "缺 钱",
+ "当 代",
+ "天 涯",
+ "搜 索",
+ "消 磨",
+ "新 来",
+ "上 司",
+ "挂 牌",
+ "多 多",
+ "汇 报",
+ "执行 力",
+ "雷 锋",
+ "笔 记",
+ "原 话",
+ "出 处",
+ "日 记",
+ "30 %",
+ "忽 视",
+ "冰 冻",
+ "3 80",
+ "38 0",
+ "会 员",
+ "2 800",
+ "28 00",
+ "280 0",
+ "一 等",
+ "四 等",
+ "单元 格",
+ "字 数",
+ "个 数",
+ "样 例",
+ "战 机",
+ "飞 机",
+ "第 二代",
+ "第二 代",
+ "战斗 机",
+ "第 三代",
+ "第三 代",
+ "中 等",
+ "机 翼",
+ "机 动",
+ "斜 率",
+ "诱 导",
+ "阻 力",
+ "能 量",
+ "损 失",
+ "优 于",
+ "并 未",
+ "够 用",
+ "略 有",
+ "上 将",
+ "三 代",
+ "布 局",
+ "作 战",
+ "出 于",
+ "纵 向",
+ "驾 驶",
+ "可靠 性",
+ "操 纵",
+ "不足 之处",
+ "飞行 员",
+ "小 巧",
+ "惯 性",
+ "放 宽",
+ "安 定",
+ "某种 程度",
+ "米 格",
+ "中 有",
+ "视 野",
+ "大 面积",
+ "逃 逸",
+ "略 微",
+ "头 部",
+ "充分 利用",
+ "人 机",
+ "模块 化",
+ "总 线",
+ "外 挂",
+ "雷 达",
+ "集成 电路",
+ "远 远",
+ "电子 设备",
+ "一 时",
+ "向 往",
+ "自动 化",
+ "公 开",
+ "报 道",
+ "观 念",
+ "典 范",
+ "披 露",
+ "航 空",
+ "霹 雳",
+ "魔 术",
+ "导 弹",
+ "空 军",
+ "向 来",
+ "服 役",
+ "一 举",
+ "编 码",
+ "控制 面板",
+ "区 域",
+ "前列腺 炎",
+ "交 给",
+ "前列 腺",
+ "生殖 系统",
+ "六 年级",
+ "六年 级",
+ "一 班",
+ "5 2",
+ "V IP",
+ "章 节",
+ "白 金",
+ "这 份",
+ "大 爷",
+ "突 发",
+ "脑 血栓",
+ "意 外",
+ "x xx",
+ "xx x",
+ "签 字",
+ "毫无 意义",
+ "依 法",
+ "承担 责任",
+ "效 力",
+ "规 避",
+ "多 一点",
+ "听 人",
+ "太 紧张",
+ "太紧 张",
+ "多 一些",
+ "跳 绳",
+ "睡觉 时",
+ "脑 垂体",
+ "生长 激素",
+ "元 素",
+ "氨基 酸",
+ "羟 基",
+ "含 钙",
+ "桔 子",
+ "应 届",
+ "可不 可以",
+ "考 试",
+ "看 清楚",
+ "看清 楚",
+ "职 位",
+ "人 士",
+ "注 明",
+ "词 性",
+ "声 调",
+ "p i",
+ "贫 穷",
+ "论 语",
+ "胡 须",
+ "阴 毛",
+ "同龄 人",
+ "手 淫",
+ "自 卑",
+ "胡 子",
+ "性 激素",
+ "生殖 器官",
+ "生殖器 官",
+ "来 信",
+ "大 致",
+ "特 异性",
+ "高 血脂",
+ "脑 中风",
+ "脑梗 塞",
+ "高 龄",
+ "减 低",
+ "俗 称",
+ "冲 服",
+ "搭 配",
+ "空 腹",
+ "舒 缓",
+ "晚 餐",
+ "一 杯",
+ "守 护",
+ "轻 盈",
+ "骑 马",
+ "讲 课",
+ "是 非",
+ "考 生",
+ "资格 证",
+ "朴 实",
+ "通俗 易懂",
+ "风 趣",
+ "力 求",
+ "集 中",
+ "积 极性",
+ "积极 性",
+ "平 淡",
+ "语 速",
+ "协 调",
+ "叙 事",
+ "情 景",
+ "逼 真",
+ "谈 话",
+ "真 挚",
+ "感 人",
+ "借 助",
+ "手 势",
+ "穿 插",
+ "事 例",
+ "比 喻",
+ "新 颖",
+ "恰 当",
+ "寓 意",
+ "贴 切",
+ "启发 性",
+ "难 点",
+ "力 度",
+ "不 清",
+ "一 看",
+ "任 意",
+ "删 减",
+ "课 堂",
+ "举 例",
+ "讲 述",
+ "势 必",
+ "适 时",
+ "实 例",
+ "生 动",
+ "情 趣",
+ "活 跃",
+ "启 发",
+ "逻辑 性",
+ "系统 性",
+ "深 浅",
+ "三 种",
+ "悬 念",
+ "激 发",
+ "有 意",
+ "独立 思考",
+ "巩 固",
+ "几 名",
+ "黑 板",
+ "纠 正",
+ "普遍 存在",
+ "讨 厌",
+ "舍 得",
+ "默默 地",
+ "深 渊",
+ "买 回来",
+ "零 件",
+ "删 掉",
+ "该 是",
+ "天 线",
+ "病 史",
+ "嗅 觉",
+ "耳 屎",
+ "按 压",
+ "碰 撞",
+ "集 合",
+ "左 侧",
+ "神经 痛",
+ "迎 合",
+ "波 段",
+ "即 将",
+ "飙 升",
+ "创 立",
+ "当 日",
+ "交易 日",
+ "收盘 价",
+ "权 证",
+ "开 盘",
+ "明 日",
+ "出 货",
+ "利 润",
+ "7 %",
+ "客 观",
+ "创 新",
+ "回 落",
+ "站 上",
+ "盈 利",
+ "5 %",
+ "L M",
+ "B L",
+ "屠 杀",
+ "人 多",
+ "新 款",
+ "行 货",
+ "水 货",
+ "过 年",
+ "别 急",
+ "花 园",
+ "名 片",
+ "春 节",
+ "卓 越",
+ "多 好",
+ "珠 海",
+ "得 知",
+ "曝 光",
+ "y our",
+ "you r",
+ "a t",
+ "数 额",
+ "分 会",
+ "开 工",
+ "台 湾",
+ "连续 剧",
+ "台 词",
+ "表 情",
+ "电视 剧",
+ "演 员",
+ "情 节",
+ "精 彩",
+ "亲 身",
+ "控 油",
+ "雅 虎",
+ "双 眼皮",
+ "双眼 皮",
+ "切 开",
+ "三 点",
+ "音 质",
+ "试 听",
+ "信用 卡",
+ "担 保",
+ "招 行",
+ "还 款",
+ "大 堂",
+ "经 理",
+ "p s",
+ "提 现",
+ "出 入",
+ "货 款",
+ "结 算",
+ "审 查",
+ "支 出",
+ "简 便",
+ "工作 量",
+ "次 日",
+ "手续 费",
+ "牛仔 裤",
+ "水 泡",
+ "洗涤 剂",
+ "裤 子",
+ "变 硬",
+ "大 有",
+ "照 射",
+ "组 队",
+ "打 死",
+ "单 练",
+ "分 流",
+ "3 4",
+ "括 号",
+ "句 子",
+ "未 能",
+ "说 服",
+ "m y",
+ "人 太多",
+ "指 南",
+ "世界 各地",
+ "八 岁",
+ "目前 为止",
+ "药 都",
+ "诊 治",
+ "轻 度",
+ "常 有",
+ "张 口",
+ "流 口水",
+ "无 意识",
+ "无意 识",
+ "尖 叫",
+ "哭 闹",
+ "同 龄",
+ "起 始",
+ "采取 有效",
+ "大 多",
+ "眼 睑",
+ "下 垂",
+ "斜 视",
+ "三 角",
+ "前 额",
+ "凸 出",
+ "平 坦",
+ "扁 平",
+ "伸 出",
+ "宽 大",
+ "外 貌",
+ "整 天",
+ "表 扬",
+ "被 忽视",
+ "面 容",
+ "双 眼",
+ "舌 头",
+ "外 边",
+ "认 知",
+ "拉 长",
+ "含 义",
+ "低 位",
+ "求 助",
+ "弟 弟",
+ "继续 下去",
+ "散 光",
+ "眼 镜",
+ "近 视",
+ "视 力",
+ "不 正",
+ "矫 正",
+ "可 靠",
+ "事 项",
+ "近视 眼",
+ "隐 形",
+ "看不出 来",
+ "母 乳",
+ "润 滑",
+ "吃 饱",
+ "拉 屎",
+ "大脑 皮层",
+ "小 牛",
+ "血 清",
+ "银 杏",
+ "心 脑血管",
+ "应 立即",
+ "公 交",
+ "充 值",
+ "大 西洋",
+ "新 城",
+ "南 门",
+ "总 站",
+ "邻 居",
+ "不 间断",
+ "中 途",
+ "中 要",
+ "习惯 于",
+ "休 眠",
+ "电磁 辐射",
+ "妥 当",
+ "开 启",
+ "脑 瘤",
+ "仙人 掌",
+ "后 要",
+ "破 损",
+ "劣 质",
+ "坚 决",
+ "莱 斯",
+ "头 颅",
+ "打 断",
+ "五 人",
+ "验 血",
+ "初 次",
+ "准 妈妈",
+ "隐 患",
+ "孕 早期",
+ "生存 环境",
+ "黏 膜",
+ "息 肉",
+ "阴道 内",
+ "滴 虫",
+ "微 生物",
+ "上 行",
+ "初 级",
+ "阴道 镜",
+ "活 检",
+ "妇 科",
+ "三 合",
+ "停 经",
+ "月 份",
+ "肌 瘤",
+ "终 止",
+ "尽 可能",
+ "双 侧",
+ "卵 巢",
+ "后 会",
+ "消 退",
+ "良 性",
+ "超 声",
+ "种 植",
+ "随 访",
+ "夫 妇",
+ "b log",
+ "复 制",
+ "大 头",
+ "认 证",
+ "月 底",
+ "3 1",
+ "税务 局",
+ "扫 描",
+ "B B",
+ "一 月",
+ "好 几",
+ "那 点",
+ "不 靠",
+ "原 型",
+ "北 欧",
+ "神 话",
+ "诗 词",
+ "分 发",
+ "闪 电",
+ "冰 雪",
+ "作 家",
+ "国 度",
+ "马 车",
+ "出 游",
+ "坚 果",
+ "诸 多",
+ "纷 纷",
+ "听 话",
+ "深深 地",
+ "四 维",
+ "颗 粒",
+ "前 两天",
+ "肋 骨",
+ "噩 梦",
+ "夜 晚",
+ "病 理",
+ "可 怕",
+ "体 检",
+ "妇科 病",
+ "那 才",
+ "支 票",
+ "这 笔",
+ "总 有",
+ "点 滴",
+ "经 血",
+ "淤 积",
+ "小 腹",
+ "腹 部",
+ "冲 剂",
+ "化 妆",
+ "严 谨",
+ "教 会",
+ "台 上",
+ "这 台",
+ "启 用",
+ "聊天 记录",
+ "查 到",
+ "命 名",
+ "黑 屏",
+ "C S",
+ "重新 启动",
+ "留 个",
+ "可 不",
+ "传染 给",
+ "传 给",
+ "肝 炎",
+ "转 阴",
+ "肾 虚",
+ "玉 米",
+ "核 桃",
+ "漂 白",
+ "糖 水",
+ "网 店",
+ "直 销",
+ "档 次",
+ "歌 词",
+ "歌 名",
+ "主题 曲",
+ "蓝 光",
+ "急 急",
+ "自 定义",
+ "第 一项",
+ "第一 项",
+ "背 景",
+ "定 制",
+ "太 多",
+ "藻 类",
+ "昆 虫",
+ "标 注",
+ "出 售",
+ "攻击 力",
+ "太 慢",
+ "澳 门",
+ "9 00",
+ "90 0",
+ "处女 座",
+ "射手 座",
+ "表 态",
+ "玛 丽",
+ "发 给",
+ "不 二",
+ "养 颜",
+ "枸杞 子",
+ "红 糖",
+ "30 g",
+ "煮 粥",
+ "补 肾",
+ "瘦 弱",
+ "奶 茶",
+ "100 g",
+ "趁 热",
+ "体 虚",
+ "中 老年人",
+ "中老年 人",
+ "陈 皮",
+ "冰 糖",
+ "粳 米",
+ "砂 锅",
+ "煮 成",
+ "润 肺",
+ "冬 瓜",
+ "捣 烂",
+ "药 丸",
+ "保 管",
+ "10 g",
+ "送 服",
+ "黑 斑",
+ "桃 花",
+ "乳 酪",
+ "美 白",
+ "杯 水",
+ "光 泽",
+ "眼 皮",
+ "上 铺",
+ "两 片",
+ "花生 酱",
+ "麦 片",
+ "光 亮",
+ "指 甲",
+ "拯 救",
+ "毫 无",
+ "家 用",
+ "燕 麦",
+ "燕麦 粥",
+ "圆 圈",
+ "糊 涂",
+ "颈 部",
+ "水 龙头",
+ "茶 匙",
+ "糊 状",
+ "十 分钟",
+ "十分 钟",
+ "名 为",
+ "板 凳",
+ "桌 上",
+ "两 手",
+ "深 呼吸",
+ "抗 菌",
+ "极 好",
+ "发 光",
+ "玫瑰 花",
+ "两 半",
+ "调味 料",
+ "健 脾",
+ "肝 功能",
+ "肝功 能",
+ "衰 老",
+ "U I",
+ "7 7",
+ "鲜 奶",
+ "苦 瓜",
+ "数 次",
+ "补 中",
+ "之 称",
+ "砂 糖",
+ "强 壮",
+ "二 个",
+ "做 菜",
+ "饭 菜",
+ "氨 水",
+ "m ol",
+ "mo l",
+ "从 没",
+ "想 过",
+ "回 报",
+ "另 一半",
+ "内 疚",
+ "火 车",
+ "一 列",
+ "车 次",
+ "用 时",
+ "里 程",
+ "终点 站",
+ "0 6",
+ "1 63",
+ "16 3",
+ "1 68",
+ "16 8",
+ "射 手",
+ "要 学",
+ "就 学",
+ "学 了",
+ "第一 阶段",
+ "有用 吗",
+ "初 期",
+ "弓 手",
+ "致 命",
+ "攻击 速度",
+ "加 法",
+ "副 本",
+ "搞 定",
+ "隆 鼻",
+ "崩 溃",
+ "理 科",
+ "理解 能力",
+ "做 题",
+ "一 小",
+ "浪费 时间",
+ "拍 拍",
+ "机 率",
+ "扭 转",
+ "物理 化学",
+ "教 材",
+ "读 过",
+ "半 小时",
+ "试 过",
+ "继 承",
+ "考 上",
+ "本 科",
+ "表 中",
+ "可 比",
+ "验 证",
+ "却 说",
+ "过 期",
+ "证 书",
+ "用户 注册",
+ "操作 系统",
+ "找 回",
+ "ma il",
+ "输入 您",
+ "输入 框",
+ "写字 楼",
+ "上 半年",
+ "平 稳",
+ "出 台",
+ "住 宅",
+ "凭 借",
+ "整 体",
+ "季 度",
+ "加 权",
+ "参 见",
+ "图 表",
+ "4 6",
+ "1 45",
+ "14 5",
+ "第 一章",
+ "第一 章",
+ "概 述",
+ "评 定",
+ "通 行",
+ "叫 法",
+ "乙 级",
+ "恨 不得",
+ "电 梯",
+ "要 素",
+ "房 地产",
+ "地 段",
+ "个 个",
+ "体 量",
+ "伸 展",
+ "拓 展",
+ "公 寓",
+ "休 闲",
+ "购物 中心",
+ "设 施",
+ "五 星级",
+ "五星 级",
+ "皇 后",
+ "说 成",
+ "东 方",
+ "情 结",
+ "奢 华",
+ "极 致",
+ "豪 宅",
+ "建筑 设计",
+ "高 效",
+ "物业 管理",
+ "入 住",
+ "专业 化",
+ "策 划",
+ "新 型",
+ "节 假日",
+ "基本 功能",
+ "基本功 能",
+ "物 业",
+ "伴 随",
+ "改革 开放",
+ "之 初",
+ "引 用",
+ "市场 经济",
+ "综合 性",
+ "智能 化",
+ "投 放",
+ "办事 处",
+ "场 地",
+ "出 租",
+ "大 都",
+ "建 于",
+ "贸 易",
+ "服务 业",
+ "优 越",
+ "便 利",
+ "便 于",
+ "往 来",
+ "繁 荣",
+ "都 市",
+ "推 动",
+ "三 是",
+ "人口 密度",
+ "单 元",
+ "多 功能",
+ "原 始",
+ "总 价",
+ "利润 率",
+ "全 额",
+ "投资 者",
+ "漫 长",
+ "局 面",
+ "买 家",
+ "过 长",
+ "回 收",
+ "困 境",
+ "并 存",
+ "发展 趋势",
+ "迅 猛",
+ "日 益",
+ "自 有",
+ "实 力",
+ "大 楼",
+ "一 环",
+ "刻 板",
+ "过 渡",
+ "急 于",
+ "规 范",
+ "楼 层",
+ "混 乱",
+ "入 驻",
+ "大 地",
+ "气 势",
+ "增 厚",
+ "万 物",
+ "列 车",
+ "转 让",
+ "去 世",
+ "双 人",
+ "翅 膀",
+ "1 18",
+ "11 8",
+ "2 y",
+ "满 月",
+ "打 鼾",
+ "闭 口",
+ "嗓 子",
+ "间歇 性",
+ "后 背",
+ "头 孢",
+ "糖 浆",
+ "雾 化",
+ "鸽 子",
+ "叫 声",
+ "喘 息",
+ "发育 不良",
+ "气 道",
+ "吸 入",
+ "防 空",
+ "层 面",
+ "无 人机",
+ "无人 机",
+ "车 载",
+ "轻 型",
+ "装 甲",
+ "19 86",
+ "分 公司",
+ "宇 宙",
+ "有效 性",
+ "前 沿",
+ "前 线",
+ "部 队",
+ "火 力",
+ "简 化",
+ "后 勤",
+ "支 援",
+ "复杂 性",
+ "双 重",
+ "前 方",
+ "融 合",
+ "兼 具",
+ "陆 军",
+ "战 车",
+ "指 挥",
+ "配 备",
+ "多 达",
+ "担 任",
+ "控制 器",
+ "实 时",
+ "识 别",
+ "威 胁",
+ "4 8",
+ "通 信",
+ "无线 电",
+ "无 线",
+ "对 峙",
+ "射 程",
+ "精确 度",
+ "数 位",
+ "精 度",
+ "推 进",
+ "发 射",
+ "延 迟",
+ "设 定",
+ "5 1",
+ "穿 透",
+ "监 视",
+ "极 高",
+ "杂 乱",
+ "光 电",
+ "捕 获",
+ "跟 踪",
+ "武 装",
+ "获 取",
+ "天气 状况",
+ "摄 像",
+ "脉 冲",
+ "辨 识",
+ "拉 克",
+ "编 入",
+ "公 测",
+ "玩 意",
+ "解 救",
+ "强 行",
+ "更 大",
+ "提 及",
+ "延 误",
+ "睡 前",
+ "户 外",
+ "散 步",
+ "上 床",
+ "洗 个",
+ "具体 方法",
+ "流 传",
+ "聆 听",
+ "节 律",
+ "音 响",
+ "磁 带",
+ "催 眠",
+ "有 助",
+ "加 糖",
+ "胰岛 素",
+ "人 脑",
+ "微 量",
+ "样 式",
+ "镇 定",
+ "舒 适",
+ "为 佳",
+ "右 手",
+ "芳 香",
+ "神经 系统",
+ "镇 静",
+ "糖 分",
+ "适应 环境",
+ "应 先",
+ "思 索",
+ "起 床",
+ "充 沛",
+ "恐怖 主义",
+ "领 土",
+ "纠 纷",
+ "根 源",
+ "大 国",
+ "垄 断",
+ "肆 意",
+ "冷 战",
+ "动 荡",
+ "不 合理",
+ "不合 理",
+ "分 工",
+ "体 系",
+ "支 配",
+ "发达 国家",
+ "货 币",
+ "阻 碍",
+ "失 衡",
+ "军 事",
+ "武 力",
+ "侵 略",
+ "仍 旧",
+ "政 治",
+ "推 行",
+ "核 武器",
+ "处 在",
+ "为 首",
+ "这 场",
+ "公 正",
+ "1 35",
+ "13 5",
+ "青 云",
+ "青 海",
+ "泡 泡",
+ "新 村",
+ "坐 地铁",
+ "地铁 站",
+ "节 目",
+ "收视 率",
+ "改 版",
+ "晚 会",
+ "文 艺",
+ "广 播",
+ "疏 远",
+ "表现 形式",
+ "说 唱",
+ "新 人",
+ "新 作",
+ "重 温",
+ "经 典",
+ "领 略",
+ "艺术 家",
+ "老 朋友",
+ "CC TV",
+ "首 播",
+ "清 泉",
+ "均 线",
+ "上 方",
+ "逐 步",
+ "仓 位",
+ "断 奶",
+ "很 久",
+ "奶 瓶",
+ "小 块",
+ "虾 仁",
+ "救 命",
+ "魔 兽",
+ "G T",
+ "运 转",
+ "散热 器",
+ "湖 南",
+ "土木 工程",
+ "考 了",
+ "志 愿",
+ "录 取",
+ "分 数",
+ "分数 线",
+ "放 不下",
+ "干 脆",
+ "不 接",
+ "道 歉",
+ "回 音",
+ "猜 想",
+ "坚 定",
+ "心理 准备",
+ "能 为",
+ "充 实",
+ "地 为",
+ "个人 观点",
+ "禽 流感",
+ "A TM",
+ "每 月",
+ "机 上",
+ "一 进",
+ "十 几岁",
+ "十几 岁",
+ "一 岁",
+ "痛 经",
+ "三 到",
+ "四 年",
+ "很 重",
+ "用 车",
+ "这 辆",
+ "车 主",
+ "留 心",
+ "免疫 力",
+ "锻炼 身体",
+ "空 格",
+ "预 设",
+ "空 白",
+ "录 入",
+ "汉 字",
+ "最 短",
+ "选择 性",
+ "过 不去",
+ "顺 便",
+ "点 到",
+ "elem ent",
+ "暗 黑",
+ "套 装",
+ "不 朽",
+ "之 王",
+ "塔 拉",
+ "暴 躁",
+ "外 皮",
+ "神 殿",
+ "隐 藏",
+ "巴 尔",
+ "人 品",
+ "爆 发",
+ "防晒 霜",
+ "见效 快",
+ "悬 赏",
+ "小 时候",
+ "小时 候",
+ "另 一边",
+ "偏 方",
+ "胸 肌",
+ "掩 饰",
+ "求 证",
+ "描述 性",
+ "管理 软件",
+ "该 软件",
+ "五 代",
+ "0 1",
+ "推 出",
+ "第 一代",
+ "第一 代",
+ "不断 完善",
+ "稳 定性",
+ "稳定 性",
+ "声 誉",
+ "F TP",
+ "远 程",
+ "腾 讯",
+ "端 口",
+ "关键 词",
+ "流 量",
+ "黑 名单",
+ "绑 定",
+ "M AC",
+ "财 经",
+ "探 测",
+ "截 取",
+ "报 表",
+ "各 类",
+ "传 输",
+ "网 卡",
+ "权 限",
+ "身份 验证",
+ "压 缩",
+ "打 印",
+ "跨 平台",
+ "捆 绑",
+ "可 恶",
+ "围 墙",
+ "民 俗",
+ "一 座",
+ "成 都市",
+ "成都 市",
+ "改 造",
+ "精 品",
+ "大 桥",
+ "看 点",
+ "同 行",
+ "火 锅",
+ "半 夜",
+ "外地 人",
+ "长 达",
+ "浓 缩",
+ "2 300",
+ "23 00",
+ "230 0",
+ "雕 塑",
+ "本 土",
+ "上 以",
+ "再 现",
+ "真 人",
+ "小 包",
+ "阳 历",
+ "入 宅",
+ "吉 日",
+ "农 历",
+ "十 八",
+ "贵 人",
+ "生 肖",
+ "六 合",
+ "时 请",
+ "无 助",
+ "二 月",
+ "十 九",
+ "四 月",
+ "甲 子",
+ "二 十四",
+ "二十 四",
+ "杂 物",
+ "开 门",
+ "祭 祖",
+ "开 火",
+ "点 火",
+ "祭 祀",
+ "祖 先",
+ "烹 饪",
+ "事 事",
+ "大 吉",
+ "那 要",
+ "亲 吻",
+ "难 忘",
+ "该 死",
+ "视 线",
+ "反 问",
+ "省 略",
+ "音 箱",
+ "环 绕",
+ "1 26",
+ "12 6",
+ "另 类",
+ "显示 器",
+ "不 带",
+ "会 为",
+ "开 朗",
+ "节 奏",
+ "加 快",
+ "精神 压力",
+ "欠 佳",
+ "调 节",
+ "豁 达",
+ "发 泄",
+ "静静 地",
+ "倾 诉",
+ "乐 曲",
+ "疲 惫",
+ "舒 畅",
+ "忘 掉",
+ "放 慢",
+ "生活 节奏",
+ "冷 静",
+ "做 错",
+ "勇 敢",
+ "友 谊",
+ "心情 舒畅",
+ "增 进",
+ "友 情",
+ "精 灵",
+ "司 令",
+ "豹 子",
+ "数据 线",
+ "U SB",
+ "3 D",
+ "水 准",
+ "没 多大",
+ "高 分辨率",
+ "大 屏幕",
+ "看 着",
+ "F M",
+ "G PS",
+ "货 源",
+ "八 字",
+ "娃 娃",
+ "平 均值",
+ "平均 值",
+ "网上 银行",
+ "年 终",
+ "网 银",
+ "小 丑",
+ "其 余",
+ "引 擎",
+ "部 长",
+ "首 尔",
+ "丛 林",
+ "中 西医",
+ "中西 医",
+ "外 阴",
+ "酸碱 度",
+ "p H",
+ "值 为",
+ "抑制 作用",
+ "4 %",
+ "疗 程",
+ "栓 剂",
+ "每 晚",
+ "天 为",
+ "外 用",
+ "药 膏",
+ "外 涂",
+ "外阴 炎",
+ "止 痒",
+ "口 服",
+ "晚 饭",
+ "服 药",
+ "中 草药",
+ "灼 热",
+ "处 方",
+ "苦 参",
+ "性 病",
+ "精 选",
+ "丁 香",
+ "藿 香",
+ "大 黄",
+ "真 菌",
+ "淋 病",
+ "亦 可",
+ "洗 液",
+ "已 婚",
+ "备 用",
+ "痊 愈",
+ "化 验",
+ "阴 性",
+ "学 姐",
+ "国 米",
+ "赔 率",
+ "庄 家",
+ "藏 族",
+ "西 藏",
+ "湖 边",
+ "石 块",
+ "杰 作",
+ "最 初",
+ "灵 气",
+ "藏 语",
+ "每 逢",
+ "口 中",
+ "祈 祷",
+ "凝 结",
+ "信 徒",
+ "石 刻",
+ "载 体",
+ "文 明",
+ "有 力",
+ "见 证",
+ "野 兽",
+ "抵 御",
+ "文 物",
+ "印 证",
+ "佛 像",
+ "足 迹",
+ "多 用",
+ "化 石",
+ "考 古",
+ "综 述",
+ "一 带",
+ "东 北",
+ "以 南",
+ "另 有",
+ "三 块",
+ "山 上",
+ "屋 顶",
+ "供 奉",
+ "神 灵",
+ "之 处",
+ "乃 是",
+ "化 身",
+ "高 山",
+ "峡 谷",
+ "走 势",
+ "人民 币",
+ "英 镑",
+ "中 日",
+ "一 篇",
+ "稿 子",
+ "论 述",
+ "姓 氏",
+ "列 出来",
+ "列出 来",
+ "那 儿",
+ "汉 代",
+ "来 历",
+ "氏 族",
+ "部 落",
+ "其 后",
+ "帝 王",
+ "河北 省",
+ "据 统计",
+ "演 变",
+ "欧 阳",
+ "居住 地",
+ "自 此",
+ "传 世",
+ "公 子",
+ "祖 父",
+ "排 行",
+ "例 外",
+ "司 徒",
+ "少数 民族",
+ "谥 号",
+ "避 讳",
+ "全 文",
+ "装 修",
+ "新 房",
+ "用 过",
+ "海 尔",
+ "万 元",
+ "着 重",
+ "油 价",
+ "结 实",
+ "驾 照",
+ "马 路",
+ "难 免",
+ "奔 驰",
+ "配 件",
+ "能 否",
+ "国 债",
+ "国有 企业",
+ "佩 服",
+ "哈 哈哈",
+ "哈哈 哈",
+ "数 组",
+ "只 不过",
+ "时 用",
+ "返 回",
+ "随机 数",
+ "序 列",
+ "给 定",
+ "数 列",
+ "初始 化",
+ "生成 器",
+ "计时 器",
+ "心 酸",
+ "0 7",
+ "0 2",
+ "真 心",
+ "可 惜",
+ "冠 军",
+ "曼 联",
+ "曼 城",
+ "几 万",
+ "刻 苦",
+ "成 语",
+ "几 条",
+ "坚持 不懈",
+ "净 化",
+ "搞 错",
+ "打 倒",
+ "阴 阳",
+ "两 面",
+ "区 块",
+ "古 老",
+ "幅 度",
+ "防 具",
+ "大 招",
+ "惊 人",
+ "考 量",
+ "原则 上",
+ "同 步",
+ "进 化",
+ "安 宁",
+ "打 败",
+ "第 七",
+ "王 后",
+ "第 八",
+ "第 九",
+ "不 久",
+ "神 兽",
+ "五 行",
+ "全 体",
+ "风 水",
+ "风 云",
+ "日 月",
+ "乾 坤",
+ "天 地",
+ "心 得",
+ "填 满",
+ "七 星",
+ "一 栏",
+ "翻 转",
+ "预 览",
+ "看 一看",
+ "上 部",
+ "2 20",
+ "22 0",
+ "快 慢",
+ "排 列",
+ "景 天",
+ "指 令",
+ "对 付",
+ "累 加",
+ "零 花钱",
+ "上 交",
+ "生活 费",
+ "余 下",
+ "亲戚 朋友",
+ "从来 不",
+ "很 烦",
+ "有 次",
+ "没 想到",
+ "没想 到",
+ "居 然",
+ "几句 话",
+ "舅 舅",
+ "姨 妈",
+ "租 房",
+ "一 趟",
+ "收 看",
+ "顶 多",
+ "同 情",
+ "分 清",
+ "小 钱",
+ "活 得",
+ "尽 力",
+ "亲 人",
+ "眼 里",
+ "埋 怨",
+ "有 句",
+ "远 处",
+ "唯 独",
+ "睫 毛",
+ "发 脾气",
+ "裁 员",
+ "感 想",
+ "今天 下午",
+ "将 要",
+ "早 就",
+ "段 时间",
+ "低 端",
+ "岗 位",
+ "推荐 信",
+ "职 场",
+ "生 涯",
+ "好 几个",
+ "好几 个",
+ "U C",
+ "榴 莲",
+ "热 量",
+ "中 所含",
+ "果 糖",
+ "橘 子",
+ "李 子",
+ "高 热量",
+ "高热 量",
+ "龙 眼",
+ "尽 量少",
+ "尽量 少",
+ "代谢 率",
+ "不 利于",
+ "不利 于",
+ "减 重",
+ "白 开水",
+ "吃 法",
+ "柚 子",
+ "绝 大多数",
+ "粗 纤维",
+ "节 食",
+ "挑 食",
+ "瘦 肉",
+ "第 一点",
+ "第一 点",
+ "心 急",
+ "事 后",
+ "下 身",
+ "光 线",
+ "柔 和",
+ "裸 体",
+ "喝 酒",
+ "避 孕",
+ "关 爱",
+ "内 裤",
+ "双 腿",
+ "张 开",
+ "地 上",
+ "正 面",
+ "处女 膜",
+ "破 裂",
+ "疼 痛感",
+ "疼痛 感",
+ "内 衣",
+ "不 下",
+ "胸 罩",
+ "青年 人",
+ "十 几年",
+ "十几 年",
+ "交 代",
+ "学 费",
+ "可 悲",
+ "红 包",
+ "贡 献",
+ "中 年",
+ "应 付",
+ "失 业",
+ "看 不起",
+ "势 力",
+ "武 将",
+ "出 头",
+ "乱 世",
+ "多 名",
+ "无 数",
+ "跟 随",
+ "让 玩家",
+ "封 印",
+ "治 安",
+ "吕 布",
+ "袁 绍",
+ "关 羽",
+ "张 飞",
+ "赵 云",
+ "加 深",
+ "犹 豫",
+ "追 随",
+ "脚 步",
+ "梦 想",
+ "19 21",
+ "中国 政府",
+ "两 颗",
+ "19 29",
+ "地 质",
+ "头 骨",
+ "预 言",
+ "昏 暗",
+ "舍 不得",
+ "蜡 烛",
+ "挖 掘",
+ "提 议",
+ "国 宝",
+ "主 张",
+ "天 亮",
+ "这 项",
+ "差 一点",
+ "少 年",
+ "19 36",
+ "考古 学家",
+ "考古学 家",
+ "主 持",
+ "发 掘",
+ "当 中",
+ "震 惊",
+ "史 上",
+ "罕 见",
+ "这 一",
+ "模 型",
+ "复 原",
+ "第 三个",
+ "第三 个",
+ "落 下",
+ "直 角",
+ "挂 钩",
+ "格 斗",
+ "7 4",
+ "8 4",
+ "就 职",
+ "1 500",
+ "15 00",
+ "150 0",
+ "喝 茶",
+ "午 休",
+ "刚刚 开始",
+ "一 二",
+ "剧 本",
+ "C C",
+ "司马 懿",
+ "手 枪",
+ "火 药",
+ "高 压",
+ "构 造",
+ "平方 厘米",
+ "隔 离",
+ "眼 角",
+ "出 句",
+ "微 风",
+ "对 句",
+ "临 近",
+ "联 网",
+ "太 长",
+ "电 容",
+ "修 理",
+ "小 店",
+ "修 好",
+ "放 电",
+ "作 文",
+ "昆 明",
+ "大 理",
+ "古 城",
+ "风 情",
+ "古 镇",
+ "丽 江",
+ "冰 川",
+ "壁 画",
+ "观 音",
+ "酒 吧",
+ "草 原",
+ "大 宝",
+ "太 子",
+ "孔 雀",
+ "热 带",
+ "瀑 布",
+ "山 寨",
+ "植物 园",
+ "缅 甸",
+ "火 山",
+ "北 海",
+ "湿 地",
+ "风 景区",
+ "风景 区",
+ "遗 址",
+ "星 云",
+ "自然 保护区",
+ "温 泉",
+ "珠 江",
+ "九 龙",
+ "发 烧",
+ "另 一只",
+ "暗示 着",
+ "一 瞬间",
+ "灵 感",
+ "点 子",
+ "流 经",
+ "一 圈",
+ "半 球",
+ "索 赔",
+ "G M",
+ "热 血",
+ "第二 部",
+ "死 神",
+ "大大 的",
+ "尾 巴",
+ "之 子",
+ "现 状",
+ "心 意",
+ "给 钱",
+ "送 礼",
+ "长 辈",
+ "微博 上",
+ "谁 家",
+ "好 用",
+ "出 品",
+ "屏 障",
+ "全 自动",
+ "好 多年",
+ "好多 年",
+ "车 上",
+ "油 漆",
+ "搜索 引擎",
+ "我 练",
+ "项 链",
+ "腰 带",
+ "多少 级",
+ "方 可",
+ "T 恤",
+ "先 去",
+ "天 空",
+ "三 级",
+ "th an",
+ "i s",
+ "理 应",
+ "水 管",
+ "呜 呜",
+ "关 上",
+ "楼 下",
+ "求 教",
+ "时 有",
+ "压 强",
+ "不 均",
+ "冲 击",
+ "枢 纽",
+ "乘 车",
+ "直 达",
+ "火 车站",
+ "火车 站",
+ "票 价",
+ "北 路",
+ "高 架",
+ "多 级",
+ "换 乘",
+ "乘 客",
+ "北 侧",
+ "南 侧",
+ "直 行",
+ "进 场",
+ "车 道",
+ "1 400",
+ "14 00",
+ "140 0",
+ "很 会",
+ "宝 藏",
+ "飞 龙",
+ "2 70",
+ "27 0",
+ "回 避",
+ "好 点",
+ "加 血",
+ "双 刀",
+ "4 4",
+ "办 学",
+ "彩 虹",
+ "骑 士",
+ "大 厅",
+ "we re",
+ "no t",
+ "棋 盘",
+ "河南 省",
+ "黄 河",
+ "南 岸",
+ "一 处",
+ "西 汉",
+ "初 年",
+ "刘 邦",
+ "项 羽",
+ "四 十",
+ "边 界",
+ "两 边",
+ "东 边",
+ "霸 王",
+ "西 边",
+ "象 棋",
+ "品 德",
+ "可 信",
+ "战 国",
+ "末 期",
+ "棋 子",
+ "兵 种",
+ "国际 象棋",
+ "推 翻",
+ "长期 以来",
+ "起 源于",
+ "起源 于",
+ "一 区",
+ "下 棋",
+ "史 料",
+ "郑 州",
+ "该 地",
+ "出 兵",
+ "攻 打",
+ "楚 国",
+ "被 迫",
+ "两 座",
+ "接 头",
+ "复 合",
+ "导 体",
+ "高 强度",
+ "接 地",
+ "气 象",
+ "轨道 交通",
+ "引 入",
+ "反 射",
+ "铁 路",
+ "机 车",
+ "牵 引",
+ "即 用",
+ "低 廉",
+ "腐 蚀",
+ "结 晶",
+ "合 体",
+ "扮演 着",
+ "极其 重要",
+ "减 慢",
+ "土 壤",
+ "电 阻",
+ "0.2 5",
+ "推 移",
+ "发生 变化",
+ "开 裂",
+ "残留 物",
+ "溢 出",
+ "无 氧",
+ "内 层",
+ "低 于",
+ "遭 到",
+ "等同 于",
+ "节 约",
+ "便 捷",
+ "场 合",
+ "指 标",
+ "裂 缝",
+ "应用 领域",
+ "介 质",
+ "战 队",
+ "队 员",
+ "王 朝",
+ "锦标 赛",
+ "阵 容",
+ "简 要",
+ "赎 回",
+ "来 讲",
+ "时 机",
+ "诚 恳",
+ "批 评",
+ "持 有人",
+ "持有 人",
+ "恰恰 相反",
+ "监 管",
+ "完 善",
+ "水 泥",
+ "潜 力",
+ "密 切",
+ "观 注",
+ "把 握",
+ "祝 您",
+ "股 骨",
+ "克服 困难",
+ "过 失",
+ "故 意",
+ "司 法",
+ "先 前",
+ "不 应",
+ "定 性",
+ "刑事 责任",
+ "义 务",
+ "心理 因素",
+ "点 评",
+ "前 段时间",
+ "大 半年",
+ "大半 年",
+ "一 夜",
+ "理 赔",
+ "何 时",
+ "返 还",
+ "赔 付",
+ "抵 押",
+ "赔 偿",
+ "社会 化",
+ "全球 化",
+ "现代 化",
+ "必要 条件",
+ "直 播",
+ "电视 台",
+ "平 板",
+ "湖南 卫视",
+ "枯 燥",
+ "相对 来说",
+ "执 法",
+ "危险 性",
+ "片 面",
+ "一 心",
+ "工作 效率",
+ "定 为",
+ "抵 抗",
+ "沦 陷",
+ "故 而",
+ "异 地",
+ "恋 情",
+ "济 南",
+ "打 过",
+ "遇 见",
+ "空 洞",
+ "说 出",
+ "有 太多",
+ "几 分",
+ "最 有",
+ "最 爱",
+ "心 动",
+ "果 断",
+ "断 开",
+ "主 见",
+ "排 气",
+ "暴 击",
+ "F B",
+ "不 大",
+ "物理 攻击",
+ "耗 费",
+ "学 长",
+ "工作 室",
+ "友 好",
+ "第 三方",
+ "第三 方",
+ "通 讯",
+ "不 知情",
+ "不知 情",
+ "个人 隐私",
+ "之 用",
+ "发 帖",
+ "打 不开",
+ "i p",
+ "漏 洞",
+ "拔 掉",
+ "麦克 风",
+ "注射 液",
+ "邮 票",
+ "我 点",
+ "稍 后",
+ "如 有",
+ "客服 热线",
+ "多年 生",
+ "草 本",
+ "花 期",
+ "叶 子",
+ "连 同",
+ "凉 爽",
+ "开 花",
+ "栽 培",
+ "肥 沃",
+ "疏 松",
+ "盆 栽",
+ "下 旬",
+ "而 定",
+ "防 寒",
+ "过 早",
+ "选 取",
+ "肩 部",
+ "抽 出",
+ "腐 烂",
+ "粘 液",
+ "植 株",
+ "花 色",
+ "春 季",
+ "草 坪",
+ "右 眼",
+ "大 四",
+ "药 方",
+ "20 14",
+ "201 4",
+ "患 上",
+ "讲 讲",
+ "头 疼",
+ "香 水",
+ "帽 子",
+ "大 会",
+ "双 臂",
+ "肌 肉",
+ "过 低",
+ "椅 子",
+ "接 电话",
+ "肩 膀",
+ "奶 酪",
+ "会 先",
+ "喝 咖啡",
+ "不 论",
+ "人 用",
+ "发 麻",
+ "翻 身",
+ "脊 椎",
+ "依 托",
+ "喉 咙",
+ "无 须",
+ "固 态",
+ "液 态",
+ "地 壳",
+ "向 下",
+ "相当 于",
+ "查 查",
+ "不 缺",
+ "消化 道",
+ "胃 炎",
+ "肌 注",
+ "顽固 性",
+ "少 食",
+ "生 冷",
+ "麻 将",
+ "之 情",
+ "更 深",
+ "丑 陋",
+ "毛 发",
+ "雄 性激素",
+ "雄性 激素",
+ "雄 激素",
+ "躯 干",
+ "腋 窝",
+ "可 使",
+ "重 生",
+ "产 后",
+ "妊娠 期",
+ "见 于",
+ "临床 表现",
+ "皮 质",
+ "始 于",
+ "进行 性",
+ "性 欲",
+ "乳 腺",
+ "对称 性",
+ "前 往",
+ "查 明",
+ "根本 原因",
+ "切 不可",
+ "擅 自",
+ "耽 误",
+ "浓 密",
+ "变 色",
+ "放 进",
+ "脉 络",
+ "本 子",
+ "这 本",
+ "楼 盘",
+ "营 销",
+ "始终 保持",
+ "时间 段",
+ "经济 效益",
+ "业 内",
+ "分 期",
+ "得 出",
+ "涨 价",
+ "收 盘",
+ "中 山",
+ "p df",
+ "pd f",
+ "提 取",
+ "PD F",
+ "坐 火车",
+ "打 折",
+ "机 票",
+ "几 十",
+ "机 场",
+ "相比 之下",
+ "浮 动",
+ "余 地",
+ "说 起",
+ "诺 尔",
+ "饭 前",
+ "坚持 下去",
+ "产 于",
+ "湖 北",
+ "广 西",
+ "吉 姆",
+ "绰 号",
+ "转化 成",
+ "荷 花",
+ "果 实",
+ "迹 象",
+ "喝 完",
+ "畅 通",
+ "爱 好",
+ "杜 仲",
+ "喝 一杯",
+ "野 猪",
+ "4 9",
+ "诅 咒",
+ "老 实",
+ "翻 滚",
+ "后 续",
+ "注 销",
+ "火 炮",
+ "不 符",
+ "1 11",
+ "11 1",
+ "金 币",
+ "眼 药水",
+ "写作 能力",
+ "写 文章",
+ "自 知",
+ "流行 音乐",
+ "轻 柔",
+ "预 计",
+ "低 音",
+ "标 配",
+ "电源 线",
+ "建设 性",
+ "搞 好",
+ "前 景",
+ "微 小",
+ "谎 言",
+ "踏 实",
+ "大 方",
+ "长 沙",
+ "研究 生",
+ "在 职",
+ "硕 士",
+ "雪 梨",
+ "锅 里",
+ "放 水",
+ "三 四天",
+ "三四 天",
+ "下 巴",
+ "尿 酸",
+ "填 充",
+ "假 体",
+ "争 吵",
+ "敷 衍",
+ "那 天",
+ "缺 陷",
+ "忘 不了",
+ "放 开",
+ "长 城",
+ "试 探",
+ "就 让",
+ "质 疑",
+ "复制 到",
+ "网络 连接",
+ "弹 出",
+ "预 警",
+ "魔 鬼",
+ "变 种",
+ "详细 信息",
+ "刻 录",
+ "首 歌",
+ "D 盘",
+ "存 有",
+ "行 程",
+ "二手 车",
+ "排 量",
+ "行 情",
+ "M L",
+ "性 交",
+ "两 腿",
+ "腰 部",
+ "便 是",
+ "手 绘",
+ "技 法",
+ "效果 图",
+ "师 生",
+ "作品 集",
+ "书 籍",
+ "傲 慢",
+ "城 墙",
+ "婚 纱",
+ "咋 样",
+ "情 侣",
+ "被 套",
+ "3 8",
+ "懦 弱",
+ "所 见",
+ "方 针",
+ "疑 虑",
+ "拉 拉",
+ "打 拼",
+ "见 过",
+ "抛 弃",
+ "投 靠",
+ "捷 径",
+ "尽 全力",
+ "总 动员",
+ "小 鱼",
+ "天 猫",
+ "冲 浪",
+ "用户 名",
+ "S cience",
+ "英语 单词",
+ "首 字母",
+ "缩 写",
+ "切 记",
+ "肾 衰竭",
+ "痉 挛",
+ "瘫 痪",
+ "肾 结石",
+ "尽量 避免",
+ "蓝 莓",
+ "豌 豆",
+ "心 碎",
+ "吃 苦",
+ "珍 贵",
+ "一 分",
+ "机 箱",
+ "读 音",
+ "乐 器",
+ "泛 指",
+ "c h",
+ "竹 子",
+ "汉 中",
+ "百 货",
+ "二 楼",
+ "东 东",
+ "省 事",
+ "两 三天",
+ "化学 成分",
+ "淘 宝",
+ "社 保",
+ "户 籍",
+ "四川 省",
+ "缴 费",
+ "医疗 保险",
+ "养 老",
+ "铂 金",
+ "搜 狗",
+ "输入 法",
+ "合 肥",
+ "框 架",
+ "隐形 眼镜",
+ "眼 科",
+ "眼 部",
+ "知 名",
+ "安徽 省",
+ "晶 体",
+ "角 膜",
+ "困 扰",
+ "惊 悚",
+ "信 条",
+ "太平 洋",
+ "包 皮",
+ "龟头 炎",
+ "两 类",
+ "单纯 性",
+ "或 非",
+ "传染 性",
+ "包 茎",
+ "龟 头",
+ "病 原",
+ "主 导",
+ "细菌 性",
+ "病原 菌",
+ "致 病",
+ "致 病菌",
+ "致病 菌",
+ "中 以",
+ "多 为",
+ "冲 血",
+ "产 物",
+ "日 渐",
+ "极 易",
+ "痒 痒",
+ "红 血丝",
+ "初 二",
+ "钢 筋",
+ "两 根",
+ "题 意",
+ "纠 结",
+ "万 左右",
+ "前 卫",
+ "取 向",
+ "生 小孩",
+ "听 觉",
+ "走 走",
+ "忠 告",
+ "母乳 喂养",
+ "健康 成长",
+ "阴 部",
+ "整 洁",
+ "三 人",
+ "说 谎",
+ "星期 一",
+ "星期 二",
+ "星期 三",
+ "真 话",
+ "星期 四",
+ "星期 五",
+ "星期 六",
+ "星期 天",
+ "净 资产",
+ "亏 损",
+ "缩 水",
+ "券 商",
+ "熊 市",
+ "匕 首",
+ "合 金",
+ "手 里",
+ "紧 身",
+ "十 万",
+ "出 个",
+ "哪 来",
+ "绝 望",
+ "打 法",
+ "抵 消",
+ "骨 头",
+ "碎 片",
+ "多 万",
+ "小 号",
+ "骷 髅",
+ "膳 食",
+ "较 长时间",
+ "较长 时间",
+ "有 氧",
+ "长 距离",
+ "慢 跑",
+ "决 心",
+ "仰 卧",
+ "哑 铃",
+ "爆 发力",
+ "爆发 力",
+ "1 06",
+ "10 6",
+ "公交 车",
+ "周 末",
+ "打 打",
+ "羽毛 球",
+ "承 包",
+ "一体 化",
+ "神 探",
+ "n g",
+ "房产 证",
+ "分 割",
+ "买 房子",
+ "买房 子",
+ "这 部分",
+ "这部 分",
+ "无 权",
+ "收 听",
+ "应 交",
+ "补 贴",
+ "定 额",
+ "票 据",
+ "日 用品",
+ "并 入",
+ "合 法",
+ "大 神",
+ "害 羞",
+ "解码 器",
+ "解 码",
+ "几 块",
+ "指 头",
+ "奶 水",
+ "老 抽",
+ "火 候",
+ "付 款",
+ "签 订",
+ "购 房",
+ "偿 还",
+ "不动 产",
+ "设 立",
+ "变 更",
+ "生 效",
+ "还 给",
+ "拿 出",
+ "证 据",
+ "之 战",
+ "上 马",
+ "剧 情",
+ "贵 重",
+ "必 杀",
+ "连 击",
+ "我 觉",
+ "强 力",
+ "优 缺点",
+ "车 里",
+ "竟 然",
+ "不 值",
+ "浇 水",
+ "发 黄",
+ "诚 心",
+ "随 手",
+ "河 南",
+ "理工 大学",
+ "工程 学院",
+ "工程学 院",
+ "资 本",
+ "考 研",
+ "复 习",
+ "好 久",
+ "南 京",
+ "潮 流",
+ "小 型",
+ "不 在意",
+ "慢 性病",
+ "慢性 病",
+ "资 产",
+ "证 券",
+ "总 和",
+ "履 行",
+ "回 购",
+ "余 额",
+ "职 员",
+ "玩 儿",
+ "有 点儿",
+ "有点 儿",
+ "糖尿病 人",
+ "胰 岛",
+ "蜂 胶",
+ "穿 衣",
+ "很 瘦",
+ "穿 衣服",
+ "穿衣 服",
+ "短 裙",
+ "诱 惑",
+ "包 包",
+ "开 出",
+ "白 银",
+ "太 极",
+ "鸳 鸯",
+ "黄 帝",
+ "顶 尖",
+ "精 炼",
+ "加 倍",
+ "士 兵",
+ "金 牌",
+ "千 里",
+ "青 龙",
+ "所 知",
+ "乌 龟",
+ "往前 走",
+ "对 面",
+ "打 造",
+ "小 刀",
+ "菜 鸟",
+ "来 个",
+ "惊 喜",
+ "不 在乎",
+ "高 峰",
+ "几 位",
+ "暑 假",
+ "八 年",
+ "书 店",
+ "哪 天",
+ "二 十",
+ "九 月",
+ "创 业",
+ "多 长",
+ "艰 难",
+ "做 过",
+ "提 倡",
+ "中年 人",
+ "资 历",
+ "指 引",
+ "无 比",
+ "爬 起来",
+ "服务 中心",
+ "广 大",
+ "繁 忙",
+ "贵 族",
+ "结 交",
+ "多 项",
+ "假 日",
+ "海 上",
+ "卡 拉",
+ "真 情",
+ "告 白",
+ "交 友",
+ "详 情",
+ "致 电",
+ "响 应",
+ "切除 术",
+ "自 费",
+ "修 养",
+ "很 着急",
+ "发病 率",
+ "子 宫腔",
+ "子宫 腔",
+ "对 称",
+ "原发 性",
+ "不育 症",
+ "切 除",
+ "早 产",
+ "人工 流产",
+ "刮 宫",
+ "盆 腔",
+ "宫 内",
+ "内 膜",
+ "文 献",
+ "核 磁共振",
+ "宫腔 镜",
+ "宫 腔",
+ "习 惯性",
+ "习惯 性",
+ "问 世",
+ "修 剪",
+ "重 建",
+ "腹 壁",
+ "留 有",
+ "瘢 痕",
+ "粘 连",
+ "分 娩",
+ "完整 性",
+ "正 宗",
+ "商 场",
+ "1 14",
+ "11 4",
+ "市 区",
+ "交 大",
+ "南 路",
+ "亚 洲",
+ "美 洲",
+ "首 届",
+ "世界 遗产",
+ "进 来",
+ "早 泄",
+ "二 十岁",
+ "二十 岁",
+ "念 书",
+ "自 责",
+ "能 治好",
+ "能治 好",
+ "勃 起",
+ "微 波",
+ "背 部",
+ "阻 断",
+ "年龄 段",
+ "丁 丁",
+ "均 值",
+ "太 重",
+ "包 袱",
+ "挣 钱",
+ "死 去",
+ "崇 高",
+ "平 民",
+ "吃 亏",
+ "碰 上",
+ "一 招",
+ "人物 形象",
+ "营养 师",
+ "星 星",
+ "量 身",
+ "拍 摄",
+ "功 夫",
+ "轮 廓",
+ "身 材",
+ "眼 球",
+ "羡 慕",
+ "采 访",
+ "体 形",
+ "早 餐",
+ "中 餐",
+ "七 点",
+ "九 点",
+ "两 杯",
+ "外 衣",
+ "一 瓶",
+ "译 文",
+ "风 吹",
+ "香 气",
+ "tr ee",
+ "苦 苦",
+ "海 面",
+ "流 浪",
+ "税 率",
+ "就是 说",
+ "一 级",
+ "1 25",
+ "12 5",
+ "3 75",
+ "37 5",
+ "纳 税",
+ "依 照",
+ "1 600",
+ "16 00",
+ "160 0",
+ "下 单",
+ "疑 问",
+ "任务 栏",
+ "插 头",
+ "专业 人士",
+ "元 件",
+ "不 感兴趣",
+ "大 三",
+ "来得 及",
+ "很 早",
+ "整 型",
+ "表达 式",
+ "in t",
+ "具体 步骤",
+ "占 有",
+ "存 储",
+ "字 节",
+ "占 用",
+ "入 门",
+ "这 会",
+ "淤 血",
+ "好 办",
+ "d x",
+ "常 数",
+ "4 50",
+ "45 0",
+ "先 到",
+ "我 选",
+ "戒 酒",
+ "不 看",
+ "胃 镜",
+ "医 学界",
+ "医学 界",
+ "丁 啉",
+ "克 拉",
+ "霉 素",
+ "青 霉素",
+ "里 边",
+ "声 波",
+ "心 跳",
+ "咖啡 色",
+ "超 声波",
+ "超声 波",
+ "发 送到",
+ "发送 到",
+ "发 送",
+ "0 4",
+ "信 件",
+ "发 到",
+ "这样 一来",
+ "刚 来",
+ "截 图",
+ "金牛 座",
+ "双子 座",
+ "狮子 座",
+ "天蝎 座",
+ "水瓶 座",
+ "强 国",
+ "我 军",
+ "三 者",
+ "换 算",
+ "特 种",
+ "口 径",
+ "6 50",
+ "65 0",
+ "各 国",
+ "炮 弹",
+ "弹 药",
+ "单 车",
+ "3 500",
+ "35 00",
+ "350 0",
+ "主 宰",
+ "体 型",
+ "探测 器",
+ "9 000",
+ "90 00",
+ "900 0",
+ "灵敏 度",
+ "造 价",
+ "高 达",
+ "恶 劣",
+ "近 几年",
+ "关键 技术",
+ "突破 性",
+ "合 一",
+ "射 击",
+ "校 正",
+ "据 称",
+ "命中 率",
+ "令人 满意",
+ "炮 塔",
+ "后 部",
+ "这 套",
+ "成 像",
+ "遥 控",
+ "瞄 准",
+ "全 方位",
+ "按 下",
+ "剥 夺",
+ "落 入",
+ "第二 项",
+ "军 队",
+ "车 体",
+ "台 阶",
+ "层 次",
+ "马 力",
+ "柴油 机",
+ "传 动",
+ "大幅 提高",
+ "超 越",
+ "自 学",
+ "3 G",
+ "开发 区",
+ "门 票",
+ "过 夜",
+ "美 金",
+ "工 商",
+ "法 宝",
+ "练 练",
+ "我 见",
+ "1 99",
+ "19 9",
+ "矮 人",
+ "铁 匠",
+ "肚子 疼",
+ "肠 胃",
+ "健 全",
+ "倒 下",
+ "荨 麻疹",
+ "股 指",
+ "期 货",
+ "地 产",
+ "汇 率",
+ "制 度",
+ "收益 率",
+ "境 内",
+ "在 短期内",
+ "外 汇",
+ "国际 化",
+ "房 价",
+ "亿 元",
+ "金融 机构",
+ "东 南亚",
+ "东南 亚",
+ "子 公司",
+ "外 资",
+ "房 产",
+ "波 动",
+ "境 外",
+ "奥运 会",
+ "海 外",
+ "大 幅",
+ "近 两年",
+ "外 企",
+ "租 赁",
+ "商 铺",
+ "高 价",
+ "一 股",
+ "为 例",
+ "进 驻",
+ "年 底",
+ "别 墅",
+ "商品 房",
+ "销售 量",
+ "销售 额",
+ "潜 在",
+ "信 贷",
+ "严格 控制",
+ "外 来",
+ "比 重",
+ "不断 扩大",
+ "疲 软",
+ "会 因",
+ "供 给",
+ "总 量",
+ "外 交",
+ "获 利",
+ "需求 量",
+ "短 期内",
+ "短期 内",
+ "R T",
+ "竞技 场",
+ "莫 过于",
+ "周期 表",
+ "化学 式",
+ "方 程式",
+ "方程 式",
+ "书 上",
+ "吻 合",
+ "钻 研",
+ "挡 住",
+ "自然 科学",
+ "归 纳",
+ "之 母",
+ "熟 知",
+ "题 型",
+ "见 识",
+ "仅 为",
+ "丢 掉",
+ "团 购",
+ "年 限",
+ "本 期",
+ "取 胜",
+ "主 场",
+ "不 败",
+ "格 局",
+ "球 形",
+ "质 数",
+ "整 除",
+ "问 道",
+ "不 必要",
+ "不必 要",
+ "效 益",
+ "考 个",
+ "下 半年",
+ "回 事",
+ "我 开",
+ "不 卡",
+ "排 队",
+ "多 吃点",
+ "梨 子",
+ "柿 子",
+ "转 弯",
+ "时 时",
+ "原 地",
+ "专 辑",
+ "a l",
+ "一 笑",
+ "红 颜",
+ "超 大",
+ "恰 恰",
+ "借 口",
+ "早 已",
+ "小 学生",
+ "小学 生",
+ "英语 水平",
+ "没 用过",
+ "没用 过",
+ "玩 过",
+ "看 电视",
+ "中 学生",
+ "中学 生",
+ "词汇 量",
+ "奉 行",
+ "招 商",
+ "格式 化",
+ "一 键",
+ "还 原",
+ "C 盘",
+ "off ice",
+ "应用 软件",
+ "大 胆",
+ "20 04",
+ "200 4",
+ "深 夜",
+ "红 灯",
+ "坏 习惯",
+ "交 税",
+ "刻 意",
+ "6 5",
+ "1 27",
+ "12 7",
+ "1 07",
+ "10 7",
+ "吃 个",
+ "精 准",
+ "1 04",
+ "10 4",
+ "背 后",
+ "卡 利亚",
+ "卡 塔",
+ "0 3",
+ "0 5",
+ "尤 文",
+ "0 9",
+ "维 尔",
+ "命 题",
+ "等 价",
+ "口 令",
+ "繁 琐",
+ "破 解",
+ "文件 系统",
+ "F 8",
+ "命令 行",
+ "列 出",
+ "本 例",
+ "回 车",
+ "键 入",
+ "n et",
+ "ne t",
+ "use r",
+ "12 34",
+ "123 4",
+ "通 电",
+ "试 一试",
+ "为 空",
+ "女 士",
+ "小红 点",
+ "褪 色",
+ "血 丝",
+ "蜘 蛛",
+ "搏 动",
+ "压 迫",
+ "减 压",
+ "肝 硬化",
+ "数 月",
+ "看 作",
+ "正 常人",
+ "正常 人",
+ "景 象",
+ "洗澡 时",
+ "按 规定",
+ "德 州",
+ "咆 哮",
+ "散 射",
+ "闪 耀",
+ "唯 美",
+ "归 来",
+ "光 明",
+ "木 板",
+ "静 止",
+ "面 上",
+ "射 入",
+ "动 能",
+ "动 量",
+ "m o",
+ "代 入",
+ "合 剂",
+ "药 水",
+ "圈 里",
+ "B S",
+ "交 接",
+ "现 阶段",
+ "黑 暗",
+ "碾 压",
+ "报 复",
+ "力 士",
+ "山 洞",
+ "师 父",
+ "慈 悲",
+ "感 恩",
+ "灵 性",
+ "绳 子",
+ "长 跑",
+ "行 进",
+ "电 影院",
+ "电影 院",
+ "1 70",
+ "17 0",
+ "考试 成绩",
+ "海 关",
+ "19 88",
+ "日 至",
+ "海 军",
+ "舰 队",
+ "南 端",
+ "北 端",
+ "军 舰",
+ "保 卫",
+ "建 交",
+ "南 美洲",
+ "南美 洲",
+ "东 南部",
+ "东南 部",
+ "海 战",
+ "历 时",
+ "奉 命",
+ "解放 军",
+ "战 舰",
+ "国 旗",
+ "俘 虏",
+ "伤 亡",
+ "失 踪",
+ "代 价",
+ "沉 重",
+ "当 局",
+ "企 图",
+ "卡 塔尔",
+ "卡塔 尔",
+ "会 见",
+ "捷克 斯洛伐克",
+ "总 统",
+ "时 说",
+ "宣 布",
+ "总 理",
+ "准 则",
+ "甲 醛",
+ "叫 好",
+ "灭 绝",
+ "战 神",
+ "天 神",
+ "召 唤",
+ "之 神",
+ "天 使",
+ "堕 落",
+ "争 议",
+ "奶 爸",
+ "一 有",
+ "飞 快",
+ "弓 箭",
+ "专 职",
+ "存 活",
+ "挖 矿",
+ "最 少",
+ "自 体",
+ "丰 胸",
+ "爱 美",
+ "罩 杯",
+ "经验 丰富",
+ "调 料",
+ "跳 楼",
+ "克 罗",
+ "巴拉 圭",
+ "镜 子",
+ "预 示",
+ "内心 世界",
+ "爱 护",
+ "拥 抱",
+ "N O",
+ "沿 海",
+ "淡 水",
+ "海 水",
+ "足 见",
+ "可 致",
+ "养 殖",
+ "野 生",
+ "谓 之",
+ "m g",
+ "致 死",
+ "睾 丸",
+ "明确 规定",
+ "潜伏 期",
+ "舌 尖",
+ "刺 痛",
+ "摇 摆",
+ "麻 痹",
+ "送 往",
+ "零 售",
+ "内 脏",
+ "鉴 定",
+ "后 方",
+ "废弃 物",
+ "销 毁",
+ "南京 市",
+ "监 督",
+ "晒 干",
+ "无 毒",
+ "解 读",
+ "小 巴",
+ "培 育",
+ "得 当",
+ "食品 安全",
+ "禁 食",
+ "陈 旧",
+ "现代 科技",
+ "步 伐",
+ "江 苏",
+ "悄 悄",
+ "促 销",
+ "抵 制",
+ "跟 不上",
+ "失 误",
+ "吃 晚饭",
+ "19 64",
+ "便利 店",
+ "收 取",
+ "电 费",
+ "改 名",
+ "总 裁",
+ "纽 约",
+ "铃 声",
+ "宣 告",
+ "晋 升",
+ "竞争 力",
+ "源 于",
+ "19 46",
+ "营 业",
+ "里程 碑",
+ "北 美",
+ "个 别",
+ "汇 款",
+ "复 印",
+ "传 真",
+ "加 盟",
+ "马来 西亚",
+ "购 入",
+ "大 部份",
+ "股 权",
+ "至 此",
+ "股 东",
+ "拨 款",
+ "资 助",
+ "团 体",
+ "小 朋友",
+ "全 美",
+ "一 斤",
+ "一 两",
+ "这 题",
+ "枪 械",
+ "A R",
+ "量 产",
+ "耐 久",
+ "o ne",
+ "on e",
+ "男 主角",
+ "男主 角",
+ "相 识",
+ "怀 里",
+ "一 個",
+ "旅 程",
+ "旅 途",
+ "金 钱",
+ "修 行",
+ "算 不算",
+ "癌 症",
+ "腺 瘤",
+ "伤 口",
+ "免 除",
+ "奥林匹克 运动会",
+ "运 动员",
+ "运动 员",
+ "代表 团",
+ "抽 血",
+ "周 一",
+ "尽量 减少",
+ "追 问",
+ "好 孕",
+ "协 和",
+ "战 乱",
+ "身 处",
+ "自动 识别",
+ "第 一步",
+ "第一 步",
+ "顶 端",
+ "排 序",
+ "高 到",
+ "第二 步",
+ "饱 和",
+ "第三 步",
+ "筛 选",
+ "编 号",
+ "福 建",
+ "山 东",
+ "里 奇",
+ "引 领",
+ "四 点",
+ "服务 商",
+ "三 组",
+ "新 增",
+ "增 设",
+ "航 线",
+ "海 峡",
+ "两 岸",
+ "享 有",
+ "海 里",
+ "水 域",
+ "主 权",
+ "中 东",
+ "途 经",
+ "19 96",
+ "199 6",
+ "石 油",
+ "兰 德",
+ "结 论",
+ "依赖 于",
+ "台湾 省",
+ "巴 西",
+ "东 亚",
+ "通 往",
+ "印度 洋",
+ "运 输",
+ "船 只",
+ "冲 动",
+ "制造 商",
+ "动 词",
+ "排卵 期",
+ "受 孕",
+ "完 好",
+ "弧 度",
+ "粪 便",
+ "性 状",
+ "氢 气",
+ "O H",
+ "阵 型",
+ "控 球",
+ "疫 苗",
+ "接 种",
+ "比 值",
+ "口 碑",
+ "百 姓",
+ "处 处",
+ "折 旧",
+ "记 账",
+ "凭 证",
+ "相 符",
+ "固定 资产",
+ "计 提",
+ "明 细",
+ "标 签",
+ "汇 总",
+ "得 来",
+ "表 哥",
+ "解 析",
+ "手 法",
+ "初 衷",
+ "不 为",
+ "迎 接",
+ "海 盗",
+ "称 谓",
+ "接 吻",
+ "起 降",
+ "替 换",
+ "A V",
+ "原 件",
+ "中 会",
+ "构 想",
+ "马 克",
+ "投 掷",
+ "控制 中心",
+ "起 飞",
+ "着 陆",
+ "低 速",
+ "航 母",
+ "生产 线",
+ "明 明",
+ "麻 麻",
+ "针 刺",
+ "三 线",
+ "插 座",
+ "廉 价",
+ "电 缆",
+ "铺 设",
+ "加 装",
+ "收 不到",
+ "山 坡",
+ "树 林",
+ "铁 塔",
+ "阻 挡",
+ "视 界",
+ "视 角",
+ "障碍 物",
+ "夹 角",
+ "怀 着",
+ "哪 款",
+ "双 核",
+ "实体 店",
+ "翻 新",
+ "瓷 器",
+ "上 门",
+ "买 下",
+ "随 后",
+ "此 事",
+ "法 院",
+ "提 起",
+ "撤 销",
+ "欺 诈",
+ "达 成",
+ "予 以",
+ "中央 电视台",
+ "一 期",
+ "金 子",
+ "肠 子",
+ "一 万",
+ "外 贸",
+ "老 外",
+ "信 赖",
+ "收 款",
+ "晓 得",
+ "帅 哥",
+ "天 才",
+ "本 名",
+ "次 郎",
+ "出 身",
+ "江 户",
+ "三 段",
+ "组 长",
+ "师 范",
+ "简 史",
+ "首 度",
+ "指挥 官",
+ "闻 名",
+ "宛 如",
+ "兄 长",
+ "般 的",
+ "罹 患",
+ "肺 结核",
+ "元 年",
+ "编 成",
+ "击 杀",
+ "小 路",
+ "会 战",
+ "幕 府",
+ "医 学院",
+ "医学 院",
+ "入 院",
+ "敌 军",
+ "探 望",
+ "暗 影",
+ "M S",
+ "专 精",
+ "冥 想",
+ "M T",
+ "身 影",
+ "静脉 曲张",
+ "柴 胡",
+ "加 减",
+ "药 用",
+ "白 芍",
+ "扭 曲",
+ "患 肢",
+ "畏 寒",
+ "桂 枝",
+ "合 用",
+ "不 合",
+ "不 起",
+ "学 着",
+ "大 不了",
+ "所得 税",
+ "分 录",
+ "税 金",
+ "月 末",
+ "结 转",
+ "门 口",
+ "脸 红",
+ "持续 性",
+ "找 出",
+ "加强 锻炼",
+ "耐 受",
+ "意见 建议",
+ "交 替",
+ "一 路上",
+ "一路 上",
+ "印 尼",
+ "语 文",
+ "马 来",
+ "米 尔",
+ "披 风",
+ "招 收",
+ "天 生",
+ "美容 院",
+ "生态 系统",
+ "废 物",
+ "出 动",
+ "周围 环境",
+ "分 散",
+ "讨论 一下",
+ "刺 客",
+ "速度 慢",
+ "第 四个",
+ "第四 个",
+ "日 来",
+ "没 来",
+ "做 人流",
+ "做人 流",
+ "药 流",
+ "时 段",
+ "清 宫",
+ "吊 顶",
+ "龙 骨",
+ "只 想",
+ "四 周",
+ "差 价",
+ "大 约",
+ "防 火",
+ "异 形",
+ "一 栋",
+ "验 收",
+ "墙 体",
+ "工 地",
+ "一 项",
+ "租 用",
+ "该 项",
+ "下 部",
+ "损 耗",
+ "就是 指",
+ "相 邻",
+ "6 3",
+ "边 长",
+ "C M",
+ "菱 形",
+ "矩 形",
+ "4 x",
+ "解 得",
+ "9 3",
+ "签 证",
+ "旅行 社",
+ "公 民",
+ "一 路",
+ "三 楼",
+ "申请 表",
+ "签 名",
+ "申请 者",
+ "停 留",
+ "附 有",
+ "负责 人",
+ "出 示",
+ "递 交",
+ "复印 件",
+ "护 照",
+ "申请 人",
+ "邀 请",
+ "营业 执照",
+ "总 领事馆",
+ "目的 地",
+ "每 人",
+ "三 张",
+ "该 国",
+ "飞 往",
+ "途 径",
+ "银行 存款",
+ "备 注",
+ "西汉 姆",
+ "米 德尔",
+ "朴 茨",
+ "不来 梅",
+ "科 特",
+ "财 务",
+ "这 块",
+ "财务 报表",
+ "负债 表",
+ "现金 流量",
+ "现金流 量",
+ "所有 者",
+ "权 益",
+ "税 务",
+ "国 税",
+ "名 次",
+ "模 块",
+ "标 记",
+ "转 发",
+ "此 书",
+ "酒 杯",
+ "桌 子",
+ "青 蛙",
+ "脚 下",
+ "奔 腾",
+ "河 北",
+ "6 10",
+ "61 0",
+ "妹 妹",
+ "辽宁 省",
+ "保 送",
+ "名 额",
+ "人 大",
+ "更 何况",
+ "个 体",
+ "差 异性",
+ "差异 性",
+ "根 治",
+ "预 后",
+ "该 病",
+ "规范 化",
+ "祝您 健康",
+ "脑 海",
+ "歌 声",
+ "多 餐",
+ "三 分",
+ "少 见",
+ "神 秘",
+ "支 线",
+ "很久 以前",
+ "首 位",
+ "同 志",
+ "1 800",
+ "18 00",
+ "180 0",
+ "股 价",
+ "1 700",
+ "17 00",
+ "170 0",
+ "稀 释",
+ "进 度",
+ "公 会",
+ "不 成",
+ "绒 毛",
+ "聊天 室",
+ "设计 者",
+ "中 级",
+ "时 事",
+ "o n",
+ "短 篇",
+ "演 讲",
+ "进 阶",
+ "专 题",
+ "短 文",
+ "小 溪",
+ "一 年级",
+ "一年 级",
+ "戴 上",
+ "耳 机",
+ "试 题",
+ "样 本",
+ "出 国",
+ "沙 龙",
+ "爱好 者",
+ "必 选",
+ "趣 味",
+ "数 个",
+ "学习 者",
+ "开 口",
+ "背 单词",
+ "生 词",
+ "书 本",
+ "do ing",
+ "四 级",
+ "了 不起",
+ "层 层",
+ "背 诵",
+ "作 业",
+ "学 完",
+ "课 文",
+ "颇 为",
+ "阶 级",
+ "漫 游",
+ "学习 外语",
+ "倘 若",
+ "翻 翻",
+ "脱 离",
+ "上 下文",
+ "上下 文",
+ "地 去",
+ "记 下",
+ "话 语",
+ "看 多",
+ "纯 属",
+ "无 误",
+ "第一 人称",
+ "a m",
+ "le g",
+ "围 攻",
+ "攻 读",
+ "尤为 重要",
+ "坚 信",
+ "非 凡",
+ "he re",
+ "her e",
+ "t here",
+ "the re",
+ "l et",
+ "le t",
+ "learn ing",
+ "no w",
+ "a re",
+ "d ay",
+ "u p",
+ "中 英文",
+ "对 照",
+ "课 后",
+ "中文 翻译",
+ "拼 写",
+ "不 来",
+ "音 标",
+ "拼 音",
+ "同 理",
+ "主 语",
+ "谓 语",
+ "宾 语",
+ "艰 苦",
+ "乏 味",
+ "越 大",
+ "对 人",
+ "硬 度",
+ "宣 泄",
+ "性 兴奋",
+ "渠 道",
+ "害 处",
+ "射 精",
+ "精 液",
+ "以 致",
+ "心理 障碍",
+ "泌 尿",
+ "神经 衰弱",
+ "中枢 神经",
+ "心 悸",
+ "下 腹",
+ "会 阴部",
+ "会阴 部",
+ "腰 酸",
+ "表 妹",
+ "融 洽",
+ "公 主",
+ "就 此",
+ "婆 婆",
+ "公 婆",
+ "娘 家",
+ "一 度",
+ "买 过",
+ "调 和",
+ "高 调",
+ "矛 盾",
+ "受 理",
+ "三 岁",
+ "说 一说",
+ "非常 感谢",
+ "交易 所",
+ "总 额",
+ "A 股",
+ "佣 金",
+ "高 点",
+ "吉 利",
+ "家 园",
+ "死 活",
+ "数学 公式",
+ "中文 版",
+ "转 换成",
+ "转换 成",
+ "文 稿",
+ "D OS",
+ "字 符",
+ "打 字",
+ "前提 条件",
+ "对话 框",
+ "文 本",
+ "多 出",
+ "间 距",
+ "怀 上",
+ "不 准",
+ "调 经",
+ "准 时",
+ "监 测",
+ "卵 泡",
+ "同 房",
+ "排 出来",
+ "排出 来",
+ "黄体 酮",
+ "乳 房",
+ "体 温",
+ "止 损",
+ "出 局",
+ "收 复",
+ "横 线",
+ "1 %",
+ "决 策",
+ "最 具",
+ "一条 线",
+ "抬 高",
+ "博 弈",
+ "画 出",
+ "线 图",
+ "不 乏",
+ "买 进",
+ "打 压",
+ "隐 蔽",
+ "股 市",
+ "放 大",
+ "压 根",
+ "漫 漫",
+ "路 途",
+ "不 买",
+ "无 偿",
+ "设 法",
+ "何 谓",
+ "前 一天",
+ "比 前",
+ "个 股",
+ "跟 进",
+ "可 取",
+ "真实 性",
+ "樱 花",
+ "预 告",
+ "十 一月",
+ "十一 月",
+ "貌 似",
+ "反 响",
+ "不 出",
+ "大 容量",
+ "美 式",
+ "境 界",
+ "炎 热",
+ "享 用",
+ "容 积",
+ "人 性",
+ "两 套",
+ "使 用量",
+ "使用 量",
+ "水 量",
+ "感 应",
+ "回 路",
+ "瞬 间",
+ "功 率",
+ "尿 检",
+ "透明 度",
+ "给 与",
+ "支付 宝",
+ "发 货",
+ "初 恋",
+ "暧 昧",
+ "一 女",
+ "港 澳",
+ "通行 证",
+ "公安 局",
+ "带 上",
+ "景 点",
+ "科 学院",
+ "科学 院",
+ "祛 斑",
+ "色 斑",
+ "路由 器",
+ "台式 机",
+ "变 慢",
+ "家 装",
+ "迅 雷",
+ "台 式",
+ "缓 冲",
+ "其 值",
+ "键 值",
+ "十 进制",
+ "此 刻",
+ "没 想",
+ "卫 视",
+ "大 小写",
+ "大小 写",
+ "长 得",
+ "过 得",
+ "蚊 子",
+ "背 上",
+ "象 是",
+ "就 会",
+ "百 合",
+ "软 骨",
+ "韧 带",
+ "变 性",
+ "肥 厚",
+ "继发 性",
+ "劳动 者",
+ "常 为",
+ "针 灸",
+ "理 疗",
+ "膏 药",
+ "效 能",
+ "率 领",
+ "开 窍",
+ "体 表",
+ "渗 透",
+ "货 运",
+ "东 莞",
+ "公 路",
+ "遗 忘",
+ "限 定",
+ "封闭 式",
+ "计算 出来",
+ "初 学",
+ "差 额",
+ "除 以",
+ "转 为",
+ "一 辆",
+ "万 公里",
+ "赶 到",
+ "第 三次",
+ "第三 次",
+ "特 意",
+ "吵 架",
+ "没 说",
+ "克 制",
+ "我 怕",
+ "长 途",
+ "那句 话",
+ "没 人",
+ "靠 近",
+ "不 住",
+ "这 天",
+ "毫不 犹豫",
+ "共 度",
+ "此 生",
+ "寝 室",
+ "二 等",
+ "双 子",
+ "金 牛",
+ "前 不久",
+ "大体 上",
+ "地理 位置",
+ "人 文",
+ "联 邦",
+ "民 主",
+ "纪念 日",
+ "革 命",
+ "执 政",
+ "新 年",
+ "长 方形",
+ "相 继",
+ "被 称作",
+ "这 片",
+ "渊 源",
+ "科 普",
+ "崇 尚",
+ "忠 诚",
+ "仁 慈",
+ "绿 色",
+ "放 射",
+ "光 芒",
+ "多 样",
+ "连 任",
+ "红 海",
+ "高 原",
+ "苏 丹",
+ "交 界",
+ "肯 尼亚",
+ "海岸 线",
+ "山 地",
+ "中 西部",
+ "中西 部",
+ "全 境",
+ "平均 温度",
+ "族 人",
+ "伊斯兰 教",
+ "新 教",
+ "行政区 划",
+ "一 世",
+ "兴 起",
+ "侵 入",
+ "沦 为",
+ "殖民 地",
+ "击 败",
+ "同 年",
+ "第二次 世界大战",
+ "赶 走",
+ "登 基",
+ "古 希腊",
+ "中 意",
+ "接 管",
+ "政 权",
+ "内 战",
+ "宪 法",
+ "议 会",
+ "内 阁",
+ "分 离",
+ "任 期",
+ "六 年",
+ "院 系",
+ "立 法",
+ "选 民",
+ "议 员",
+ "裁 决",
+ "各 州",
+ "国民 经济",
+ "支 柱",
+ "天然 气",
+ "发 源",
+ "利用 率",
+ "砍 伐",
+ "零 部件",
+ "纺 织",
+ "香 烟",
+ "农 业",
+ "产 量",
+ "第 三位",
+ "第三 位",
+ "总 收入",
+ "浆 果",
+ "谁 知",
+ "采 集",
+ "故 乡",
+ "国 土",
+ "草 地",
+ "野生 动物",
+ "接 待",
+ "万 美元",
+ "现 有",
+ "报 刊",
+ "日 报",
+ "部 下",
+ "广播 电台",
+ "对 外",
+ "开 播",
+ "积极 参与",
+ "事 务",
+ "海 湾",
+ "曾 多次",
+ "实 况",
+ "前 锋",
+ "离合 器",
+ "超 时",
+ "一 阵",
+ "丝 毫",
+ "交 互",
+ "黑 客",
+ "地 带",
+ "面 板",
+ "文本 文件",
+ "一 个个",
+ "一个 个",
+ "临时 文件",
+ "燃 油",
+ "意 想不到",
+ "暂时 性",
+ "ur l",
+ "不 上",
+ "信 箱",
+ "发 邮件",
+ "一切 顺利",
+ "前 男友",
+ "搭 档",
+ "从 前",
+ "活 在",
+ "病 是",
+ "份 额",
+ "中 止",
+ "一次 性",
+ "大 枣",
+ "蛋 类",
+ "烧 钱",
+ "进 出",
+ "美 术",
+ "功 底",
+ "想 不通",
+ "这 张",
+ "三 面",
+ "比较 简单",
+ "变态 反应",
+ "性 疾病",
+ "常 年",
+ "流 鼻涕",
+ "花 粉",
+ "无线 网络",
+ "重要 性",
+ "业务 流程",
+ "戏剧 性",
+ "n o",
+ "脱 脂",
+ "眼 袋",
+ "缘 故",
+ "面 子",
+ "切 割",
+ "五 星",
+ "毛 主席",
+ "19 47",
+ "山 西",
+ "刊 登",
+ "华 北",
+ "光 辉",
+ "烈 士",
+ "牺 牲",
+ "奖 杯",
+ "烫 伤",
+ "除 掉",
+ "烧 伤",
+ "期 盼",
+ "青春 痘",
+ "批发 市场",
+ "年 收入",
+ "终 身",
+ "国 有",
+ "储 蓄",
+ "住 房",
+ "建 行",
+ "家庭 成员",
+ "设计 方案",
+ "定期 检查",
+ "做 事",
+ "有钱 人",
+ "t d",
+ "print f",
+ "i f",
+ "乘 法",
+ "写 成",
+ "a b",
+ "会计 专业",
+ "两 样",
+ "应 试",
+ "图 象",
+ "撤 消",
+ "盗 号",
+ "经常 性",
+ "个人 信息",
+ "时 空",
+ "矩 阵",
+ "密 保",
+ "密码 保护",
+ "陌 生",
+ "好奇 心",
+ "木 马",
+ "随之 而来",
+ "后 门",
+ "弱 者",
+ "邪 恶",
+ "毁 灭",
+ "元 朝",
+ "寺 院",
+ "烹 调",
+ "烤 肉",
+ "侦 探",
+ "背 包",
+ "T 2",
+ "随 身",
+ "英 寸",
+ "尼 龙",
+ "笔记本 电脑",
+ "人性 化",
+ "透 气",
+ "舒 适度",
+ "舒适 度",
+ "业 界",
+ "风 雨",
+ "写 作",
+ "五 笔",
+ "真 诚",
+ "规律 性",
+ "阈 值",
+ "高 潮",
+ "地 被",
+ "唤 起",
+ "阴 蒂",
+ "毫无 疑问",
+ "胜 任",
+ "尽 情",
+ "开 到",
+ "u n",
+ "cp u",
+ "水 流",
+ "区 有",
+ "哥 们",
+ "阶 层",
+ "骗 子",
+ "S B",
+ "物 价",
+ "d i",
+ "系统 盘",
+ "好 后",
+ "上 场",
+ "O L",
+ "茯 苓",
+ "胶 囊",
+ "小 便",
+ "增 生",
+ "膀 胱",
+ "好心 人",
+ "耳 鸣",
+ "莫 名",
+ "带 动",
+ "烦 躁",
+ "冻 疮",
+ "前 兆",
+ "栓 塞",
+ "看得 见",
+ "内 侧",
+ "尽 头",
+ "耳 膜",
+ "腺 体",
+ "保 温",
+ "掏 出",
+ "棉 花",
+ "耳 痛",
+ "当 场",
+ "复 诊",
+ "短 暂",
+ "要 点",
+ "恶性 循环",
+ "不 痛",
+ "流 脓",
+ "加 用",
+ "两 周",
+ "洗 手",
+ "不 幸",
+ "公 用",
+ "器 械",
+ "剥 离",
+ "根 部",
+ "蔓 延",
+ "重复 使用",
+ "脚 气",
+ "船 员",
+ "此 病",
+ "消化 系统",
+ "循环 系统",
+ "疲 乏",
+ "中 枢",
+ "神经 炎",
+ "足 部",
+ "粗 粮",
+ "豆 类",
+ "搓 洗",
+ "静脉 注射",
+ "皮质 激素",
+ "长 相",
+ "称 呼",
+ "背 着",
+ "或者 说",
+ "爱 是",
+ "自 私",
+ "外 遇",
+ "七 年",
+ "第 三者",
+ "第三 者",
+ "屋 里",
+ "离 不开",
+ "不 离",
+ "心 思",
+ "无 辜",
+ "爸爸 妈妈",
+ "行李 箱",
+ "5 20",
+ "52 0",
+ "喷 射",
+ "前 置",
+ "4 500",
+ "45 00",
+ "450 0",
+ "悬 挂",
+ "横 向",
+ "制 动",
+ "2 05",
+ "20 5",
+ "k m",
+ "座 椅",
+ "电 动",
+ "武 侠",
+ "终 极",
+ "打 怪",
+ "配 制",
+ "外 敷",
+ "包 扎",
+ "换 药",
+ "妈 咪",
+ "菌 群",
+ "自 考",
+ "考 得",
+ "大 专",
+ "中 专",
+ "工程 学",
+ "猎 人",
+ "值 钱",
+ "这 部",
+ "围 绕",
+ "感 慨",
+ "点 个",
+ "改 编",
+ "编 剧",
+ "导 演",
+ "偶像 剧",
+ "监 制",
+ "制 片",
+ "杨 幂",
+ "该 片",
+ "深 厚",
+ "亲 情",
+ "定 名",
+ "20 13",
+ "201 3",
+ "上 映",
+ "实 习",
+ "抉 择",
+ "当 下",
+ "时 而",
+ "佳 能",
+ "燕 子",
+ "福 州",
+ "避孕 措施",
+ "无 痛",
+ "私 自",
+ "诊 所",
+ "无 形",
+ "生命 安全",
+ "米 粉",
+ "倒 闭",
+ "再 也",
+ "射 门",
+ "螳 螂",
+ "一 笔",
+ "四 条",
+ "点 燃",
+ "一 端",
+ "另 一端",
+ "占地 面积",
+ "地 表",
+ "平 方",
+ "平方 米",
+ "立 方",
+ "衡 量",
+ "立方 米",
+ "这 要",
+ "根 基",
+ "自 信",
+ "大 连",
+ "有 如",
+ "天 鹅",
+ "海 滩",
+ "曼 谷",
+ "岛 上",
+ "宁 静",
+ "壮 观",
+ "洞 穴",
+ "风 貌",
+ "度 假",
+ "宽 广",
+ "海 域",
+ "上 帝",
+ "一 串",
+ "游 客",
+ "水 上",
+ "中 小",
+ "N P",
+ "钢 琴",
+ "踏 板",
+ "功 用",
+ "杠 杆",
+ "作 用力",
+ "作用 力",
+ "振 动",
+ "音 量",
+ "音 色",
+ "视 为",
+ "演 奏",
+ "小 李",
+ "9 1",
+ "叠 加",
+ "晚 点",
+ "初 创",
+ "东 汉",
+ "十 一年",
+ "十一 年",
+ "一 千",
+ "西 域",
+ "佛 法",
+ "佛 经",
+ "白 马",
+ "翌 年",
+ "为 名",
+ "宏 伟",
+ "嘉 靖",
+ "三 十四年",
+ "三十 四年",
+ "重 修",
+ "万 平方米",
+ "清 凉",
+ "元 代",
+ "古 迹",
+ "八 大",
+ "每 当",
+ "之 夜",
+ "僧 人",
+ "奇 妙",
+ "钟 楼",
+ "元 旦",
+ "点 积",
+ "职业 道德",
+ "高 水平",
+ "高 超",
+ "仪 表",
+ "服 装",
+ "服务 态度",
+ "相 关联",
+ "相关 联",
+ "熟练 掌握",
+ "心理 健康",
+ "卫生 习惯",
+ "简 练",
+ "学 好",
+ "端 正",
+ "试 卷",
+ "考 核",
+ "词汇 表",
+ "一段 话",
+ "推 测",
+ "六 级",
+ "该 词",
+ "准确 率",
+ "效率 高",
+ "考 场",
+ "先 看",
+ "复 读",
+ "错 题",
+ "词 组",
+ "教 室",
+ "细 节",
+ "多 读",
+ "模 糊",
+ "逐 一",
+ "参 看",
+ "示 例",
+ "短 句",
+ "谚 语",
+ "应 多",
+ "强 弱",
+ "专 项",
+ "揣 测",
+ "每 篇",
+ "单 项",
+ "在 读",
+ "带 入",
+ "第一 印象",
+ "中心 思想",
+ "连 贯",
+ "看 一遍",
+ "大 体",
+ "答 题",
+ "语法 错误",
+ "付 钱",
+ "买 房",
+ "牵 扯",
+ "违 法",
+ "诚 信",
+ "两 把",
+ "阿 曼",
+ "限 时",
+ "箱 子",
+ "托 尔",
+ "洛 斯",
+ "末 日",
+ "启 示",
+ "每 秒",
+ "耐 力",
+ "9 4",
+ "掉 头发",
+ "多 见于",
+ "多见 于",
+ "辨 证",
+ "心 烦",
+ "腰 膝",
+ "酸 软",
+ "舌 质",
+ "食 疗",
+ "黑 芝麻",
+ "血 瘀",
+ "丹 皮",
+ "核 桃仁",
+ "核桃 仁",
+ "泽 泻",
+ "天 麻",
+ "当 归",
+ "沸 水",
+ "肝 肾",
+ "血 虚",
+ "浸 润",
+ "养 血",
+ "枸 杞",
+ "腥 味",
+ "各 方",
+ "补 益",
+ "肾 气",
+ "摘 自",
+ "加入 适量",
+ "美 颜",
+ "悬赏 分",
+ "荆 棘",
+ "鲤 鱼",
+ "岩 石",
+ "气 流",
+ "物理 现象",
+ "自动 控制",
+ "成本 低",
+ "电磁 波",
+ "迟 钝",
+ "化 工",
+ "船 舶",
+ "国 防",
+ "安 利",
+ "抽 筋",
+ "赛 车",
+ "参 赛",
+ "跑 车",
+ "大 赛",
+ "一 站",
+ "赛 道",
+ "传 闻",
+ "赛 事",
+ "影响 力",
+ "举 办",
+ "年 初",
+ "相 隔",
+ "六 个",
+ "筹 备",
+ "冠 名",
+ "赞助 商",
+ "谈 判",
+ "有 望",
+ "科 尔",
+ "维 特",
+ "这 有",
+ "不太 可能",
+ "专 一",
+ "法 学",
+ "方 块",
+ "东 海",
+ "用 钱",
+ "带 个",
+ "小 兵",
+ "5 3",
+ "能 带",
+ "酿 酒",
+ "黄 酒",
+ "葡萄 酒",
+ "密 封",
+ "变 质",
+ "红 葡萄酒",
+ "酒 精",
+ "断 层",
+ "近 战",
+ "除 外",
+ "1 85",
+ "18 5",
+ "盾 牌",
+ "1 40",
+ "14 0",
+ "室内 设计",
+ "三 口",
+ "表达 出来",
+ "天 上",
+ "收 购",
+ "斯 特",
+ "具体 分析",
+ "教 主",
+ "个 字符",
+ "标点 符号",
+ "简 写",
+ "卷 轴",
+ "要 塞",
+ "说 来",
+ "胀 痛",
+ "th at",
+ "w ay",
+ "球 员",
+ "治愈 率",
+ "散 布",
+ "网 球",
+ "登 山",
+ "电子 游戏",
+ "大 脑神经",
+ "大脑 神经",
+ "兴奋 性",
+ "无法 控制",
+ "网络 安全",
+ "视频 教程",
+ "书 名",
+ "出版 社",
+ "抄 袭",
+ "插 图",
+ "算 不上",
+ "电 线",
+ "墙 面",
+ "浴 室",
+ "内 有",
+ "引 出",
+ "导 线",
+ "连 线",
+ "留 出",
+ "接 口",
+ "厨 房",
+ "各 处",
+ "保护 措施",
+ "检 修",
+ "报 废",
+ "疏 忽",
+ "安全 隐患",
+ "电 机",
+ "失 灵",
+ "有 理",
+ "国 情",
+ "正 向",
+ "灵 敏",
+ "外 向",
+ "商 家",
+ "沈 阳",
+ "伤 人",
+ "逆 向",
+ "相 连",
+ "两 步",
+ "立 马",
+ "卫生 间",
+ "地 板",
+ "c n",
+ "徒 弟",
+ "强 队",
+ "玩 得",
+ "爱 玩",
+ "深 爱",
+ "不 舍",
+ "霸 道",
+ "本 性",
+ "热 闹",
+ "天 真",
+ "系统 还原",
+ "查 杀",
+ "间 谍",
+ "恶意 软件",
+ "助 手",
+ "下载 安装",
+ "简 介",
+ "恶 意",
+ "民 国",
+ "开 国",
+ "孙 中山",
+ "面 值",
+ "赐 教",
+ "磷 酸",
+ "没 得",
+ "染 料",
+ "酸 味",
+ "酵 母",
+ "重 金属",
+ "脸 型",
+ "责任 感",
+ "稳 固",
+ "移 位",
+ "傍 晚",
+ "黄 昏",
+ "二 级",
+ "古 诗",
+ "描 写",
+ "相 思",
+ "不 堪",
+ "明 月",
+ "高 楼",
+ "叹 息",
+ "明 朝",
+ "枫 叶",
+ "相 亲",
+ "徘 徊",
+ "无 情",
+ "弄 清",
+ "大三 阳",
+ "肝 功",
+ "乙 肝",
+ "干扰 素",
+ "生活 用品",
+ "不见 得",
+ "时 不时",
+ "开 导",
+ "下 会",
+ "预 测",
+ "对 立",
+ "因 其",
+ "而 来",
+ "混 淆",
+ "闲 置",
+ "线 性",
+ "易 经",
+ "方 位",
+ "亲 密",
+ "张 三",
+ "李 四",
+ "傻 瓜",
+ "刚 出生",
+ "刚出 生",
+ "出 院",
+ "牙 膏",
+ "衣 物",
+ "洗 漱",
+ "行 经",
+ "经 期",
+ "狭 小",
+ "血 块",
+ "肚子 痛",
+ "异 位",
+ "盆腔 炎",
+ "不 畅",
+ "气 滞",
+ "湿 热",
+ "下 注",
+ "来 潮",
+ "过 饱",
+ "食 醋",
+ "多 吃些",
+ "乙 醇",
+ "情 志",
+ "抑 郁",
+ "蔬菜 水果",
+ "身体 虚弱",
+ "峰 会",
+ "年 会",
+ "高 端",
+ "受 众",
+ "模 样",
+ "时 髦",
+ "学 术",
+ "召 开",
+ "山 峰",
+ "不 定期",
+ "不定 期",
+ "聚 会",
+ "共 识",
+ "正常 值",
+ "食 堂",
+ "乙肝 疫苗",
+ "饭 馆",
+ "病 毒性",
+ "病毒 性",
+ "体 征",
+ "低 烧",
+ "抗 体",
+ "乙肝 病毒",
+ "表面 抗原",
+ "抗 原",
+ "阳 性",
+ "剧烈 运动",
+ "夜 班",
+ "生 食",
+ "就 餐",
+ "电 灯",
+ "扶 手",
+ "新生 儿",
+ "拔 牙",
+ "输 血",
+ "透 析",
+ "文 身",
+ "剥 皮",
+ "我 花",
+ "没 到",
+ "全 靠",
+ "拍 卖",
+ "三 项",
+ "几 项",
+ "移 到",
+ "达 拉",
+ "双 开",
+ "山 河",
+ "排 水",
+ "尿道 炎",
+ "并 发",
+ "睾丸 炎",
+ "附睾 炎",
+ "精 囊",
+ "附 睾",
+ "结 节",
+ "精 子",
+ "功能 障碍",
+ "上 皮",
+ "情况 严重",
+ "不 小",
+ "不 明",
+ "病原 体",
+ "凡 人",
+ "无 菌",
+ "基 因",
+ "宫颈 炎",
+ "3 01",
+ "30 1",
+ "大 姐",
+ "第 一件",
+ "第一 件",
+ "抽 屉",
+ "订 单",
+ "接 手",
+ "交易 员",
+ "锤 子",
+ "地 狱",
+ "小 队",
+ "留 守",
+ "单 个",
+ "配 对",
+ "漂 移",
+ "第二 批",
+ "试 点",
+ "崩 盘",
+ "涨 停",
+ "无 数个",
+ "无数 个",
+ "世界 级",
+ "中 将",
+ "每 股",
+ "看 透",
+ "1 65",
+ "16 5",
+ "转 速",
+ "油 耗",
+ "丰 田",
+ "总 监",
+ "粉 丝",
+ "初 三",
+ "方程 组",
+ "心 血管",
+ "心血 管",
+ "请 来",
+ "我 来",
+ "浙江 省",
+ "甘 肃",
+ "参考 值",
+ "点 多",
+ "造 血",
+ "饮食 结构",
+ "阿 胶",
+ "食 补",
+ "猪 肝",
+ "绘 画",
+ "戴 尔",
+ "行 不行",
+ "向 量",
+ "平方 和",
+ "重 合",
+ "农 民工",
+ "农民 工",
+ "统 筹",
+ "序列 号",
+ "保 姆",
+ "西 服",
+ "1 78",
+ "17 8",
+ "上 能",
+ "衬 衫",
+ "领 带",
+ "臀 部",
+ "无 忧",
+ "中国 移动",
+ "百 科",
+ "词 条",
+ "异位 症",
+ "摘 除",
+ "囊 肿",
+ "月经 周期",
+ "最 受",
+ "两大 类",
+ "轻 重",
+ "病 灶",
+ "复发 率",
+ "顽 固",
+ "停 药",
+ "保 肝",
+ "孕 激素",
+ "需 注意",
+ "骨 质",
+ "医 嘱",
+ "月 经期",
+ "月经 期",
+ "精神 紧张",
+ "家族 史",
+ "及时 发现",
+ "体育 运动",
+ "腹 膜",
+ "肿 块",
+ "褐 色",
+ "恶 变",
+ "通 气",
+ "包 块",
+ "黑客 攻击",
+ "终结 者",
+ "根本 无法",
+ "盘 符",
+ "U 盘",
+ "初 始",
+ "游 玩",
+ "预 定",
+ "要 考",
+ "军 校",
+ "团 结",
+ "魔 法师",
+ "魔法 师",
+ "偏 向",
+ "场 上",
+ "动 手",
+ "中国 银行",
+ "额 度",
+ "一 试",
+ "D o",
+ "等 式",
+ "L i",
+ "M ay",
+ "欢 笑",
+ "四 六级",
+ "改 革",
+ "光 标",
+ "左 键",
+ "弱 小",
+ "强 者",
+ "磨 练",
+ "总 长",
+ "间 断",
+ "一年 四季",
+ "宁 夏",
+ "东 南",
+ "新 疆",
+ "一 季",
+ "春 秋",
+ "过 时",
+ "域 名",
+ "交 钱",
+ "告 别",
+ "学 弟",
+ "智 者",
+ "圣 人",
+ "先 知",
+ "后 卫",
+ "中 场",
+ "内 斯",
+ "佩 尔",
+ "后 腰",
+ "兑 现",
+ "股 民",
+ "写 写",
+ "看 书",
+ "文 体",
+ "万 多",
+ "3 40",
+ "34 0",
+ "有 种",
+ "上 前",
+ "敬 业",
+ "南 宁",
+ "东 站",
+ "北 站",
+ "常 见于",
+ "常见 于",
+ "成 因",
+ "科幻 片",
+ "苍 蝇",
+ "妓 女",
+ "下 落",
+ "片 子",
+ "大学 毕业",
+ "原 籍",
+ "派出 所",
+ "落 实",
+ "几 场",
+ "中 奖",
+ "奔 跑",
+ "7 50",
+ "75 0",
+ "解 除",
+ "更 正",
+ "光 绪",
+ "十 三年",
+ "十三 年",
+ "18 87",
+ "孤 儿",
+ "督 促",
+ "考 入",
+ "19 12",
+ "后 任",
+ "保 定",
+ "参 谋",
+ "参谋 长",
+ "改 任",
+ "团 长",
+ "19 24",
+ "师 长",
+ "军 长",
+ "年 任",
+ "19 28",
+ "调 任",
+ "19 30",
+ "委 任",
+ "山西 省",
+ "抗日 战争",
+ "国民 党",
+ "办公 厅",
+ "继 任",
+ "19 45",
+ "中华民国 政府",
+ "抗 战",
+ "校 长",
+ "前 夕",
+ "19 59",
+ "台北 市",
+ "投 降",
+ "中国 国民党",
+ "会 场",
+ "甲 板",
+ "回 想",
+ "过 错",
+ "一 回",
+ "俄 国",
+ "服务 质量",
+ "快 餐",
+ "左 手",
+ "一 两次",
+ "一两 次",
+ "管 家",
+ "T T",
+ "白 痴",
+ "一 则",
+ "紧 接着",
+ "钱 财",
+ "五 分钟",
+ "想 不到",
+ "三 本",
+ "您 们",
+ "多 钱",
+ "一 手",
+ "日 元",
+ "一 百",
+ "基 准",
+ "画 图",
+ "图像 处理",
+ "图 文",
+ "该 类",
+ "抓 取",
+ "影 视",
+ "捕 捉",
+ "波尔 多",
+ "米 兰",
+ "切尔 西",
+ "口 译",
+ "青 岛",
+ "考 证",
+ "口 才",
+ "稳 重",
+ "干 活",
+ "微 笑",
+ "更 会",
+ "使 劲",
+ "he ad",
+ "数据 结构",
+ "这 能",
+ "北 极",
+ "宜 人",
+ "ab out",
+ "I t",
+ "m any",
+ "man y",
+ "is the",
+ "b est",
+ "教育 部",
+ "审 批",
+ "公正 性",
+ "偷 懒",
+ "可 言",
+ "备 案",
+ "伪 造",
+ "上 报",
+ "挫 折",
+ "低 谷",
+ "独 自",
+ "强直 性",
+ "脊柱 炎",
+ "胃 粘膜",
+ "毒 副作用",
+ "委 婉",
+ "虚 伪",
+ "权 衡",
+ "不 动",
+ "彩 超",
+ "安全 期",
+ "算 算",
+ "做 做",
+ "排卵 日",
+ "日 为",
+ "屏 蔽",
+ "相 机",
+ "4 80",
+ "48 0",
+ "栏 中",
+ "配 图",
+ "延 时",
+ "天 数",
+ "姑 姑",
+ "陌生 人",
+ "单元 测试",
+ "这道 题",
+ "本 题",
+ "H i",
+ "关 门",
+ "硫 酸",
+ "硝 酸",
+ "H2 O",
+ "C O2",
+ "弥 补",
+ "立 体",
+ "习 题",
+ "一切 正常",
+ "状况 良好",
+ "选项 卡",
+ "直 觉",
+ "投 保",
+ "不尽 相同",
+ "高 明",
+ "交 付",
+ "健康 状况",
+ "养 胃",
+ "早 饭",
+ "咀 嚼",
+ "饮 茶",
+ "八 成",
+ "止 咳",
+ "干 咳",
+ "盗 汗",
+ "烘 干",
+ "姊 妹",
+ "车 门",
+ "宠物 狗",
+ "迷 你",
+ "猎 犬",
+ "1 2.5",
+ "金 毛",
+ "边 境",
+ "伯 恩",
+ "想 像",
+ "出 血量",
+ "出血 量",
+ "转 转",
+ "1 12",
+ "11 2",
+ "三 场",
+ "火 焰",
+ "新 星",
+ "T P",
+ "涡 轮",
+ "四 位",
+ "极 少",
+ "十 几天",
+ "十几 天",
+ "量 少",
+ "恢复 正常",
+ "个体 差异",
+ "少 部分",
+ "逾 期",
+ "激素 水平",
+ "撤 退",
+ "连 锁",
+ "立 场",
+ "传 送",
+ "更 少",
+ "只能 靠",
+ "互 补",
+ "聊 得",
+ "顾 虑",
+ "肠 炎",
+ "不胜 感激",
+ "通 风",
+ "冷 藏",
+ "异 样",
+ "感 官",
+ "炒 菜",
+ "装 在",
+ "改 制",
+ "一般 而言",
+ "常 态",
+ "周 后",
+ "新 手机",
+ "新手 机",
+ "智能 手机",
+ "1 900",
+ "19 00",
+ "190 0",
+ "三 餐",
+ "进 餐",
+ "经 受",
+ "瑜 伽",
+ "一 小块",
+ "一小 块",
+ "心 率",
+ "急 救",
+ "怕 冷",
+ "2 80",
+ "28 0",
+ "礼 仪",
+ "座 位",
+ "宴 会",
+ "预 算",
+ "礼 貌",
+ "穿 着",
+ "得 体",
+ "常 识",
+ "上 衣",
+ "拳 头",
+ "交 叉",
+ "坐 姿",
+ "最 想",
+ "内 行",
+ "挑 选",
+ "酒 类",
+ "香 槟",
+ "送 来",
+ "三分 之一",
+ "服务 员",
+ "客 人",
+ "有 误",
+ "握 住",
+ "猛 烈",
+ "口 红",
+ "汤 匙",
+ "往 前",
+ "送 入",
+ "满 地",
+ "从头 开始",
+ "一 角",
+ "若 有",
+ "刀 子",
+ "摆 在",
+ "聚 餐",
+ "需 用",
+ "中 为",
+ "轻松 愉快",
+ "小 龙虾",
+ "微 微",
+ "果 肉",
+ "绿色 蔬菜",
+ "豪 华",
+ "餐 后",
+ "蒸 气",
+ "提 早",
+ "外 套",
+ "别 处",
+ "酱 料",
+ "毫 不",
+ "牙 签",
+ "打 嗝",
+ "难免 会",
+ "同 伴",
+ "不良 习惯",
+ "输 液",
+ "迁 就",
+ "任 性",
+ "过 日子",
+ "隔 壁",
+ "窗 户",
+ "不 懂事",
+ "碰 见",
+ "省 内",
+ "转 账",
+ "柜 台",
+ "打印 机",
+ "安 装盘",
+ "安装 盘",
+ "P E",
+ "F C",
+ "花 心",
+ "不 善",
+ "口 臭",
+ "排 空",
+ "节 制",
+ "润 肠",
+ "通 便",
+ "火 热",
+ "口 渴",
+ "石 膏",
+ "停 滞",
+ "嗳 气",
+ "神 庙",
+ "巡 逻",
+ "无 限",
+ "重 置",
+ "好 找",
+ "好 歹",
+ "T 3",
+ "m an",
+ "ma n",
+ "is not",
+ "ol d",
+ "巴 里",
+ "摩 尔",
+ "武 学",
+ "6 6",
+ "精 盐",
+ "中 老年",
+ "相 克",
+ "瓶 子",
+ "模 具",
+ "接 上",
+ "分 段",
+ "放射 性",
+ "操 心",
+ "心理 压力",
+ "适 度",
+ "忧 心",
+ "重 重",
+ "出 路",
+ "如 需",
+ "男 宝",
+ "身体 素质",
+ "二 年级",
+ "二年 级",
+ "可 谓",
+ "健 壮",
+ "孝 顺",
+ "他 家",
+ "留 给",
+ "审 视",
+ "一 晚",
+ "渡 过",
+ "真 爱",
+ "走 出",
+ "求 婚",
+ "流 向",
+ "资料 片",
+ "感 悟",
+ "跑 跑",
+ "未 满",
+ "越 小",
+ "有 权",
+ "以 供",
+ "快 捷",
+ "各种 类型",
+ "框 中",
+ "营 救",
+ "坐 标",
+ "守 卫",
+ "狐 狸",
+ "两 场",
+ "小数 点",
+ "两 位",
+ "小 数",
+ "批 量",
+ "免费 邮箱",
+ "疑 惑",
+ "婚 礼",
+ "通 通",
+ "正 直",
+ "摩 根",
+ "玻璃 杯",
+ "并 用",
+ "溶 剂",
+ "尺 度",
+ "时 所",
+ "内 服",
+ "以 防",
+ "15 g",
+ "议 论",
+ "斗 争",
+ "冲 刺",
+ "跳 跃",
+ "夺 冠",
+ "获 奖",
+ "颁 奖",
+ "欢 喜",
+ "淘 汰",
+ "世 事",
+ "抗 争",
+ "成 败",
+ "裁 判",
+ "赛 场",
+ "终 点",
+ "小 小",
+ "棒 棒",
+ "弯 道",
+ "不 禁",
+ "迈 出",
+ "长 征",
+ "田 径",
+ "消 逝",
+ "运动 场",
+ "打 车",
+ "一 事",
+ "哎 呀",
+ "X XXX",
+ "XX XX",
+ "XXX X",
+ "如 若",
+ "附 属",
+ "盛 开",
+ "欢 呼",
+ "耳 边",
+ "赞 叹",
+ "立 志",
+ "奥 运",
+ "征 途",
+ "勇 士",
+ "畏 惧",
+ "泪 水",
+ "秋 风",
+ "掌 声",
+ "响 起",
+ "泥 土",
+ "笑 脸",
+ "坚 韧",
+ "闪 光",
+ "沉 稳",
+ "辉 煌",
+ "拼 搏",
+ "遥 远",
+ "寂 寞",
+ "溶 于",
+ "传 来",
+ "三 七",
+ "四 人",
+ "流 出",
+ "夺 取",
+ "喜 悦",
+ "之 手",
+ "涌 现",
+ "走 来",
+ "感 激",
+ "唯 有",
+ "祝 贺",
+ "灿 烂",
+ "明 媚",
+ "丰 收",
+ "开 幕",
+ "昔 日",
+ "正 义",
+ "公 证",
+ "使 者",
+ "地 道",
+ "小小 的",
+ "升 起",
+ "勇 于",
+ "骄 傲",
+ "金 色",
+ "走 上",
+ "羞 涩",
+ "歌 唱",
+ "金 黄",
+ "一 分钟",
+ "一分 钟",
+ "看 重",
+ "本 领",
+ "自 豪",
+ "飞 翔",
+ "滴 滴",
+ "亲 切",
+ "问 候",
+ "花 朵",
+ "广 阔",
+ "追 赶",
+ "一 旁",
+ "滋 味",
+ "抬 起",
+ "较 量",
+ "金 星",
+ "闪 烁",
+ "一 匹",
+ "猎 豹",
+ "一 艘",
+ "摘 取",
+ "攀 登",
+ "坎 坷",
+ "跌 倒",
+ "流 泪",
+ "失 落",
+ "退 缩",
+ "江 山",
+ "雷 霆",
+ "流 过",
+ "铸 造",
+ "王 者",
+ "霸 气",
+ "误 差",
+ "滨 海",
+ "之 声",
+ "嘲 笑",
+ "万 万",
+ "发 黑",
+ "大 笑",
+ "算 法",
+ "素 数",
+ "倍 数",
+ "遗 漏",
+ "退 烧",
+ "上 呼吸道",
+ "非常 容易",
+ "响 亮",
+ "咳 痰",
+ "肾 阴虚",
+ "列 强",
+ "从 未",
+ "二 分",
+ "入 选",
+ "儒 家",
+ "之 作",
+ "视 作",
+ "1 55",
+ "15 5",
+ "无 机",
+ "很久 没",
+ "虽 说",
+ "稀 缺",
+ "先 来",
+ "携 手",
+ "内 外",
+ "引 爆",
+ "宝 箱",
+ "英文 字母",
+ "大 使",
+ "数 码",
+ "晕 倒",
+ "a ll",
+ "al l",
+ "某 事",
+ "界 限",
+ "山 水",
+ "坐 飞机",
+ "厦 门",
+ "出去 玩",
+ "桂 林",
+ "餐 饮",
+ "游 览",
+ "转 乘",
+ "成 品",
+ "中 期",
+ "业 主",
+ "文件 名",
+ "潜 水",
+ "共 鸣",
+ "搞 清楚",
+ "不 平",
+ "疼 爱",
+ "节 省",
+ "办 事",
+ "此 人",
+ "身 为",
+ "快捷 方式",
+ "利 弊",
+ "短 期",
+ "抛 出",
+ "卖 掉",
+ "刷 刷",
+ "搏 击",
+ "拳 击",
+ "外 行",
+ "抱 住",
+ "歇 息",
+ "不 许",
+ "首 推",
+ "客 房",
+ "会议 室",
+ "一 间",
+ "无 症状",
+ "水 源",
+ "牡 蛎",
+ "肝 区",
+ "起 病",
+ "变 黄",
+ "嗜 睡",
+ "豆 制品",
+ "不 需",
+ "预防 措施",
+ "饮食 卫生",
+ "擦 洗",
+ "日 光",
+ "曝 晒",
+ "交叉 感染",
+ "艺 名",
+ "台 北",
+ "19 69",
+ "湖南 省",
+ "血 型",
+ "A 型",
+ "加 州",
+ "主 修",
+ "声 乐",
+ "嗜 好",
+ "失 恋",
+ "愿 望",
+ "K TV",
+ "下 楼",
+ "所 属",
+ "唱 片",
+ "经 纪",
+ "re d",
+ "经纪 人",
+ "匿 名",
+ "19 98",
+ "199 8",
+ "演唱 会",
+ "体育 馆",
+ "单 身",
+ "无 锡",
+ "南 昌",
+ "慈 善",
+ "参 演",
+ "展 望",
+ "之 心",
+ "执 导",
+ "19 37",
+ "客 串",
+ "今 夜",
+ "服 饰",
+ "代言 人",
+ "19 97",
+ "199 7",
+ "飞 天",
+ "东 京",
+ "舞台 剧",
+ "得 奖",
+ "第 一届",
+ "第一 届",
+ "电影 节",
+ "年 度",
+ "影 展",
+ "十字 架",
+ "跨 越",
+ "受 邀",
+ "一 并",
+ "饰 演",
+ "女 主角",
+ "女主 角",
+ "华 语",
+ "大 奖",
+ "夺 得",
+ "入 围",
+ "香港 电影",
+ "创 作",
+ "纠 缠",
+ "19 92",
+ "199 2",
+ "爱 不爱",
+ "钥 匙",
+ "背 影",
+ "墨 镜",
+ "坦 白",
+ "配 音",
+ "光 学",
+ "烟 雾",
+ "偏 离",
+ "靠 着",
+ "骨 骼",
+ "下 边",
+ "中 风",
+ "家 务",
+ "上 来",
+ "嫉 妒",
+ "聊 聊",
+ "高 风险",
+ "保持 一致",
+ "外部 环境",
+ "债 务",
+ "限 量",
+ "轻 便",
+ "胸 口",
+ "平 躺",
+ "个 头",
+ "生 个",
+ "悲 伤",
+ "结 肠",
+ "化 脓",
+ "平面 设计",
+ "起 点",
+ "编 排",
+ "哪 部",
+ "听 歌",
+ "无 语",
+ "极 了",
+ "乱 说",
+ "领 先",
+ "器 材",
+ "视 听",
+ "表现 力",
+ "清晰 度",
+ "实 话",
+ "枪 手",
+ "午 饭",
+ "脑 供",
+ "某 一",
+ "动脉 硬化",
+ "脑 病",
+ "脑 血管",
+ "缺 血",
+ "抗 氧化",
+ "一对 一",
+ "媒 介",
+ "仪 器",
+ "五 大",
+ "南 非",
+ "旧 称",
+ "前 列",
+ "国 民",
+ "年 来",
+ "一 批",
+ "矿 业",
+ "埃 及",
+ "19 56",
+ "等 国",
+ "沿 岸",
+ "海 底",
+ "东 北部",
+ "东北 部",
+ "万 吨",
+ "开 采",
+ "瓦 特",
+ "很 棒",
+ "开 学",
+ "军 训",
+ "请 假",
+ "尿 液",
+ "测 出",
+ "9 6",
+ "牛 顿",
+ "f 1",
+ "位 移",
+ "买 票",
+ "旗 下",
+ "实践 经验",
+ "中 介",
+ "借 贷",
+ "从业 者",
+ "标准 化",
+ "防 控",
+ "海 量",
+ "无 障碍",
+ "瓶 颈",
+ "商业 银行",
+ "联 盟",
+ "携带 者",
+ "乙肝 患者",
+ "肿 大",
+ "毁 坏",
+ "汉 语",
+ "疯 狂",
+ "影 迷",
+ "指 正",
+ "每 一",
+ "要 加",
+ "惠 州",
+ "漂 流",
+ "南 山",
+ "孕 囊",
+ "聘 请",
+ "入 账",
+ "管理 费用",
+ "管理费 用",
+ "预 订",
+ "细 化",
+ "小 姐",
+ "录 像",
+ "省 心",
+ "注 定",
+ "通 液",
+ "尚 可",
+ "回 流",
+ "大 豆",
+ "B 6",
+ "B 12",
+ "B1 2",
+ "两 组",
+ "曲 张",
+ "内 痔",
+ "外 痔",
+ "便 血",
+ "鲜 红",
+ "脱 出",
+ "果 蔬",
+ "连 用",
+ "肛 管",
+ "曲 线",
+ "大 蒜",
+ "热 敷",
+ "意 念",
+ "烟 酒",
+ "久 坐",
+ "发 送给",
+ "发送 给",
+ "先 上",
+ "上 下班",
+ "上下 班",
+ "鬼 王",
+ "警 觉",
+ "天 书",
+ "光 影",
+ "主 流",
+ "无 常",
+ "减 免",
+ "推 算",
+ "虚 空",
+ "4 7",
+ "标 识",
+ "门 派",
+ "额 外",
+ "合 欢",
+ "分 支",
+ "3 5%",
+ "35 %",
+ "一 击",
+ "触 发",
+ "6 %",
+ "不 低",
+ "大大 提高",
+ "门 前",
+ "停车 场",
+ "前 来",
+ "粉 末",
+ "O 2",
+ "特殊 性",
+ "韩 信",
+ "造 反",
+ "沉 思",
+ "调 皮",
+ "道 教",
+ "教 区",
+ "建 成",
+ "始 建",
+ "圣 母",
+ "修 缮",
+ "年 内",
+ "宗教 信仰",
+ "建 有",
+ "文化 大革命",
+ "拆 除",
+ "不起 眼",
+ "高 大",
+ "华 丽",
+ "堂 区",
+ "司 铎",
+ "神 父",
+ "大 姨妈",
+ "卵 子",
+ "受精 卵",
+ "动物 性",
+ "植物 性",
+ "海 参",
+ "章 鱼",
+ "多 方",
+ "偏 执",
+ "疏 导",
+ "智 商",
+ "喝 牛奶",
+ "受 凉",
+ "胃 部",
+ "颅 内",
+ "吃 奶",
+ "吐 出来",
+ "中 暑",
+ "灵 力",
+ "很 多年",
+ "很多 年",
+ "这 儿",
+ "黑 白",
+ "锐 利",
+ "2 10",
+ "21 0",
+ "国 服",
+ "阵 子",
+ "汉 化",
+ "太 差",
+ "安全 感",
+ "赶 快",
+ "说 完",
+ "主 演",
+ "发 财",
+ "林 中",
+ "五 岁",
+ "投 注",
+ "承 诺",
+ "十 五年",
+ "十五 年",
+ "旧 址",
+ "改 建",
+ "前 去",
+ "几 部",
+ "周 刊",
+ "拍 出",
+ "宣 言",
+ "十 六",
+ "十 七",
+ "续 集",
+ "幸 好",
+ "漳 州",
+ "巴 士",
+ "搭 乘",
+ "鞠 躬",
+ "市 值",
+ "多 半",
+ "F 1",
+ "电 池",
+ "逍 遥",
+ "开 刀",
+ "黄 体",
+ "气 泡",
+ "十 几",
+ "造 假",
+ "托 福",
+ "献 血",
+ "农 夫",
+ "放 纵",
+ "相 距",
+ "实 数",
+ "正 数",
+ "a x",
+ "一点 一点",
+ "大 树",
+ "茂 密",
+ "传 承",
+ "定 语",
+ "从 句",
+ "罗 马",
+ "t h",
+ "介 词",
+ "代 词",
+ "韦 德",
+ "选 秀",
+ "顺 位",
+ "NB A",
+ "首 轮",
+ "哺 乳",
+ "招 聘",
+ "集中 精力",
+ "马 德里",
+ "阿 尔",
+ "西 亚",
+ "西班牙 人",
+ "离 谱",
+ "底 层",
+ "变 薄",
+ "快 递",
+ "乡 镇",
+ "保证 金",
+ "隔离 霜",
+ "强烈 推荐",
+ "发 来",
+ "没 收",
+ "给 我发",
+ "血 迹",
+ "先 兆",
+ "结 膜炎",
+ "祝 好",
+ "用 点",
+ "红 霉素",
+ "事 前",
+ "倒 霉",
+ "供应 商",
+ "剑 桥",
+ "弄 清楚",
+ "弄清 楚",
+ "原 版",
+ "牛 津",
+ "偏 差",
+ "语 感",
+ "初 学者",
+ "初学 者",
+ "高 阶",
+ "读 者",
+ "人 能",
+ "从 业",
+ "考 过",
+ "助 理",
+ "第 二年",
+ "第二 年",
+ "眼 看",
+ "分析 师",
+ "肺 癌",
+ "真是 太",
+ "丝 袜",
+ "没 人会",
+ "没人 会",
+ "根 除",
+ "6 4",
+ "5 cm",
+ "清 扫",
+ "靶 向",
+ "晚 期",
+ "高 清",
+ "惊 讶",
+ "古 文",
+ "并 列",
+ "部 首",
+ "董事 长",
+ "热 点",
+ "股 份",
+ "in to",
+ "int o",
+ "e en",
+ "ee n",
+ "好久 没",
+ "m e",
+ "隆 起",
+ "乳 晕",
+ "调 戏",
+ "勾 引",
+ "湿 疹",
+ "赌 场",
+ "周 到",
+ "要 钱",
+ "丢 人",
+ "善 意",
+ "求 求",
+ "茫 然",
+ "心 愿",
+ "负 债",
+ "家 门",
+ "亲 生",
+ "养 育",
+ "打 下",
+ "放 手",
+ "学 业",
+ "蛋白 粉",
+ "教 练",
+ "自动 更新",
+ "上 天",
+ "公共 场合",
+ "有 血",
+ "水 印",
+ "合 集",
+ "帅 气",
+ "写 真",
+ "观 望",
+ "外 币",
+ "存 入",
+ "回 国",
+ "中 行",
+ "理科 生",
+ "状 元",
+ "超 重",
+ "本 线",
+ "S 1",
+ "术 语",
+ "原 意",
+ "字 幕",
+ "味 蕾",
+ "椰 子",
+ "美 少女",
+ "加 分",
+ "利 于",
+ "依赖 性",
+ "阴茎 头",
+ "包 皮炎",
+ "包皮 炎",
+ "尿道 口",
+ "环切 术",
+ "逆 行",
+ "膀胱 炎",
+ "继 发",
+ "嵌 顿",
+ "离 合",
+ "发 抖",
+ "机 油",
+ "一 档",
+ "油 门",
+ "路 边",
+ "1 28",
+ "12 8",
+ "有 大",
+ "床 单",
+ "布 料",
+ "神经 病",
+ "敲 门",
+ "公 安",
+ "罚 款",
+ "施 行",
+ "污染 物",
+ "人民 法院",
+ "要 死",
+ "视觉 效果",
+ "大 卫",
+ "外星 人",
+ "处 有",
+ "很 深",
+ "松 弛",
+ "法 令",
+ "Y Y",
+ "震 荡",
+ "功 耗",
+ "是否 是",
+ "电 能",
+ "负 载",
+ "减 半",
+ "发电 厂",
+ "发 电机",
+ "发电 机",
+ "不 计",
+ "外 加",
+ "乐 意",
+ "秦 汉",
+ "朝 代",
+ "近 代",
+ "电脑 游戏",
+ "安全 措施",
+ "解 锁",
+ "过 头",
+ "来 定",
+ "创 意",
+ "二十 世纪",
+ "陆 续",
+ "革 新",
+ "不 懈",
+ "百 年",
+ "19 40",
+ "孙 子",
+ "出 众",
+ "创造 力",
+ "修 饰",
+ "19 60",
+ "第 一款",
+ "第一 款",
+ "稀 有",
+ "殿 堂",
+ "专业 知识",
+ "代 名词",
+ "精 心",
+ "艺术 品",
+ "创始 人",
+ "乔 治",
+ "开 创",
+ "经 由",
+ "奇 观",
+ "秘 鲁",
+ "智 利",
+ "山 区",
+ "L a",
+ "村 落",
+ "19 42",
+ "自 家",
+ "其 父",
+ "19 43",
+ "创办 人",
+ "知名 度",
+ "展现 出",
+ "管 制",
+ "厂 房",
+ "落 成",
+ "19 63",
+ "19 57",
+ "翻 开",
+ "安 置",
+ "日内 瓦",
+ "19 78",
+ "至 上",
+ "独 家",
+ "两 项",
+ "火 花",
+ "19 76",
+ "配 饰",
+ "出发 点",
+ "构 思",
+ "款 式",
+ "特 质",
+ "璀 璨",
+ "19 90",
+ "199 0",
+ "首 个",
+ "空 前",
+ "热 烈",
+ "高 雅",
+ "演 绎",
+ "经典 之作",
+ "代表 作",
+ "面 貌",
+ "登 场",
+ "传 达",
+ "诉 求",
+ "瞩 目",
+ "周 年",
+ "停 下",
+ "名 家",
+ "带 领",
+ "固 有",
+ "敬 意",
+ "创造 性",
+ "Tim e",
+ "旨 在",
+ "展 览",
+ "颠 覆",
+ "男 装",
+ "女 装",
+ "衍 生",
+ "多种 不同",
+ "极 具",
+ "精 妙",
+ "之 美",
+ "19 50",
+ "之 名",
+ "钻 石",
+ "钟 爱",
+ "爬 山",
+ "发 车",
+ "慢慢 来",
+ "戒 除",
+ "怪 兽",
+ "雨 天",
+ "午 夜",
+ "酸 甜",
+ "到 家",
+ "溶 化",
+ "化学 性质",
+ "氧 气",
+ "所 有权",
+ "所有 权",
+ "野 外",
+ "斗 士",
+ "斯 科特",
+ "外 籍",
+ "兵 团",
+ "再 造",
+ "激 情",
+ "大 叔",
+ "动作 片",
+ "值得 一看",
+ "坠 落",
+ "野 蛮",
+ "仿 真",
+ "人 去",
+ "数据 分析",
+ "扰 乱",
+ "暖 和",
+ "税 费",
+ "营业 税",
+ "摊 销",
+ "损 益",
+ "精 英",
+ "戴 眼镜",
+ "流 感",
+ "其 间",
+ "人 手",
+ "电子 产品",
+ "等等 等等",
+ "征 收",
+ "交 纳",
+ "核 定",
+ "综 上",
+ "开 具",
+ "摇 滚",
+ "分 到",
+ "合 资",
+ "按 揭",
+ "前 有",
+ "拆 迁",
+ "二手 房",
+ "产 权",
+ "过 世",
+ "另 一方",
+ "人 情",
+ "套 房",
+ "补 救",
+ "收 回",
+ "增 值",
+ "遗 产",
+ "遗 嘱",
+ "姥 姥",
+ "姥 爷",
+ "继承 人",
+ "应 是",
+ "约 定",
+ "动 用",
+ "太 过",
+ "惊 恐",
+ "忧 伤",
+ "脏 腑",
+ "来 临",
+ "早 衰",
+ "很 广",
+ "胃 溃疡",
+ "酒精 中毒",
+ "燃 气",
+ "水 温",
+ "7 3",
+ "第 一年",
+ "第一 年",
+ "技术 水平",
+ "嵌 入",
+ "透 视",
+ "宫腔 内",
+ "王 道",
+ "自 立",
+ "打 斗",
+ "著 称",
+ "出 手",
+ "击 毙",
+ "越 强",
+ "较 弱",
+ "强 健",
+ "修 炼",
+ "争 执",
+ "欺 负",
+ "术 士",
+ "劣 势",
+ "H P",
+ "一 帮",
+ "葫 芦",
+ "争 斗",
+ "弱 化",
+ "介 于",
+ "纸 币",
+ "形容 词",
+ "副 词",
+ "连 词",
+ "三 菱",
+ "睿 智",
+ "包 围",
+ "做 起",
+ "传 授",
+ "实 名",
+ "采 矿",
+ "长 到",
+ "荒 芜",
+ "性 子",
+ "应 收",
+ "核 对",
+ "敏感 度",
+ "敏 感性",
+ "敏感 性",
+ "避孕 套",
+ "滑 冰",
+ "两 性",
+ "国 庆",
+ "优 惠",
+ "折 扣",
+ "家 居",
+ "之 旅",
+ "安 慰",
+ "无 条件",
+ "一个 多",
+ "周 五",
+ "分 心",
+ "停 靠",
+ "哈 尔",
+ "下个 月",
+ "过 生日",
+ "尴 尬",
+ "往 后",
+ "家 电",
+ "修 建",
+ "驱 使",
+ "建 国",
+ "最 先",
+ "两 国",
+ "新 式",
+ "基础 设施",
+ "先 是",
+ "制 裁",
+ "经济 损失",
+ "促 成",
+ "解 体",
+ "重 心",
+ "不要 脸",
+ "诚 意",
+ "极 光",
+ "改 良",
+ "有 心",
+ "此 次",
+ "躲 避",
+ "电 场",
+ "电 击",
+ "5 6",
+ "锻 造",
+ "深 造",
+ "合理 安排",
+ "铠 甲",
+ "永久 性",
+ "成员 国",
+ "全 称",
+ "海 岸",
+ "将 近",
+ "英 里",
+ "拉 丁",
+ "史 前",
+ "遗 迹",
+ "此 后",
+ "定 居",
+ "克 斯",
+ "威 廉",
+ "战 役",
+ "英 国人",
+ "英国 人",
+ "堡 垒",
+ "王 子",
+ "阵 亡",
+ "之 下",
+ "欧 文",
+ "格 林",
+ "起 义",
+ "人 则",
+ "北 上",
+ "中 世纪",
+ "继 位",
+ "紧 密",
+ "联合 会",
+ "二 世",
+ "王 室",
+ "叛 乱",
+ "试 图",
+ "免 受",
+ "亨 利",
+ "四 世",
+ "统治 者",
+ "落 到",
+ "权 贵",
+ "君 主",
+ "干 预",
+ "领导 人",
+ "镇 压",
+ "世纪 末",
+ "19 16",
+ "第一次 世界大战",
+ "19 20",
+ "法 案",
+ "席 位",
+ "服 从",
+ "条 约",
+ "19 49",
+ "管 辖",
+ "防 卫",
+ "距 今",
+ "五 千年",
+ "五千 年",
+ "首 批",
+ "留 下来",
+ "留下 来",
+ "残 酷",
+ "中 叶",
+ "拉丁 语",
+ "习 俗",
+ "渗 入",
+ "老 家",
+ "四 次",
+ "军 团",
+ "撤 离",
+ "软 弱",
+ "领 袖",
+ "耗 时",
+ "金 庸",
+ "血 性",
+ "共 存",
+ "三 十年",
+ "三十 年",
+ "朝 廷",
+ "无 不",
+ "瓦 解",
+ "同 化",
+ "领 地",
+ "诸 侯",
+ "属 下",
+ "独立 性",
+ "自 幼",
+ "流 亡",
+ "即 位",
+ "表 弟",
+ "生 前",
+ "五 千",
+ "凭 着",
+ "圣 经",
+ "便 携",
+ "法 国人",
+ "法国 人",
+ "杀 戮",
+ "掠 夺",
+ "亲 属",
+ "殖 民",
+ "兴 建",
+ "世 俗",
+ "盛 世",
+ "后 边",
+ "世 袭",
+ "开 端",
+ "一 百年",
+ "一百 年",
+ "地 名",
+ "后 裔",
+ "在 位",
+ "不 及",
+ "尽管 如此",
+ "君 王",
+ "第 一任",
+ "第一 任",
+ "法 庭",
+ "废 止",
+ "不久 前",
+ "舰 艇",
+ "查 尔斯",
+ "震 撼",
+ "女 婿",
+ "外 甥",
+ "王 位",
+ "姐 夫",
+ "老 爹",
+ "泰 山",
+ "三 世",
+ "极 富",
+ "人 要",
+ "质 问",
+ "伦 理",
+ "确 立",
+ "大 败",
+ "国 会",
+ "史 书",
+ "十 八岁",
+ "十八 岁",
+ "白 发",
+ "老 太太",
+ "康 熙",
+ "本 是",
+ "教 养",
+ "亲 王",
+ "打 仗",
+ "迁 居",
+ "极 其",
+ "上 边",
+ "财 物",
+ "远 比",
+ "诚 实",
+ "流 汗",
+ "抢 劫",
+ "不 惜",
+ "二 年",
+ "惨 烈",
+ "战 死",
+ "欧洲 人",
+ "老 子",
+ "不 详",
+ "变 动",
+ "跨 国",
+ "互 通",
+ "明 末",
+ "公 历",
+ "迷 信",
+ "一 族",
+ "永 不",
+ "超 频",
+ "农 行",
+ "久 久",
+ "痤 疮",
+ "牙 医",
+ "乳 膏",
+ "药 房",
+ "原 创",
+ "七 个",
+ "假 装",
+ "吃 醋",
+ "贴 近",
+ "一 丝",
+ "无 缘",
+ "花 草",
+ "换 气",
+ "怀 旧",
+ "血 中",
+ "游 离",
+ "水 解",
+ "家 属",
+ "惊 厥",
+ "抽 搐",
+ "不可 逆转",
+ "虚拟 世界",
+ "虚 无",
+ "管理 局",
+ "单 方面",
+ "拿 走",
+ "悲 剧",
+ "胰 腺癌",
+ "胰腺 癌",
+ "感激 不尽",
+ "老 爷",
+ "吉林 省",
+ "叔 叔",
+ "自 愿",
+ "人 身",
+ "送 货",
+ "v s",
+ "卡 斯",
+ "冷 门",
+ "厨 师",
+ "去 学",
+ "十 二个",
+ "十二 个",
+ "太 冷",
+ "尿 布",
+ "太 紧",
+ "日 夜",
+ "颠 倒",
+ "要 不是",
+ "安 抚",
+ "八 个",
+ "抱 抱",
+ "夜 里",
+ "美 美",
+ "犹 如",
+ "身 价",
+ "球 蛋白",
+ "财务 管理",
+ "国际 性",
+ "融 资",
+ "造 就",
+ "一 大批",
+ "一大 批",
+ "年 薪",
+ "会计 师",
+ "丰 厚",
+ "执 业",
+ "学 员",
+ "颁 发",
+ "资格 证书",
+ "资格证 书",
+ "喷 雾",
+ "尿 急",
+ "王 菲",
+ "单 曲",
+ "有 效率",
+ "有效 率",
+ "第三 行",
+ "核 算",
+ "贵 阳",
+ "新 世纪",
+ "幼儿 园",
+ "莫 大",
+ "10 24",
+ "102 4",
+ "L CD",
+ "液晶 电视",
+ "最 合适",
+ "电视 机",
+ "催化 剂",
+ "蓝 牙",
+ "有 线",
+ "你 学",
+ "陕 西",
+ "汇 聚",
+ "街 边",
+ "潜 入",
+ "刺 杀",
+ "里 加",
+ "敏 锐",
+ "叛 逆",
+ "中 旬",
+ "时间 表",
+ "眼 霜",
+ "轻 薄",
+ "类 产品",
+ "排 毒",
+ "H R",
+ "V C",
+ "吉 他",
+ "秒 杀",
+ "火 箭",
+ "叫 作",
+ "玩意 儿",
+ "历 经",
+ "挣 扎",
+ "一 来",
+ "二 来",
+ "坚 强",
+ "意志 力",
+ "沮 丧",
+ "况 且",
+ "宁 可",
+ "导 向",
+ "言 语",
+ "用 词",
+ "格 外",
+ "亲 近",
+ "水 星",
+ "交 点",
+ "行 星",
+ "毒 品",
+ "成 瘾",
+ "素 食",
+ "小 肠",
+ "优惠 券",
+ "梦 幻",
+ "v e",
+ "b een",
+ "be en",
+ "b e",
+ "树 叶",
+ "we ll",
+ "h e",
+ "h er",
+ "he r",
+ "to day",
+ "离 去",
+ "发 红",
+ "大 局",
+ "用 以",
+ "那 条",
+ "实 体",
+ "办 到",
+ "表 面积",
+ "表面 积",
+ "to o",
+ "be ing",
+ "g et",
+ "li ve",
+ "w e",
+ "tr y",
+ "M y",
+ "W e",
+ "r e",
+ "g o",
+ "o ur",
+ "a y",
+ "标 明",
+ "总 说",
+ "申 诉",
+ "应 酬",
+ "最 怕",
+ "酒精 性",
+ "做 客",
+ "X 射线",
+ "可见 光",
+ "红外 线",
+ "高 频",
+ "低 频",
+ "微 弱",
+ "北京 大学",
+ "现实 生活",
+ "定 罪",
+ "电脑 前",
+ "山东 省",
+ "赛 跑",
+ "洗手 间",
+ "不 熟",
+ "惊 醒",
+ "上床 睡觉",
+ "毛 线",
+ "可口 可乐",
+ "改 掉",
+ "不 快",
+ "晚 间",
+ "降 下来",
+ "体育 比赛",
+ "5 7",
+ "传 教",
+ "调 教",
+ "作 风",
+ "流 水",
+ "多 情",
+ "一 寸",
+ "我 本",
+ "奈 何",
+ "无 边",
+ "匆 匆",
+ "何 处",
+ "粤 语",
+ "潮 州",
+ "遗 精",
+ "阴 囊",
+ "门 诊",
+ "搜 到",
+ "简 历",
+ "未知 数",
+ "期 末",
+ "逼 迫",
+ "期末 考试",
+ "一 发",
+ "唠 叨",
+ "理 会",
+ "反 面",
+ "班 主任",
+ "女 同学",
+ "往 年",
+ "那 段",
+ "小 鸟",
+ "笼 子",
+ "嫂 子",
+ "木 头",
+ "心 想",
+ "两 张",
+ "贴 纸",
+ "地 想",
+ "掉 下来",
+ "肝 癌",
+ "兼 顾",
+ "百分之 百",
+ "大 意",
+ "民 歌",
+ "可 观",
+ "暴 跌",
+ "en d",
+ "A n",
+ "use d",
+ "A ll",
+ "S ystem",
+ "表 述",
+ "职 责",
+ "盘 点",
+ "谅 解",
+ "纯 洁",
+ "豆 浆",
+ "打 磨",
+ "姜 末",
+ "鸡 精",
+ "揭 开",
+ "成 形",
+ "无 味",
+ "花生 油",
+ "偏 爱",
+ "主 料",
+ "大 火",
+ "大 匙",
+ "汁 液",
+ "木 瓜",
+ "酵 素",
+ "熄 火",
+ "鲜 肉",
+ "排 在",
+ "粗 暴",
+ "简 陋",
+ "附件 炎",
+ "两 名",
+ "兄 妹",
+ "过 快",
+ "慎 重",
+ "佛 山",
+ "菩 萨",
+ "安 徽",
+ "半 径",
+ "固 体",
+ "摄氏 度",
+ "工商 管理",
+ "管 理学",
+ "管理 学",
+ "统计 学",
+ "宏 观",
+ "微 观",
+ "市场 营销",
+ "有 图",
+ "抗 病毒",
+ "抗病 毒",
+ "杜 绝",
+ "贴 图",
+ "背 面",
+ "出 轨",
+ "维 系",
+ "红 旗",
+ "S E",
+ "纪 录",
+ "以 示",
+ "真 相",
+ "1 100",
+ "11 00",
+ "110 0",
+ "本 周",
+ "对 决",
+ "球 迷",
+ "就 读",
+ "驱动 程序",
+ "N B",
+ "体 制",
+ "虾 皮",
+ "中 加",
+ "制 法",
+ "千 克",
+ "蒜 末",
+ "上 桌",
+ "肉 丝",
+ "排 骨",
+ "煸 炒",
+ "木 耳",
+ "猪 油",
+ "丸 子",
+ "鲫 鱼",
+ "片 刻",
+ "搅 匀",
+ "鱿 鱼",
+ "墓 地",
+ "死 后",
+ "泥 沙",
+ "肥 料",
+ "几 本",
+ "实 务",
+ "大 侠",
+ "理 工",
+ "约 会",
+ "此 举",
+ "小 气",
+ "打 扮",
+ "看 清",
+ "网络 层",
+ "近 亲",
+ "别 说",
+ "下 一代",
+ "遗传 病",
+ "酗 酒",
+ "劝 说",
+ "不良 后果",
+ "争 论",
+ "私 下",
+ "出 席",
+ "搜 集",
+ "动 员",
+ "说服 力",
+ "同情 心",
+ "不 止",
+ "头 脑",
+ "减 量",
+ "相 聚",
+ "柜 子",
+ "出 外",
+ "一 碗",
+ "油 锅",
+ "炒 熟",
+ "多种 多样",
+ "打 入",
+ "分 明",
+ "法 则",
+ "香 肠",
+ "小 匙",
+ "七 分",
+ "射 频",
+ "数据 库",
+ "阅读 器",
+ "环境 保护",
+ "消 防",
+ "浪 潮",
+ "美国 政府",
+ "此 前",
+ "小 到",
+ "大 到",
+ "楼 房",
+ "即 时",
+ "智能 家居",
+ "公共 卫生",
+ "上 车",
+ "脉 搏",
+ "降 温",
+ "科幻 电影",
+ "具体 来说",
+ "衔 接",
+ "洗衣 机",
+ "门 锁",
+ "密切 相关",
+ "二维 码",
+ "多 岁",
+ "全 程",
+ "柯 南",
+ "漫 画家",
+ "漫画 家",
+ "传 言",
+ "定 下",
+ "头 目",
+ "全 名",
+ "穴 位",
+ "痛 感",
+ "减肥 药",
+ "饮 水量",
+ "饮水 量",
+ "弊 端",
+ "代谢 性",
+ "酸 中毒",
+ "狭 义",
+ "广 义",
+ "江 西",
+ "老 乡",
+ "当地 人",
+ "懒 得",
+ "松 开",
+ "忙 于",
+ "笔 下",
+ "评论 家",
+ "不 已",
+ "衣 着",
+ "故事 情节",
+ "局 限于",
+ "局限 于",
+ "推 理",
+ "追 逐",
+ "B 型",
+ "油 画",
+ "连 载",
+ "探 险",
+ "第 一篇",
+ "第一 篇",
+ "人 形",
+ "四 年级",
+ "四年 级",
+ "选 手",
+ "别 看",
+ "一 职",
+ "凶 手",
+ "投 稿",
+ "登 上",
+ "描 绘",
+ "转 播",
+ "好 喝",
+ "棒 球",
+ "画 风",
+ "先 驱",
+ "包 里",
+ "先 给",
+ "收 钱",
+ "搞 个",
+ "营 收",
+ "毛 利",
+ "迈 克尔",
+ "迈克 尔",
+ "太 空",
+ "僵 尸",
+ "套 路",
+ "强烈 建议",
+ "熊 猫",
+ "喉咙 痛",
+ "这段 话",
+ "改 正",
+ "家 有",
+ "坏 处",
+ "热 恋",
+ "水 面",
+ "水 位",
+ "洪 水",
+ "中 点",
+ "原 点",
+ "恐惧 症",
+ "运营 商",
+ "狩 猎",
+ "公平 性",
+ "遗 失",
+ "h ad",
+ "白白 的",
+ "练 到",
+ "疏 通",
+ "秘 籍",
+ "击 退",
+ "间隔 时间",
+ "P M",
+ "认 购",
+ "欧 式",
+ "上市 公司",
+ "四 是",
+ "保持 平衡",
+ "1 17",
+ "11 7",
+ "巡 航",
+ "有 待",
+ "干 涩",
+ "牛 市",
+ "善 待",
+ "代理 人",
+ "晚 安",
+ "开 房",
+ "模 特",
+ "从此 以后",
+ "迷 恋",
+ "区 间",
+ "x 1",
+ "吃 香",
+ "之 歌",
+ "撒 娇",
+ "妥 善",
+ "闲 暇",
+ "演 习",
+ "评 判",
+ "司令 部",
+ "战斗 力",
+ "适应 性",
+ "红 军",
+ "坚 守",
+ "派 出",
+ "现 役",
+ "步 兵",
+ "人员 伤亡",
+ "重 型",
+ "人 眼",
+ "态 势",
+ "上 岸",
+ "周 二",
+ "周 日",
+ "赛 季",
+ "周 四",
+ "马 刺",
+ "活 塞",
+ "公 牛",
+ "尼 克斯",
+ "尼克 斯",
+ "老 鹰",
+ "湖 人",
+ "爵 士",
+ "踢 球",
+ "脚 尖",
+ "加 载",
+ "联 机",
+ "国家 标准",
+ "细 分",
+ "跨 度",
+ "市场 需求",
+ "不断 更新",
+ "科 研",
+ "已 于",
+ "手 册",
+ "机 型",
+ "华 硕",
+ "惠 普",
+ "泌尿 系统",
+ "泌尿系 统",
+ "浅 色",
+ "尿 量",
+ "巨 龙",
+ "能 用",
+ "低 级",
+ "场 内",
+ "场 外",
+ "E TF",
+ "单 向",
+ "股票 交易",
+ "泉 州",
+ "中央 政府",
+ "码 头",
+ "龙 头",
+ "无 知",
+ "每 每",
+ "带 回家",
+ "带回 家",
+ "新 婚",
+ "前 女友",
+ "懂 事",
+ "耗 尽",
+ "舆 论",
+ "撕 裂",
+ "尊 严",
+ "丢 弃",
+ "愚 昧",
+ "票 房",
+ "圆 满",
+ "第 三部",
+ "第三 部",
+ "机 密",
+ "ne w",
+ "借 给",
+ "蓝 天",
+ "白 云",
+ "农 田",
+ "影 子",
+ "一 副",
+ "加 号",
+ "真 伪",
+ "假 货",
+ "混 浊",
+ "粘 性",
+ "试用 期",
+ "劳动 合同",
+ "书 面",
+ "口 头",
+ "真 要",
+ "用人 单位",
+ "工 伤",
+ "不 干",
+ "钢 笔",
+ "书 法",
+ "写 字",
+ "皮 毛",
+ "发展 潜力",
+ "指 在",
+ "纸 张",
+ "调 入",
+ "三 方",
+ "要 紧",
+ "传送 门",
+ "8 5%",
+ "85 %",
+ "相 恋",
+ "换 位",
+ "呵 护",
+ "兼 职",
+ "业余 时间",
+ "内蒙古 自治区",
+ "颁 布",
+ "牧 区",
+ "第 三条",
+ "第三 条",
+ "主管 部门",
+ "各 级",
+ "公安 机关",
+ "大 牌",
+ "铜 牌",
+ "门 户",
+ "不 分",
+ "胡 同",
+ "偏 远",
+ "区 内",
+ "空 地",
+ "扩 建",
+ "大 门",
+ "地下 室",
+ "分 层",
+ "二 层",
+ "米 左右",
+ "城 区",
+ "管理 工作",
+ "动 工",
+ "住宅 区",
+ "当地 政府",
+ "盗 窃",
+ "日 起",
+ "羞 耻",
+ "再也 不会",
+ "卡 号",
+ "拨 打",
+ "阴道 口",
+ "如 是",
+ "话语 权",
+ "举例 说明",
+ "2 30",
+ "23 0",
+ "符合 条件",
+ "丑 闻",
+ "寺 庙",
+ "原 为",
+ "丞 相",
+ "蒙 古",
+ "呼 应",
+ "仅 存",
+ "和 尚",
+ "王 府",
+ "市 民",
+ "戏 曲",
+ "中 说",
+ "火影 忍者",
+ "火 影",
+ "说 道",
+ "8 1",
+ "8 3",
+ "反 驳",
+ "自 来",
+ "对 战",
+ "逃 避",
+ "鸣 人",
+ "精 髓",
+ "分 歧",
+ "村 里",
+ "二 代",
+ "预 知",
+ "童 话",
+ "喂 养",
+ "小 人",
+ "太 热",
+ "顶 上",
+ "假 象",
+ "留 恋",
+ "新鲜 感",
+ "上 路",
+ "找 寻",
+ "十 点",
+ "六 点",
+ "合 伙",
+ "名 将",
+ "国 军",
+ "集团 军",
+ "总 司令",
+ "师 团",
+ "将 领",
+ "汉 奸",
+ "清 白",
+ "战 区",
+ "长 官",
+ "中 共",
+ "一 战",
+ "王 牌",
+ "遭 受",
+ "第 三名",
+ "第三 名",
+ "昆 仑",
+ "机械 化",
+ "强 于",
+ "日 军",
+ "二 流",
+ "出 征",
+ "对 错",
+ "个人 感觉",
+ "第 四名",
+ "第四 名",
+ "救 出",
+ "英 军",
+ "罗斯 福",
+ "勋 章",
+ "鲜 血",
+ "略 显",
+ "治 理",
+ "走 私",
+ "饿 死",
+ "民 谣",
+ "数 万",
+ "远 征",
+ "打 通",
+ "太 原",
+ "数 千",
+ "不 屑",
+ "军 中",
+ "余 人",
+ "下 属",
+ "不 予",
+ "少 有",
+ "歌 颂",
+ "剧 中",
+ "一 时间",
+ "一时 间",
+ "第 十",
+ "致 敬",
+ "仙 人",
+ "情 报",
+ "请 勿",
+ "下 令",
+ "虚 构",
+ "饭 量",
+ "大 碗",
+ "嘴 角",
+ "广告 宣传",
+ "上 当",
+ "民 用",
+ "概 括",
+ "后 能",
+ "教 程",
+ "匹 配",
+ "逐 个",
+ "滑 行",
+ "推 力",
+ "洲 际",
+ "3 20",
+ "32 0",
+ "击 中",
+ "远 距离",
+ "敌 对",
+ "意 味",
+ "编译 器",
+ "ID E",
+ "打 针",
+ "可 疑",
+ "开放 性",
+ "外 伤",
+ "数 分钟",
+ "肾上腺 素",
+ "红 斑",
+ "钙 剂",
+ "数 日",
+ "限 度",
+ "制 备",
+ "用 具",
+ "m l",
+ "脱 敏",
+ "股票 市场",
+ "大 好",
+ "税 后",
+ "时 分",
+ "自古 以来",
+ "断 言",
+ "里 会",
+ "孕 酮",
+ "受 体",
+ "恶性 肿瘤",
+ "紧急 情况",
+ "未 婚",
+ "大 出血",
+ "生命 危险",
+ "告 诫",
+ "急 诊",
+ "周 内",
+ "体力 劳动",
+ "会 阴",
+ "盆 浴",
+ "未 见",
+ "间 质",
+ "纤维 化",
+ "钙 化",
+ "炎 性",
+ "有 著",
+ "遵 从",
+ "亚 热带",
+ "想 学",
+ "长 处",
+ "太好 了",
+ "好好 学习",
+ "抑 或",
+ "兴趣 爱好",
+ "要 强",
+ "吃 力",
+ "生 子",
+ "宫 缩",
+ "脑子 里",
+ "敬 佩",
+ "易 怒",
+ "菊 花",
+ "口 苦",
+ "耳 聋",
+ "葱 白",
+ "果 皮",
+ "不 差",
+ "撒 谎",
+ "朗 读",
+ "一 天天",
+ "一天 天",
+ "交 朋友",
+ "小 腿",
+ "武 警",
+ "瓣 膜",
+ "反 流",
+ "我 长",
+ "起 效",
+ "能 治",
+ "上 周",
+ "打 篮球",
+ "有点 痛",
+ "骨 科",
+ "病情 严重",
+ "过 久",
+ "劳 动力",
+ "劳动 力",
+ "某 人",
+ "西安 市",
+ "多 位",
+ "参考 文献",
+ "V CD",
+ "VC D",
+ "正 方形",
+ "空气 清新",
+ "经理 人",
+ "笔 者",
+ "第 一层",
+ "第一 层",
+ "扮 演",
+ "开 辟",
+ "早 年",
+ "9 7",
+ "第 一张",
+ "第一 张",
+ "轮 流",
+ "通 宵",
+ "徐 州",
+ "最 深",
+ "狭 隘",
+ "扩 充",
+ "中 层",
+ "违 背",
+ "低 落",
+ "反 思",
+ "氛 围",
+ "不断 进步",
+ "攀 升",
+ "自 律",
+ "约 束",
+ "腐 败",
+ "用 人",
+ "输 送",
+ "分支 机构",
+ "营 造",
+ "南京 大学",
+ "MB A",
+ "硕士 学位",
+ "轰 动",
+ "风 气",
+ "领导 力",
+ "塑 造",
+ "救 救",
+ "献 上",
+ "l a",
+ "宏 大",
+ "知 晓",
+ "无 处",
+ "出 卖",
+ "会 谈",
+ "9 8",
+ "定 向",
+ "院 校",
+ "生 源",
+ "内 地",
+ "港 币",
+ "各 家",
+ "三 万",
+ "分 行",
+ "不 受",
+ "不太 会",
+ "五 点",
+ "数 是",
+ "时 钟",
+ "移动 硬盘",
+ "塞 尔",
+ "三部 曲",
+ "决 战",
+ "最佳 影片",
+ "19 39",
+ "19 52",
+ "19 48",
+ "保 罗",
+ "脚 本",
+ "蜂蜜 水",
+ "可 治",
+ "胃 病",
+ "酸 辣",
+ "胃 酸",
+ "申 论",
+ "表达 能力",
+ "作 答",
+ "罗 列",
+ "陈 述",
+ "篇 幅",
+ "仔细 阅读",
+ "论 证",
+ "飞 船",
+ "椭 圆",
+ "地球 表面",
+ "T 1",
+ "长 轴",
+ "细 微",
+ "方 剂",
+ "奖 牌",
+ "爪 子",
+ "卖 出去",
+ "卖出 去",
+ "天 性",
+ "引 来",
+ "捕 猎",
+ "吃 掉",
+ "觅 食",
+ "殴 打",
+ "进 门",
+ "急 躁",
+ "宝 物",
+ "听 从",
+ "亢 进",
+ "曲 子",
+ "音乐 家",
+ "配 乐",
+ "联 手",
+ "打 包",
+ "哺 育",
+ "乳 汁",
+ "更为 重要",
+ "历 来",
+ "部 份",
+ "三 类",
+ "爬 行",
+ "比较 稳定",
+ "两 位数",
+ "两位 数",
+ "恶 性",
+ "实 物",
+ "紧 缩",
+ "货币 政策",
+ "利 率",
+ "股票 价格",
+ "征 税",
+ "并 不大",
+ "希腊 神话",
+ "大 军",
+ "奇 异",
+ "狂 欢",
+ "城 门",
+ "涌 入",
+ "后 世",
+ "一 经",
+ "之 意",
+ "动 车",
+ "旅 客",
+ "逃 生",
+ "车 厢",
+ "下 坠",
+ "有 位",
+ "断 电",
+ "按 键",
+ "生 死",
+ "握 手",
+ "位 子",
+ "女 排",
+ "输 给",
+ "中国 队",
+ "醒 过来",
+ "排 球",
+ "呼 唤",
+ "崛 起",
+ "温 差",
+ "惊 慌",
+ "点 半",
+ "追 到",
+ "称 赞",
+ "会 痛",
+ "平 卧",
+ "最 贵",
+ "之 星",
+ "不 觉",
+ "2 D",
+ "墨 水",
+ "执 教",
+ "墨 盒",
+ "待 机",
+ "通 话",
+ "科 学界",
+ "科学 界",
+ "完 备",
+ "广东 省",
+ "知名 品牌",
+ "样 品",
+ "口 袋",
+ "床 头",
+ "老 鼠",
+ "上皮 细胞",
+ "接 通",
+ "脑 组织",
+ "神经 元",
+ "结果 显示",
+ "环境 影响",
+ "胸 前",
+ "小红 帽",
+ "一 顶",
+ "最佳 答案",
+ "为 啥",
+ "求 学",
+ "琐 事",
+ "和 解",
+ "分 居",
+ "上 诉",
+ "不 道德",
+ "二 字",
+ "真 谛",
+ "消 亡",
+ "小 马",
+ "烟 草",
+ "视 觉",
+ "反 向",
+ "瞳 孔",
+ "无 副作用",
+ "判断 力",
+ "遇到 困难",
+ "近 距离",
+ "正 视",
+ "尚 书",
+ "租 金",
+ "re ad",
+ "错误 信息",
+ "滚 动",
+ "毛 衣",
+ "围 巾",
+ "加 个",
+ "前 部",
+ "边 框",
+ "水 下",
+ "水 深",
+ "两句 话",
+ "满 分",
+ "看 得出",
+ "看得 出",
+ "失 利",
+ "陪 伴",
+ "终 生",
+ "往 常",
+ "脂肪 瘤",
+ "尿路 感染",
+ "结核 病",
+ "植物 神经",
+ "尿 血",
+ "劳 损",
+ "而 生",
+ "气 虚",
+ "形 体",
+ "燥 热",
+ "气 短",
+ "治 法",
+ "几 类",
+ "利 湿",
+ "泥 鳅",
+ "芒 果",
+ "党 参",
+ "白 术",
+ "石 榴",
+ "银 耳",
+ "韭 菜",
+ "阳 气",
+ "忌 讳",
+ "瓜 果",
+ "白 砂糖",
+ "鲜 嫩",
+ "筋 骨",
+ "休息 时间",
+ "英语 专业",
+ "相 位",
+ "聚 焦",
+ "信息 量",
+ "数字 化",
+ "零 点",
+ "附 带",
+ "终 端",
+ "草 莓",
+ "工商 银行",
+ "早产 儿",
+ "测 定",
+ "红 细胞",
+ "败 血症",
+ "血 肿",
+ "斑 点",
+ "玩 笑",
+ "云南 省",
+ "建 材",
+ "估 算",
+ "基 层",
+ "修 补",
+ "起 泡",
+ "环 保",
+ "手 感",
+ "树 脂",
+ "地 砖",
+ "水 池",
+ "实 木",
+ "8 50",
+ "85 0",
+ "照 明",
+ "k g",
+ "灯 具",
+ "电 工",
+ "水 箱",
+ "进 水",
+ "中 小型",
+ "中小 型",
+ "打 扫",
+ "亲 手",
+ "管理 费",
+ "写 明",
+ "套 用",
+ "停 产",
+ "初始 值",
+ "当 当",
+ "打 得",
+ "地 盘",
+ "建筑 群",
+ "故 居",
+ "味 儿",
+ "破 旧",
+ "木 有",
+ "逛 街",
+ "万 达",
+ "转 职",
+ "袜 子",
+ "双 脚",
+ "臭 味",
+ "而 异",
+ "多 汗",
+ "汗 腺",
+ "闷 热",
+ "盐 分",
+ "热 度",
+ "染 上",
+ "交 际",
+ "拖 鞋",
+ "短 裤",
+ "绅 士",
+ "人 问",
+ "球 鞋",
+ "手机 号",
+ "恋 人",
+ "太 深",
+ "打 卡",
+ "一次 次",
+ "断 绝",
+ "第 五个",
+ "第五 个",
+ "很 累",
+ "朋友 家",
+ "回 过",
+ "昨 日",
+ "爱 着",
+ "露 天",
+ "潜 能",
+ "高 效率",
+ "高效 率",
+ "庄 园",
+ "太 高",
+ "减 掉",
+ "抽 奖",
+ "线 程",
+ "O S",
+ "篮 子",
+ "能 比",
+ "调 度",
+ "分 身",
+ "图 纸",
+ "影 音",
+ "残 余",
+ "M V",
+ "化 肥",
+ "汽 油",
+ "饲 养",
+ "PS 2",
+ "突 袭",
+ "顽 强",
+ "这 款",
+ "贴 心",
+ "小 屋",
+ "收 纳",
+ "蝎 子",
+ "征 兆",
+ "取得 成功",
+ "友 人",
+ "消 散",
+ "和 睦",
+ "口 交",
+ "抽动 症",
+ "侄 子",
+ "就 近",
+ "18 89",
+ "话 费",
+ "还 行",
+ "精 症",
+ "鱼 虾",
+ "性 器官",
+ "空 虚",
+ "大 众",
+ "密 钥",
+ "备 孕",
+ "真 想",
+ "想 来",
+ "萌 芽",
+ "敲 打",
+ "榜 样",
+ "身 长",
+ "有 否",
+ "十 二年",
+ "十二 年",
+ "年 份",
+ "必 有",
+ "迈 进",
+ "背 心",
+ "对 联",
+ "以 求",
+ "六 十",
+ "岳 飞",
+ "大 将军",
+ "大将 军",
+ "木 星",
+ "星 辰",
+ "对 冲",
+ "不 顺",
+ "马 拉",
+ "孢 子",
+ "邻 近",
+ "不 规则",
+ "皮 损",
+ "累 及",
+ "弧 形",
+ "荧 光",
+ "盐 酸",
+ "病 例",
+ "西 游",
+ "不 玩",
+ "同 食",
+ "饮 品",
+ "运 动量",
+ "运动 量",
+ "蠕 动",
+ "乳酸 菌",
+ "喝 多",
+ "来 不及",
+ "体重 增加",
+ "迫 切",
+ "胃 黏膜",
+ "池 塘",
+ "正 题",
+ "7 9",
+ "骑 兵",
+ "富 裕",
+ "省 委",
+ "委 员",
+ "常 委",
+ "书 记",
+ "惯 例",
+ "7 6",
+ "皇 马",
+ "不 曾",
+ "风 向",
+ "姚 明",
+ "珠 峰",
+ "高 处",
+ "索 性",
+ "纵 观",
+ "星 巴克",
+ "华盛顿 州",
+ "州 长",
+ "安 全套",
+ "安全 套",
+ "卷 入",
+ "谣 言",
+ "巧 妙",
+ "张 力",
+ "肆 虐",
+ "游戏 规则",
+ "大 肆",
+ "低 调",
+ "行 事",
+ "业务 员",
+ "之 道",
+ "控制 能力",
+ "一 向",
+ "通 路",
+ "商 机",
+ "跟 风",
+ "急 剧",
+ "产 能",
+ "货 物",
+ "江 湖",
+ "西 洋",
+ "供应 链",
+ "切 入",
+ "宾 馆",
+ "楼 梯",
+ "疏 散",
+ "不 谈",
+ "封 杀",
+ "保 密",
+ "上 演",
+ "父 子",
+ "手 头",
+ "开 支",
+ "要 用",
+ "一 家人",
+ "一家 人",
+ "留 意",
+ "周 易",
+ "韩 剧",
+ "祛 除",
+ "供 选择",
+ "光 子",
+ "每 家",
+ "雀 斑",
+ "波 长",
+ "新 买",
+ "断 定",
+ "高血压 病",
+ "以 期",
+ "忌 酒",
+ "自我 调节",
+ "低 糖",
+ "低 脂",
+ "植物 油",
+ "补 给",
+ "村 子",
+ "1 03",
+ "10 3",
+ "总体 而言",
+ "晚 宴",
+ "开 着",
+ "生物 钟",
+ "破坏 性",
+ "环境 因素",
+ "起 着",
+ "莱 特",
+ "癌 细胞",
+ "抗 氧化剂",
+ "抗氧化 剂",
+ "乳 腺癌",
+ "乳腺 癌",
+ "常 人",
+ "盲 人",
+ "五 项",
+ "能 源",
+ "生 化",
+ "空 姐",
+ "护 士",
+ "光 源",
+ "颅 骨",
+ "本 法",
+ "复 位",
+ "前 年",
+ "改善 生活",
+ "残 存",
+ "轮 椅",
+ "马 桶",
+ "编 织",
+ "以 利",
+ "顺利 完成",
+ "否 认",
+ "愤 怒",
+ "细 心",
+ "很 近",
+ "风 流",
+ "规 矩",
+ "口 水",
+ "多 去",
+ "平均 寿命",
+ "插 上",
+ "非常 简单",
+ "启动 项",
+ "C AD",
+ "转 成",
+ "封 装",
+ "图 层",
+ "对比 度",
+ "热 心",
+ "凹 陷",
+ "属 实",
+ "求 职",
+ "师范 大学",
+ "师 大",
+ "华 南",
+ "网 线",
+ "数据 包",
+ "网 关",
+ "补 全",
+ "2 55",
+ "25 5",
+ "食用 油",
+ "叮 咬",
+ "挤 压",
+ "应 急",
+ "AP I",
+ "推 论",
+ "狂 暴",
+ "单 手",
+ "定 论",
+ "现 存",
+ "东 晋",
+ "不 休",
+ "数 百年",
+ "演 变成",
+ "演变 成",
+ "小 花",
+ "草 木",
+ "投 影",
+ "雕 刻",
+ "而 后",
+ "特 制",
+ "四 天",
+ "奶 嘴",
+ "吸 取",
+ "强 求",
+ "前 辈",
+ "善 于",
+ "处 事",
+ "临 睡前",
+ "换 来",
+ "家用 电器",
+ "根据 上述",
+ "数码 相机",
+ "回 调",
+ "新 高",
+ "当 晚",
+ "安 妮",
+ "单 子",
+ "我 爸",
+ "福 利",
+ "抚 养",
+ "拉 斯",
+ "公 公",
+ "T G",
+ "月 亮",
+ "过 关",
+ "河 水",
+ "对 岸",
+ "斜 边",
+ "应 为",
+ "刚 满",
+ "优越 感",
+ "愈 发",
+ "坏 事",
+ "掩 盖",
+ "得 失",
+ "观 测",
+ "总 能",
+ "偏 见",
+ "减 缓",
+ "训练 方法",
+ "世界 冠军",
+ "深 感",
+ "不能 不",
+ "自我 意识",
+ "自我 实现",
+ "厨 艺",
+ "温 情",
+ "统 领",
+ "精 良",
+ "苛 刻",
+ "一 曲",
+ "冷 漠",
+ "手 艺",
+ "交 集",
+ "届 时",
+ "平 手",
+ "主 队",
+ "一 中",
+ "过 往",
+ "未 曾",
+ "这 使",
+ "四 岁",
+ "清 肺",
+ "龙 胆",
+ "专科 学校",
+ "新 生",
+ "修 订",
+ "爱 看",
+ "动画 片",
+ "太 忙",
+ "平 价",
+ "新 开",
+ "英 尺",
+ "沙 漠",
+ "看 病",
+ "云 端",
+ "后 置",
+ "光 圈",
+ "闪光 灯",
+ "噱 头",
+ "i OS",
+ "易 懂",
+ "沸 腾",
+ "凉 水",
+ "神经 细胞",
+ "冷 空气",
+ "保护 性",
+ "强 直",
+ "难 忍",
+ "伸 直",
+ "牵 拉",
+ "喝 些",
+ "适应 能力",
+ "四 名",
+ "门 牙",
+ "外交 官",
+ "纯 棉",
+ "二 手",
+ "主持 人",
+ "抓 紧",
+ "节奏 感",
+ "内心 深处",
+ "比 率",
+ "斯 托",
+ "甲 烷",
+ "每 场",
+ "严重 危害",
+ "深 远",
+ "医 治",
+ "耽 搁",
+ "类 风湿",
+ "病 患者",
+ "病患 者",
+ "福 音",
+ "流动 性",
+ "世 家",
+ "圣 保罗",
+ "巴 拉",
+ "勒 斯",
+ "可 有",
+ "基础 体温",
+ "禁 欲",
+ "性 高潮",
+ "经济 基础",
+ "说 真的",
+ "残 忍",
+ "共同 努力",
+ "几十 块",
+ "互 联",
+ "阻 止",
+ "高峰 期",
+ "下 岗",
+ "大 伯",
+ "偷 偷",
+ "这 事",
+ "脂肪 肝",
+ "20 17",
+ "201 7",
+ "颜 料",
+ "作 画",
+ "家 养",
+ "家 禽",
+ "内 蒙古",
+ "内蒙 古",
+ "利 好",
+ "停 顿",
+ "ma c",
+ "X XX",
+ "XX X",
+ "私 有",
+ "收 录",
+ "涉 嫌",
+ "电 动机",
+ "电动 机",
+ "异 步",
+ "猎 物",
+ "不痛 不痒",
+ "最 高峰",
+ "最高 峰",
+ "纤维 瘤",
+ "烧 烤",
+ "这 病",
+ "可 供",
+ "散 结",
+ "乳腺 炎",
+ "淋巴结 炎",
+ "沉迷 于",
+ "短 语",
+ "深 化",
+ "知识 点",
+ "攻 克",
+ "认真 对待",
+ "破 碎",
+ "时 装",
+ "奢侈 品",
+ "悬 浮",
+ "b order",
+ "原 子",
+ "质 子",
+ "中 子",
+ "总 称",
+ "自然 界",
+ "结 尾",
+ "英 联邦",
+ "为 难",
+ "符合 要求",
+ "扎 克",
+ "源 自",
+ "丰 满",
+ "看 不清",
+ "各 路",
+ "弱 视",
+ "红 光",
+ "眼 底",
+ "旺 季",
+ "之 品",
+ "虾 米",
+ "第 一天",
+ "第一 天",
+ "签 到",
+ "生 完",
+ "谢谢 你们",
+ "下 腹部",
+ "下腹 部",
+ "激光 治疗",
+ "驾 车",
+ "胆 子",
+ "分 量",
+ "体育 场",
+ "哈尔 滨",
+ "苏 州",
+ "连 结",
+ "直角 三角形",
+ "2 25",
+ "22 5",
+ "性 冷淡",
+ "气 愤",
+ "活 该",
+ "光 照",
+ "沉 睡",
+ "漆 黑",
+ "惋 惜",
+ "滑 稽",
+ "隐 约",
+ "向 导",
+ "焦 急",
+ "洁 白",
+ "尘 埃",
+ "呼 叫",
+ "照 料",
+ "惊 叹",
+ "讽 刺",
+ "欺 凌",
+ "照 耀",
+ "漫 步",
+ "离 散",
+ "迫 害",
+ "渺 小",
+ "光 波",
+ "引力 波",
+ "远 方",
+ "引 力",
+ "向 外",
+ "粒 子",
+ "引力 场",
+ "受 力",
+ "光 速",
+ "坐标 系",
+ "式 子",
+ "天 府",
+ "大 帝",
+ "审 理",
+ "下 级",
+ "意 指",
+ "1 01",
+ "10 1",
+ "津 贴",
+ "稿 费",
+ "三 日",
+ "分 担",
+ "管理 者",
+ "借 款",
+ "母 公司",
+ "大 一",
+ "琐 碎",
+ "不 服",
+ "闭 锁",
+ "触 及",
+ "5 x",
+ "复 检",
+ "仰 望",
+ "星 空",
+ "惬 意",
+ "三 亚",
+ "绿 灯",
+ "考 官",
+ "商品 名称",
+ "虚 假",
+ "留 存",
+ "减 仓",
+ "穿 越",
+ "骨 髓",
+ "年 长",
+ "阅 历",
+ "风 寒",
+ "深 部",
+ "化 痰",
+ "萎缩 性",
+ "止 血",
+ "预 先",
+ "咽 痛",
+ "干 呕",
+ "甘 草",
+ "桔 梗",
+ "连 翘",
+ "两 份",
+ "养老 金",
+ "张 图",
+ "封 面",
+ "什 麼",
+ "北 宋",
+ "绷 带",
+ "单 打",
+ "食 量",
+ "专家 建议",
+ "情绪 低落",
+ "忧 郁",
+ "好 时机",
+ "禁 烟",
+ "肉 桂",
+ "会 令",
+ "顶 峰",
+ "高 脂肪",
+ "短 短",
+ "活 化",
+ "跑步 机",
+ "健身 房",
+ "谷 类",
+ "全 麦",
+ "糙 米",
+ "骨 盆",
+ "划 船",
+ "夜 宵",
+ "多 饮水",
+ "沼 泽",
+ "M P",
+ "乐 章",
+ "凝 固",
+ "宽 容",
+ "净 土",
+ "容 忍",
+ "宽 阔",
+ "乐 园",
+ "杯 中",
+ "治 本",
+ "甘 油",
+ "鸡 蛋清",
+ "鸡蛋 清",
+ "身心 健康",
+ "许 多种",
+ "许多 种",
+ "确 有",
+ "中 含",
+ "科学 研究",
+ "胡萝卜 素",
+ "茶 杯",
+ "皮 炎",
+ "真实 情况",
+ "坚 硬",
+ "液态 水",
+ "星 球",
+ "内 核",
+ "火山 爆发",
+ "短 跑",
+ "会 馆",
+ "犀 牛",
+ "铁 血",
+ "手 套",
+ "夜 色",
+ "螺 丝",
+ "新 郎",
+ "刘 翔",
+ "心理 素质",
+ "过 硬",
+ "国 人",
+ "出 赛",
+ "赛 前",
+ "教 派",
+ "三 重",
+ "犹太 教",
+ "收 割",
+ "布 里",
+ "犯 人",
+ "利 器",
+ "高 贵",
+ "人类 文明",
+ "讨 伐",
+ "身 穿",
+ "灭 亡",
+ "守护 者",
+ "一 加",
+ "做 工",
+ "嘲 讽",
+ "类 动物",
+ "雪 地",
+ "塔 尔",
+ "鳄 鱼",
+ "希 尔",
+ "荒 野",
+ "山 丘",
+ "东 部",
+ "海 龟",
+ "蝙 蝠",
+ "拉 姆",
+ "凄 凉",
+ "鸵 鸟",
+ "恐 龙",
+ "何 以",
+ "微 商",
+ "聘 用",
+ "力 学",
+ "拉 力",
+ "哪 一年",
+ "进 军",
+ "宰 相",
+ "罪 名",
+ "中 医学",
+ "中医 学",
+ "阳 虚",
+ "推 举",
+ "园 区",
+ "仙 女",
+ "延 后",
+ "中 起",
+ "武 功",
+ "这 回",
+ "半 夏",
+ "主 教",
+ "阵 营",
+ "行政 区",
+ "昨 晚",
+ "发 了",
+ "言 辞",
+ "过 节",
+ "公 理",
+ "骂 人",
+ "诋 毁",
+ "欣 慰",
+ "终 究",
+ "学 子",
+ "方便 面",
+ "蜜 汁",
+ "可 可",
+ "可可 粉",
+ "频 频",
+ "成 片",
+ "没 过",
+ "流 食",
+ "研 磨",
+ "柑 橘",
+ "等 效",
+ "串 联",
+ "气 压",
+ "穷 人",
+ "三 件",
+ "财 力",
+ "低 价",
+ "买 不起",
+ "溜 达",
+ "顺 手",
+ "w in",
+ "两 下",
+ "发 高烧",
+ "C F",
+ "元 帅",
+ "根本 就是",
+ "S F",
+ "跑 动",
+ "第 一眼",
+ "第一 眼",
+ "眉 毛",
+ "金 鱼",
+ "太 短",
+ "驼 背",
+ "上 肢",
+ "某 项",
+ "范 例",
+ "细 长",
+ "搞 不好",
+ "文科 生",
+ "保 费",
+ "节 能",
+ "长 线",
+ "商 用",
+ "这 名",
+ "绿 卡",
+ "T V",
+ "虚荣 心",
+ "恰 巧",
+ "朋友 圈",
+ "勇 者",
+ "内 陆",
+ "S oftware",
+ "波 特",
+ "必 将",
+ "1 39",
+ "13 9",
+ "略 带",
+ "振 荡",
+ "新 股",
+ "极 佳",
+ "烤 鸭",
+ "跃 过",
+ "回 味",
+ "晴 朗",
+ "证券 市场",
+ "恐 慌",
+ "交 出",
+ "近 日",
+ "阴 谋",
+ "鲜 活",
+ "顺 势",
+ "租 车",
+ "7 20",
+ "72 0",
+ "原始 数据",
+ "他 俩",
+ "新 能源",
+ "炒 作",
+ "大 半",
+ "个 点",
+ "完全 相同",
+ "一 个点",
+ "一个 点",
+ "L 1",
+ "L 2",
+ "恢复 期",
+ "有 名",
+ "送 上",
+ "公 众",
+ "校 友",
+ "出 资",
+ "组 建",
+ "机 动车",
+ "机动 车",
+ "简 易",
+ "过 户",
+ "快捷 键",
+ "1 23",
+ "12 3",
+ "偏 僻",
+ "知 己",
+ "争 夺",
+ "用 语",
+ "打 乱",
+ "MV P",
+ "评 选",
+ "电子 版",
+ "征 集",
+ "沙 子",
+ "打 发",
+ "托 管",
+ "军 师",
+ "住 宿",
+ "打 招呼",
+ "选 出",
+ "师 兄",
+ "英 俊",
+ "邂 逅",
+ "彼 时",
+ "升 华",
+ "无 数次",
+ "无数 次",
+ "太 贵",
+ "走 进",
+ "售 票",
+ "客 运",
+ "日 文",
+ "控 件",
+ "1 985",
+ "19 85",
+ "篮 板",
+ "6 9",
+ "1 21",
+ "12 1",
+ "辽 宁",
+ "19 89",
+ "19 83",
+ "不 死",
+ "1 33",
+ "13 3",
+ "1 72",
+ "17 2",
+ "惩 罚",
+ "炒 股",
+ "太 好",
+ "口 岸",
+ "西 侧",
+ "人 均",
+ "做 不了",
+ "推 销",
+ "保健 品",
+ "海 产品",
+ "足 量",
+ "上 瘾",
+ "疟 疾",
+ "唾 液",
+ "可 食用",
+ "多 糖",
+ "龋 齿",
+ "食 道",
+ "反 酸",
+ "游 动",
+ "响 声",
+ "水 溶液",
+ "第 一节",
+ "第一 节",
+ "点 钟",
+ "求 得",
+ "设 为",
+ "被 俘",
+ "苏 醒",
+ "过 瘾",
+ "恶 毒",
+ "巧 合",
+ "共 生",
+ "以 太",
+ "躯 体",
+ "那 场",
+ "幼 年",
+ "放 出",
+ "感 知",
+ "开 战",
+ "太 后",
+ "刚 到",
+ "夺 回",
+ "新 娘",
+ "篇 章",
+ "关 卡",
+ "关系 不大",
+ "西 斯",
+ "这么 久",
+ "凝 胶",
+ "高 分子",
+ "高分 子",
+ "衍 生物",
+ "衍生 物",
+ "薄 膜",
+ "调 剂",
+ "地 向",
+ "趋 向",
+ "得出 结论",
+ "琵 琶",
+ "夕 阳",
+ "特 技",
+ "再 见",
+ "庆 典",
+ "繁 多",
+ "衬 托",
+ "担 当",
+ "艺术 风格",
+ "意 境",
+ "奇 特",
+ "当今 世界",
+ "中心 点",
+ "素 材",
+ "腰 围",
+ "照 相",
+ "离 家",
+ "稳 妥",
+ "这 人",
+ "剧 痛",
+ "静 电",
+ "副 手",
+ "足球 比赛",
+ "x p",
+ "第 一季度",
+ "第一 季度",
+ "第一季 度",
+ "强 悍",
+ "两 本",
+ "测 评",
+ "媲 美",
+ "增 肥",
+ "果 酱",
+ "煎 饼",
+ "中 式",
+ "核 果",
+ "奶 昔",
+ "土 司",
+ "场 所",
+ "叶 片",
+ "放 着",
+ "味 甘",
+ "明 目",
+ "简 述",
+ "天 文",
+ "18 60",
+ "清 政府",
+ "以 东",
+ "半 岛",
+ "市 内",
+ "列 宁",
+ "多 斯",
+ "铁 路线",
+ "铁路 线",
+ "渔 业",
+ "集团 公司",
+ "各 大",
+ "远 东",
+ "全 长",
+ "班 机",
+ "奥 迪",
+ "水 漂",
+ "三 部",
+ "流 利",
+ "挺 直",
+ "肝 胆",
+ "少 于",
+ "疝 气",
+ "间 歇",
+ "三 联",
+ "话 筒",
+ "作 好",
+ "金融 服务",
+ "3 A",
+ "仔细 检查",
+ "书 写",
+ "卡 片",
+ "确保 您",
+ "窃 取",
+ "泄 漏",
+ "年 幼",
+ "那 份",
+ "使 命",
+ "我 错",
+ "身 在",
+ "核 实",
+ "几 小时",
+ "停 机",
+ "诚 挚",
+ "专 区",
+ "商业 化",
+ "那 家",
+ "黄 水",
+ "有 天",
+ "阿 奇",
+ "水 滴",
+ "相 貌",
+ "诉 说",
+ "雅 思",
+ "2 400",
+ "24 00",
+ "240 0",
+ "金 匮",
+ "我 校",
+ "山 中",
+ "云 彩",
+ "芙 蓉",
+ "杜 甫",
+ "才 华",
+ "非常 适合",
+ "谐 音",
+ "各个 方面",
+ "受 人",
+ "嫦 娥",
+ "曹 丕",
+ "看 中",
+ "鹦 鹉",
+ "归 入",
+ "原 生",
+ "溪 流",
+ "中 美洲",
+ "中美 洲",
+ "出 产",
+ "斗 鱼",
+ "海洋 生物",
+ "海 滨",
+ "格 调",
+ "海 岛",
+ "开 来",
+ "景 区",
+ "大 气",
+ "田 园",
+ "乡 村",
+ "情 调",
+ "度假 村",
+ "生 态",
+ "客 家",
+ "大 都市",
+ "大都 市",
+ "小 镇",
+ "山 林",
+ "运 费",
+ "单 价",
+ "航空 公司",
+ "星期 日",
+ "球 体",
+ "姑 且",
+ "一小 部分",
+ "割 包皮",
+ "外 露",
+ "男 性疾病",
+ "男性 疾病",
+ "男 科",
+ "资 深",
+ "打 理",
+ "坦 诚",
+ "泡 菜",
+ "不 放",
+ "摆 放",
+ "顶 层",
+ "结 冰",
+ "速 成",
+ "难 吃",
+ "醋 酸",
+ "咸 鱼",
+ "朝 鲜",
+ "收 拾",
+ "后 备",
+ "蒜 泥",
+ "一 整天",
+ "学术 论文",
+ "肉 质",
+ "碳 酸",
+ "硫 磺",
+ "曲 折",
+ "酱 汁",
+ "第四 步",
+ "振 兴",
+ "预 处理",
+ "调 试",
+ "段 位",
+ "车 子",
+ "太 快",
+ "常见 问题",
+ "一 听",
+ "老 妈",
+ "音 译",
+ "取 名",
+ "数 理",
+ "透 彻",
+ "偏 颇",
+ "年 里",
+ "忍 耐",
+ "理 智",
+ "表 象",
+ "系统 文件",
+ "镜 像",
+ "彻底 清除",
+ "鲁 迅",
+ "文 学",
+ "鼓 舞",
+ "潜 规则",
+ "出 生地",
+ "出生 地",
+ "五 年级",
+ "五年 级",
+ "看 做",
+ "我 学",
+ "厄 运",
+ "萨 拉",
+ "毛 钱",
+ "实 业",
+ "饺 子",
+ "得 罪",
+ "专 柜",
+ "烤 盘",
+ "预 热",
+ "线 索",
+ "羽 毛",
+ "市场 化",
+ "抑郁 症",
+ "抗 抑郁",
+ "围 棋",
+ "特 例",
+ "全 局",
+ "水 利",
+ "违 约",
+ "条 款",
+ "意 甲",
+ "德 甲",
+ "英 超",
+ "西 甲",
+ "博 彩",
+ "最 最",
+ "起 因",
+ "粗 壮",
+ "学 识",
+ "辩 论",
+ "浅 薄",
+ "无法 忍受",
+ "玩 弄",
+ "习 性",
+ "勤 奋",
+ "伤 痛",
+ "磨 难",
+ "基本 概念",
+ "负 荷",
+ "停 电",
+ "晃 动",
+ "很 酷",
+ "合 约",
+ "产 出",
+ "现 货",
+ "计算 公式",
+ "欧 元",
+ "信号 处理",
+ "不可 避免",
+ "通 称",
+ "或 称",
+ "南北 朝",
+ "政 务",
+ "军 用",
+ "铺 垫",
+ "全 班",
+ "一个 班",
+ "怨 恨",
+ "坟 墓",
+ "小 明",
+ "五 位",
+ "一 盘",
+ "大 伙",
+ "提 纲",
+ "免 税",
+ "关 税",
+ "如 实",
+ "生 抽",
+ "写 给",
+ "在 校",
+ "听 众",
+ "生 怕",
+ "反 倒",
+ "瞧 不起",
+ "于是 乎",
+ "小 偷",
+ "这 下",
+ "觉 着",
+ "一 眼",
+ "跟 前",
+ "电 台",
+ "精神 状态",
+ "搭 理",
+ "纯 天然",
+ "上 山",
+ "下 山",
+ "换 掉",
+ "刀 口",
+ "天气 预报",
+ "隶 属",
+ "当 面",
+ "收 货",
+ "免 得",
+ "耳 环",
+ "刷 子",
+ "水 洗",
+ "越 发",
+ "变 黑",
+ "一 滴",
+ "氧化 物",
+ "氧化 剂",
+ "转 变成",
+ "转变 成",
+ "反 光",
+ "化学 反应",
+ "粗 细",
+ "手 环",
+ "图 腾",
+ "十 天",
+ "c m",
+ "回 声",
+ "囊 性",
+ "分 隔",
+ "工 学院",
+ "服装 设计",
+ "误 导",
+ "忍 住",
+ "个人 经历",
+ "别 名",
+ "纵 横",
+ "理 学",
+ "人 缘",
+ "单机 游戏",
+ "居 士",
+ "处 长",
+ "昼 夜",
+ "舒适 性",
+ "采取 相应",
+ "严 禁",
+ "亲身 经历",
+ "痛 快",
+ "奴 隶",
+ "军 人",
+ "参 战",
+ "大 屠杀",
+ "小 国",
+ "夸 大",
+ "犯 下",
+ "自 称",
+ "胆 小",
+ "P F",
+ "要 命",
+ "口服 液",
+ "肉 食",
+ "红 烧",
+ "凉 血",
+ "热 气",
+ "大 肠",
+ "名 牌",
+ "作息 时间",
+ "排 查",
+ "万 个",
+ "胜 过",
+ "夏 日",
+ "带 血",
+ "产 妇",
+ "大 洋",
+ "巴 斯",
+ "太 平",
+ "一 词",
+ "航 海",
+ "学 家",
+ "航 行",
+ "大洋 洲",
+ "南极 洲",
+ "总 面积",
+ "平方 千米",
+ "海 沟",
+ "结 核",
+ "品 位",
+ "居 于",
+ "北 岸",
+ "坚 实",
+ "冰 层",
+ "冰 山",
+ "航 运",
+ "黑 夜",
+ "猩 猩",
+ "好 长时间",
+ "十 位",
+ "有 木有",
+ "充 裕",
+ "怪 异",
+ "文 书",
+ "长 老",
+ "情 书",
+ "测 验",
+ "鉴 赏",
+ "东 临",
+ "树 木",
+ "魏 晋",
+ "正 当",
+ "军 阀",
+ "南 下",
+ "建 安",
+ "其 子",
+ "境 地",
+ "七 月",
+ "大 道",
+ "断 然",
+ "抒 发",
+ "史 实",
+ "学术 界",
+ "突 兀",
+ "之 感",
+ "半 点",
+ "处 境",
+ "相 接",
+ "壮 丽",
+ "银 河",
+ "一 派",
+ "诗 歌",
+ "细 说",
+ "字 面",
+ "堪 称",
+ "佳 作",
+ "取 舍",
+ "品 格",
+ "现实 主义",
+ "功 绩",
+ "时 隔",
+ "易用 性",
+ "经 商",
+ "向 着",
+ "成 名",
+ "广 度",
+ "细胞 分裂",
+ "疱 疹",
+ "水 疱",
+ "喷 出",
+ "吞 噬",
+ "笼 罩",
+ "大 山",
+ "赤 道",
+ "熔 岩",
+ "做爱 时",
+ "商 城",
+ "紧 凑",
+ "吸烟 者",
+ "本 田",
+ "鼻 翼",
+ "海 伦",
+ "接 力",
+ "管理 系统",
+ "计算机 专业",
+ "信息 化",
+ "发展 前景",
+ "量 化",
+ "熟 人",
+ "小 看",
+ "扫 地",
+ "类 人",
+ "英语 语法",
+ "更 进一步",
+ "兰 州",
+ "色 调",
+ "性能 指标",
+ "破 产",
+ "总有 一天",
+ "听 过",
+ "成功 人士",
+ "朝 着",
+ "T F",
+ "顺 畅",
+ "篡 改",
+ "联 络",
+ "营 地",
+ "迷 宫",
+ "陨 石",
+ "研究 室",
+ "西 门",
+ "蜥 蜴",
+ "唐 山",
+ "取 经",
+ "人 中",
+ "佛 祖",
+ "大 将",
+ "神 龙",
+ "孙 悟空",
+ "转 世",
+ "身 世",
+ "前 世",
+ "四 海",
+ "之 大",
+ "1 32",
+ "13 2",
+ "剧情 简介",
+ "小 城",
+ "渔 民",
+ "谜 语",
+ "打 听",
+ "黑 子",
+ "大 唐",
+ "河 畔",
+ "重 回",
+ "天 宫",
+ "惶 恐",
+ "追 捕",
+ "杀 害",
+ "皈 依",
+ "手 下",
+ "出 面",
+ "横 行",
+ "日 前",
+ "只 得",
+ "重 返",
+ "取 回",
+ "吵 闹",
+ "1 29",
+ "12 9",
+ "贪 心",
+ "偏 偏",
+ "奔 波",
+ "悟 空",
+ "大 法",
+ "举 人",
+ "老 先生",
+ "离 奇",
+ "妖 怪",
+ "古 怪",
+ "1 02",
+ "10 2",
+ "降 雨",
+ "施 法",
+ "无 名",
+ "武器 装备",
+ "单 机",
+ "牙 痛",
+ "2 33",
+ "23 3",
+ "毕业 论文",
+ "男 演员",
+ "肮 脏",
+ "来 时",
+ "i dx",
+ "id x",
+ "暴 风",
+ "炼 化",
+ "出 土",
+ "金融 危机",
+ "跌 幅",
+ "风 波",
+ "掀 起",
+ "创 下",
+ "大 跌",
+ "琼 斯",
+ "迫 使",
+ "巨 额",
+ "同 日",
+ "遏 制",
+ "快速 增长",
+ "日益 严重",
+ "市场 竞争",
+ "几 家",
+ "近 年",
+ "高 估",
+ "金融 市场",
+ "A P",
+ "标 示",
+ "天 王",
+ "方向 盘",
+ "工业 区",
+ "群 里",
+ "补 助",
+ "过 段时间",
+ "协调 性",
+ "可 得",
+ "很 想",
+ "菲 尔",
+ "热 能",
+ "懒 人",
+ "血 脉",
+ "飞行 器",
+ "贪 婪",
+ "进 制",
+ "缓 存",
+ "次 序",
+ "M ax",
+ "e mail",
+ "所 示",
+ "提示 信息",
+ "提供 商",
+ "最小 值",
+ "等待 时间",
+ "索 引",
+ "驱动 器",
+ "内 饰",
+ "两 万",
+ "女 娲",
+ "其 为",
+ "卡 罗",
+ "画 画",
+ "学 过",
+ "脱 毛",
+ "极 小",
+ "深 色",
+ "n e",
+ "火 炬",
+ "小 兔子",
+ "行 李",
+ "小 黑",
+ "看 官",
+ "生 下",
+ "重 写",
+ "讯 息",
+ "mo d",
+ "图 示",
+ "0.0 5",
+ "后 于",
+ "软 体",
+ "down load",
+ "早 搏",
+ "频 发",
+ "心肌 炎",
+ "房 颤",
+ "猝 死",
+ "搜 寻",
+ "心肌 病",
+ "应 适当",
+ "好 日子",
+ "再 来",
+ "斯托 克",
+ "趁 着",
+ "冠军 杯",
+ "笔 名",
+ "第 一部",
+ "第一 部",
+ "复 试",
+ "苏 轼",
+ "本 意",
+ "决 斗",
+ "预 备",
+ "毒 药",
+ "谋 杀",
+ "闪 避",
+ "可 贵",
+ "两 分钟",
+ "缠 绕",
+ "美 妙",
+ "火 柴",
+ "挥 发",
+ "火 星",
+ "公司 员工",
+ "艰 辛",
+ "祈 求",
+ "殊 不知",
+ "惧 怕",
+ "一 去",
+ "暴 晒",
+ "图 中",
+ "毕业 证",
+ "果 冻",
+ "序 号",
+ "外 阴部",
+ "外阴 部",
+ "投 机",
+ "分割 线",
+ "法 力",
+ "转 身",
+ "几 步",
+ "农 场",
+ "丝 绸",
+ "戈 尔",
+ "绝 缘",
+ "等 离子",
+ "双 语",
+ "异物 感",
+ "个人 卫生",
+ "常 在",
+ "水 样",
+ "游 泳池",
+ "游泳 池",
+ "生理 盐水",
+ "读 研",
+ "那 句",
+ "底 子",
+ "金 山",
+ "开发 者",
+ "触摸 屏",
+ "职业 规划",
+ "B2 B",
+ "电 商",
+ "威 尼斯",
+ "染 发",
+ "低 压",
+ "1 58",
+ "15 8",
+ "1 19",
+ "11 9",
+ "很 慢",
+ "1 13",
+ "11 3",
+ "宁 波",
+ "哥们 儿",
+ "手 柄",
+ "虫 子",
+ "小 红",
+ "洗衣 粉",
+ "害 虫",
+ "塑料 袋",
+ "少 时",
+ "始 祖",
+ "山 下",
+ "后 宫",
+ "离 世",
+ "未 有",
+ "陵 墓",
+ "墓 葬",
+ "县 城",
+ "首 领",
+ "千 古",
+ "净化 器",
+ "原 产",
+ "居 室",
+ "滋 生",
+ "源 头",
+ "养 护",
+ "车 速",
+ "强 劲",
+ "运 球",
+ "沙 特",
+ "狠 狠",
+ "借 鉴",
+ "真 空",
+ "光 是",
+ "炸 鸡",
+ "调 制",
+ "时 差",
+ "圈 内",
+ "定 价",
+ "揭 示",
+ "船 长",
+ "机 长",
+ "水 手",
+ "防 风",
+ "愉 悦",
+ "off er",
+ "d on",
+ "do n",
+ "the y",
+ "繁 重",
+ "另 一类",
+ "实 则",
+ "拘 留",
+ "官 场",
+ "奉 献",
+ "市委 书记",
+ "伺 候",
+ "看 望",
+ "落 差",
+ "热衷 于",
+ "脑 出血",
+ "特效 药",
+ "帕金森 病",
+ "复 古",
+ "去 处",
+ "卵巢 囊肿",
+ "咋 办",
+ "脑血管 病",
+ "买 单",
+ "算 术",
+ "党委 书记",
+ "想 必",
+ "松 树",
+ "压缩 机",
+ "供 水",
+ "五月 天",
+ "风 筝",
+ "防 弹",
+ "轿 车",
+ "人 想",
+ "M e",
+ "c ome",
+ "com e",
+ "D on",
+ "Do n",
+ "l l",
+ "Y our",
+ "You r",
+ "D ay",
+ "w ent",
+ "合 唱",
+ "i ng",
+ "in g",
+ "深 海",
+ "is like",
+ "H ome",
+ "c an",
+ "去 向",
+ "暴 风雨",
+ "暴风 雨",
+ "一 阵子",
+ "一阵 子",
+ "师 姐",
+ "赔 钱",
+ "债 权",
+ "征 求",
+ "广告 语",
+ "坏 人",
+ "深入 人心",
+ "中华 民族",
+ "热 潮",
+ "承 载",
+ "科学 知识",
+ "摘 录",
+ "热 力学",
+ "电 极",
+ "涵 盖",
+ "物 流",
+ "低 成本",
+ "不 值钱",
+ "不值 钱",
+ "说 点",
+ "血 腥",
+ "本地 人",
+ "我 姐",
+ "退 役",
+ "我 查",
+ "干 吗",
+ "本 赛季",
+ "柏 林",
+ "少 林",
+ "巨 星",
+ "嘉 宾",
+ "新 专辑",
+ "回 馈",
+ "拼 图",
+ "亮 相",
+ "彩 妆",
+ "业 余",
+ "粉 底",
+ "贴 合",
+ "遮 住",
+ "卸 妆",
+ "印 记",
+ "眼 影",
+ "眼 线",
+ "尾 部",
+ "海 绵",
+ "骨 架",
+ "黑 洞",
+ "具体 地说",
+ "恒 星",
+ "天 体",
+ "稀 薄",
+ "妇科 炎症",
+ "一 章",
+ "作 物",
+ "救 治",
+ "液 化",
+ "流 动",
+ "单 反",
+ "微 单",
+ "感 光",
+ "夜 景",
+ "触 摸",
+ "对 焦",
+ "快 门",
+ "全 景",
+ "手 持",
+ "提 了",
+ "配 送",
+ "3 33",
+ "33 3",
+ "转 自",
+ "圣 殿",
+ "初 入",
+ "兵 器",
+ "连 环",
+ "猥 琐",
+ "第 三种",
+ "第三 种",
+ "平均 分",
+ "办公 桌",
+ "供 血",
+ "绝 大部分",
+ "胰 腺",
+ "胖 子",
+ "萨 尔",
+ "绕 过",
+ "走 近",
+ "印 章",
+ "大 二",
+ "吹 牛",
+ "粽 子",
+ "下 课",
+ "一 节",
+ "嫌 疑",
+ "张 扬",
+ "甘 心",
+ "无 望",
+ "不 妥",
+ "一 头",
+ "共 勉",
+ "变 暖",
+ "未 找到",
+ "穿 过",
+ "仓 储",
+ "着 装",
+ "产品 质量",
+ "泛 滥",
+ "管理 工具",
+ "调 配",
+ "独 占",
+ "该 值",
+ "第 一份",
+ "第一 份",
+ "自 信心",
+ "自信 心",
+ "适 配",
+ "计算机 网络",
+ "搭 建",
+ "桌 面上",
+ "桌面 上",
+ "克 隆",
+ "离 异",
+ "体 谅",
+ "伴 侣",
+ "春 晚",
+ "身 分",
+ "开 元",
+ "画 家",
+ "印 刷",
+ "进 士",
+ "画 像",
+ "敦 煌",
+ "金 陵",
+ "南 朝",
+ "方 言",
+ "天 子",
+ "音 节",
+ "明 清",
+ "职 能",
+ "改 称",
+ "磨 擦",
+ "洗 剂",
+ "揉 搓",
+ "分 叉",
+ "污 迹",
+ "鼻 孔",
+ "货币 基金",
+ "闰 年",
+ "县 级",
+ "影 院",
+ "我 俩",
+ "紫 癜",
+ "肾 炎",
+ "不 比",
+ "衰 退",
+ "专 员",
+ "负 数",
+ "教 书",
+ "商业 活动",
+ "注 视",
+ "省 去",
+ "能 耗",
+ "满足 用户",
+ "沉 闷",
+ "相 间",
+ "配 色",
+ "卖 点",
+ "分子 式",
+ "容 许",
+ "穿 戴",
+ "国庆 节",
+ "古 巴",
+ "加 纳",
+ "19 44",
+ "专 制",
+ "天 皇",
+ "大 革命",
+ "17 89",
+ "178 9",
+ "监 狱",
+ "19 26",
+ "废 除",
+ "尼 亚",
+ "伊 拉克",
+ "叙 利亚",
+ "中华 民国",
+ "阿拉 伯",
+ "不 丹",
+ "腹 中",
+ "脑 炎",
+ "变 相",
+ "心理 咨询",
+ "援 助",
+ "病 态",
+ "五 次",
+ "辗 转",
+ "那 一刻",
+ "简 约",
+ "神 情",
+ "性 命",
+ "通 透",
+ "不 忍",
+ "无 畏",
+ "流 体",
+ "决 定性",
+ "决定 性",
+ "晕 厥",
+ "震 颤",
+ "苍 白",
+ "口 吃",
+ "韩 语",
+ "时 为",
+ "公 顷",
+ "宫 殿",
+ "杰 出",
+ "宫 中",
+ "乾 隆",
+ "古 装",
+ "一般 性",
+ "大肠 杆菌",
+ "高等 教育",
+ "获得 者",
+ "弱势 群体",
+ "诚 然",
+ "数 百万",
+ "认可 度",
+ "重庆 市",
+ "市 政府",
+ "市政 府",
+ "本科 毕业",
+ "读 完",
+ "答 辩",
+ "整 整",
+ "年 头",
+ "高 得",
+ "出 题",
+ "象征 性",
+ "不 及格",
+ "不及 格",
+ "营业 部",
+ "兴 业",
+ "科 比",
+ "小 熊",
+ "睡 衣",
+ "球 场",
+ "低 密度",
+ "橄榄 球",
+ "绿色 植物",
+ "主人 公",
+ "赵 国",
+ "2 60",
+ "26 0",
+ "保持 联系",
+ "成 天",
+ "e e",
+ "角色 扮演",
+ "户外 运动",
+ "主 食",
+ "贝 壳",
+ "甲状腺 素",
+ "甲 基",
+ "乳 制品",
+ "小 编",
+ "多 地",
+ "顺 应",
+ "由此 可见",
+ "逻 辑",
+ "削 弱",
+ "奶 制品",
+ "二 进制",
+ "T CP",
+ "推 断",
+ "雨 水",
+ "三 四",
+ "饥 荒",
+ "古 龙",
+ "郭 靖",
+ "杨 过",
+ "可比 性",
+ "招 式",
+ "功 力",
+ "倚 天",
+ "自 如",
+ "寻 常",
+ "接 任",
+ "功 劳",
+ "射 雕",
+ "六 大",
+ "救 人",
+ "至 极",
+ "好 孩子",
+ "颓 废",
+ "体 中",
+ "机 灵",
+ "自 小",
+ "近 乎",
+ "飞 跃",
+ "隐 居",
+ "荒 废",
+ "总 分",
+ "7 1",
+ "天下 第一",
+ "水 母",
+ "诸 葛",
+ "流 星",
+ "华 山",
+ "游 荡",
+ "药 师",
+ "深 沉",
+ "倔 强",
+ "慕 容",
+ "梦 中",
+ "杂 质",
+ "隐 隐",
+ "救 助",
+ "解 惑",
+ "好 学",
+ "鄙 人",
+ "痴 迷",
+ "钢 板",
+ "第 一家",
+ "第一 家",
+ "产业 链",
+ "技术 含量",
+ "高 精度",
+ "知识 产权",
+ "价格 便宜",
+ "宽 敞",
+ "架 子",
+ "好感 度",
+ "何 在",
+ "钞 票",
+ "置 换",
+ "伊 万",
+ "兵 力",
+ "赚 取",
+ "is a",
+ "交通 安全",
+ "标 语",
+ "气 态",
+ "混合 物",
+ "水 蒸气",
+ "一 束",
+ "南 边",
+ "民 航",
+ "省 市",
+ "壬 辰",
+ "二 十一",
+ "二十 一",
+ "辛 卯",
+ "小 子",
+ "心 肺",
+ "超 标",
+ "举 重",
+ "急 促",
+ "健身 运动",
+ "女性 朋友",
+ "西 山",
+ "缠 绵",
+ "校 区",
+ "朝阳 区",
+ "亮 度",
+ "贪 污",
+ "板 子",
+ "总 计",
+ "1 37",
+ "13 7",
+ "名 著",
+ "泻 药",
+ "药 材",
+ "制 药",
+ "其 所",
+ "含 糖",
+ "圆 心",
+ "2 k",
+ "连 胜",
+ "本 场",
+ "公安 部",
+ "执 照",
+ "省 份",
+ "强制 性",
+ "丹 参",
+ "临床 实践",
+ "附 上",
+ "传 球",
+ "所 能",
+ "化 为",
+ "士 气",
+ "指 明",
+ "道 路",
+ "烤 鸡",
+ "老 王",
+ "退 还",
+ "案 件",
+ "出 具",
+ "托 运",
+ "安 检",
+ "试管 婴儿",
+ "5 G",
+ "关键 字",
+ "限 额",
+ "物 件",
+ "念 佛",
+ "喝 醉",
+ "税务 机关",
+ "滞 留",
+ "信号 灯",
+ "堵 车",
+ "玩 耍",
+ "草 丛",
+ "尖 锐",
+ "超 车",
+ "增 压",
+ "高 品质",
+ "经济 性",
+ "大 王",
+ "大 巴",
+ "文化 遗产",
+ "名 录",
+ "喷 泉",
+ "川 菜",
+ "逛 逛",
+ "西 晋",
+ "导 游",
+ "南 宋",
+ "古 建筑",
+ "禅 师",
+ "弟 子",
+ "钱 币",
+ "正 德",
+ "监 察",
+ "御 史",
+ "自然 风景",
+ "民 居",
+ "四 面",
+ "标志 性",
+ "郊 外",
+ "山 庄",
+ "子 弟",
+ "起 兵",
+ "刺 史",
+ "八 角",
+ "地 基",
+ "夹 层",
+ "书法 家",
+ "陡 峭",
+ "著 作",
+ "之 谜",
+ "刷 洗",
+ "东 侧",
+ "西 面",
+ "欢 乐",
+ "高 空",
+ "魔 幻",
+ "充 气",
+ "8 9",
+ "辱 骂",
+ "驾 校",
+ "班 车",
+ "我 妈",
+ "聊 到",
+ "妥 协",
+ "读 写",
+ "读 取",
+ "音乐 学院",
+ "播 音",
+ "即 兴",
+ "用 地",
+ "这 支",
+ "今 生",
+ "仍 为",
+ "点 亮",
+ "回 老家",
+ "0 01",
+ "00 1",
+ "1 73",
+ "17 3",
+ "笔 画",
+ "系 主任",
+ "赵 薇",
+ "绘 制",
+ "绘 图",
+ "an y",
+ "卖 方",
+ "买 方",
+ "勤 劳",
+ "排名 第",
+ "占 地",
+ "麒 麟",
+ "犯 错",
+ "沉 浸",
+ "今天 天气",
+ "雨 伞",
+ "雷 电",
+ "解决 不了",
+ "强迫 症",
+ "两 件",
+ "紧 迫",
+ "彩 票",
+ "能 活",
+ "承受 能力",
+ "环境 污染",
+ "科学 实验",
+ "喝 奶",
+ "三 倍",
+ "末 尾",
+ "个 位数",
+ "相 加",
+ "三 位",
+ "立 足",
+ "一 出",
+ "出生 日期",
+ "国 籍",
+ "曾 效力",
+ "南 美",
+ "词 来",
+ "百年 孤独",
+ "卡 洛斯",
+ "称 作",
+ "中产 阶级",
+ "路易 斯",
+ "固 执",
+ "球 衣",
+ "奢 侈",
+ "袖 子",
+ "忠 实",
+ "球 星",
+ "出 战",
+ "举 起",
+ "补 液",
+ "体 长",
+ "肛 周",
+ "HP V",
+ "发 白",
+ "击 剑",
+ "倒 退",
+ "腋 下",
+ "看 不出",
+ "膝 关节",
+ "因 子",
+ "侵 权",
+ "网络 小说",
+ "创 作者",
+ "创作 者",
+ "单 选",
+ "再 点",
+ "灌 肠",
+ "适用 范围",
+ "电 量",
+ "树 上",
+ "维基 百科",
+ "百科 全书",
+ "植物 学",
+ "人身 攻击",
+ "松 下",
+ "镜 头",
+ "焦 距",
+ "粉底 液",
+ "血管 瘤",
+ "良性 肿瘤",
+ "充 盈",
+ "磁 共振",
+ "电磁 炉",
+ "微波 炉",
+ "全 愈",
+ "渗 出",
+ "连 带",
+ "结 肠炎",
+ "结肠 炎",
+ "承 接",
+ "转 帐",
+ "3 65",
+ "36 5",
+ "do t",
+ "功 课",
+ "Y J",
+ "z ip",
+ "老 牌",
+ "文件 格式",
+ "政府 部门",
+ "所在 城市",
+ "谈 过",
+ "咖啡 厅",
+ "仅 限于",
+ "没 太大",
+ "市 里",
+ "要 来",
+ "厌 烦",
+ "长 发",
+ "甲 方",
+ "乙 方",
+ "馆 长",
+ "19 81",
+ "年 时",
+ "非常 少",
+ "央 行",
+ "温 顺",
+ "可 追溯",
+ "19 35",
+ "下 水",
+ "无 耻",
+ "止 步",
+ "寂 静",
+ "佛 陀",
+ "侦 察",
+ "轰 炸",
+ "鱼 雷",
+ "轰炸 机",
+ "长 尾",
+ "川 崎",
+ "单 侧",
+ "过 劳",
+ "贝 尔",
+ "侧重 于",
+ "无名 指",
+ "眼 眶",
+ "淋 巴",
+ "积 水",
+ "家 住",
+ "国 企",
+ "C 语言",
+ "赋 值",
+ "阿拉伯 人",
+ "突 厥",
+ "原 著",
+ "远 古",
+ "讲 故事",
+ "体 裁",
+ "消 遣",
+ "前 人",
+ "行 文",
+ "偏 重",
+ "宽 泛",
+ "包容 性",
+ "语 录",
+ "倡 导",
+ "末 年",
+ "古 今",
+ "流 派",
+ "容 纳",
+ "小 品",
+ "互 不",
+ "八 卦",
+ "巴 特",
+ "撰 写",
+ "汇 编",
+ "与 非",
+ "多 条",
+ "遗 留",
+ "排 版",
+ "上 手",
+ "L G",
+ "光 纤",
+ "交换 机",
+ "下 行",
+ "老 式",
+ "驻 地",
+ "最 靠近",
+ "战 败",
+ "整 容",
+ "弯 腰",
+ "旅 店",
+ "开 销",
+ "交通 状况",
+ "薄 弱",
+ "白 白",
+ "东 海岸",
+ "东海 岸",
+ "粮 食",
+ "潜 艇",
+ "小 规模",
+ "外 文",
+ "混 杂",
+ "z 0",
+ "新 书",
+ "新 歌",
+ "四 项",
+ "六 项",
+ "封 顶",
+ "有 家",
+ "发 电",
+ "几百 块",
+ "彼此 之间",
+ "感 叹",
+ "玄 学",
+ "三角 函数",
+ "根 号",
+ "动 感",
+ "人 像",
+ "人 到",
+ "大力 支持",
+ "计算 方法",
+ "除 数",
+ "余 数",
+ "要 花",
+ "停 育",
+ "免疫 性",
+ "保 胎",
+ "挑 衅",
+ "罪 行",
+ "肉食 动物",
+ "第 一类",
+ "第一 类",
+ "破 溃",
+ "肌 腱",
+ "监 理",
+ "20 18",
+ "201 8",
+ "辛 未",
+ "同 性",
+ "从 头",
+ "学士 学位",
+ "涨 幅",
+ "中山 大学",
+ "微 循环",
+ "确 信",
+ "等 同",
+ "面向 对象",
+ "程序 设计",
+ "露 营",
+ "户外 活动",
+ "内 蒙",
+ "出 血性",
+ "出血 性",
+ "深 蓝色",
+ "尖 端",
+ "内 陷",
+ "黑 点",
+ "皮肤 癌",
+ "基 部",
+ "交 错",
+ "白 点",
+ "块 状",
+ "学 名",
+ "奇 数",
+ "树 皮",
+ "幼 时",
+ "长 约",
+ "花 萼",
+ "干 旱",
+ "绿 化",
+ "账 单",
+ "好 开心",
+ "H e",
+ "w here",
+ "汉语 拼音",
+ "详 见",
+ "潜 伏",
+ "陪 同",
+ "白 领",
+ "旋 风",
+ "福 特",
+ "螺 旋",
+ "转 折",
+ "转 好",
+ "担 忧",
+ "下 文",
+ "19 77",
+ "东 路",
+ "洗 牙",
+ "流行 性",
+ "风 热",
+ "流 涕",
+ "正 气",
+ "施 展",
+ "侦 测",
+ "第 一句",
+ "第一 句",
+ "次 级",
+ "第 一行",
+ "第一 行",
+ "节省 时间",
+ "第二 句",
+ "窗 外",
+ "文 具",
+ "胶 水",
+ "自 大",
+ "几 百万",
+ "几百 万",
+ "十字 军",
+ "斯 塔",
+ "当 真",
+ "俯 瞰",
+ "暗 淡",
+ "投 射",
+ "脑 力",
+ "带 点",
+ "红 豆",
+ "花生 米",
+ "呼 吁",
+ "谷 物",
+ "煎 蛋",
+ "消 融",
+ "二 本",
+ "梯 度",
+ "偏 瘫",
+ "阿 姨",
+ "优惠 活动",
+ "交 会",
+ "写 日记",
+ "赌 博",
+ "酒 后",
+ "命 理",
+ "梅 花",
+ "水 生",
+ "女 巫",
+ "指 以",
+ "本 金",
+ "择 偶",
+ "盔 甲",
+ "一夜 之间",
+ "招 呼",
+ "知识 分子",
+ "谋 生",
+ "内 线",
+ "句 式",
+ "填 词",
+ "结 痂",
+ "勤 换",
+ "非 主流",
+ "打 游戏",
+ "天 平",
+ "遍 地",
+ "潮 汐",
+ "月 球",
+ "公 转",
+ "最 远",
+ "腺 嘌呤",
+ "多发 性",
+ "放 射线",
+ "放射 线",
+ "氨 基",
+ "动 力学",
+ "动力 学",
+ "血 浆",
+ "峰 值",
+ "英文 名称",
+ "英文名 称",
+ "尼 克",
+ "A TP",
+ "试 剂",
+ "精 密",
+ "准确 度",
+ "年 版",
+ "伴 发",
+ "阻 滞",
+ "提取 物",
+ "二 甲",
+ "自由 基",
+ "秋 冬",
+ "宣 称",
+ "发挥 作用",
+ "自发 性",
+ "性 皮炎",
+ "磨 合",
+ "高速 公路",
+ "提 速",
+ "胃 痛",
+ "辖 区",
+ "信 封",
+ "拔 出",
+ "电 荷",
+ "门 将",
+ "续 约",
+ "木 制",
+ "耐 用",
+ "安装 程序",
+ "被 困",
+ "屋子 里",
+ "一 通",
+ "桃 园",
+ "泡 茶",
+ "房 东",
+ "发 散",
+ "扇 子",
+ "互 换",
+ "浮 力",
+ "试 管",
+ "漂 浮",
+ "中 队",
+ "法 军",
+ "宣 战",
+ "实际 行动",
+ "从 容",
+ "战 事",
+ "上 空",
+ "苏 军",
+ "东 欧",
+ "衰 弱",
+ "国 力",
+ "外 用药",
+ "外用 药",
+ "纳 米",
+ "流水 线",
+ "渲 染",
+ "至 尊",
+ "手术 室",
+ "大大 降低",
+ "惊 吓",
+ "体 格",
+ "不 洁",
+ "滥 用",
+ "炎症 性",
+ "淋巴 瘤",
+ "结 肠癌",
+ "结肠 癌",
+ "直 肠癌",
+ "直肠 癌",
+ "胃 癌",
+ "阻塞 性",
+ "质 感",
+ "对 齐",
+ "不 齐",
+ "人 头",
+ "计算 器",
+ "所 处",
+ "现 时",
+ "提 高效率",
+ "提高 效率",
+ "三 维",
+ "灾 区",
+ "汶 川",
+ "判 刑",
+ "判 处",
+ "刑 事",
+ "民 事",
+ "被 判",
+ "判 决",
+ "及时 处理",
+ "旋 律",
+ "州 府",
+ "动物 园",
+ "画 廊",
+ "春 日",
+ "卡 里",
+ "远 高于",
+ "器 件",
+ "同 属",
+ "存储 器",
+ "很 烂",
+ "语 境",
+ "笔 试",
+ "归 类",
+ "元 音",
+ "a d",
+ "e t",
+ "n ice",
+ "辅 音",
+ "m a",
+ "o range",
+ "同义 词",
+ "tw o",
+ "op en",
+ "词 根",
+ "c are",
+ "car e",
+ "迷 路",
+ "降 落",
+ "参考 书",
+ "写 法",
+ "透气 性",
+ "老爷 子",
+ "扭 动",
+ "坠 毁",
+ "失 控",
+ "跳 伞",
+ "挽 救",
+ "事 迹",
+ "制 订",
+ "戏 剧",
+ "字符 串",
+ "坐 落",
+ "天津 市",
+ "内 幕",
+ "狡 猾",
+ "事 发",
+ "捐 款",
+ "C NN",
+ "解 为",
+ "慈善 机构",
+ "万 科",
+ "拉 萨",
+ "募 集",
+ "爱 心",
+ "款 项",
+ "海 啸",
+ "党 委",
+ "倡 议",
+ "该 校",
+ "领 养",
+ "贵州 省",
+ "基金 会",
+ "企业 家",
+ "多样 性",
+ "水 杯",
+ "维 度",
+ "宜 居",
+ "自然 环境",
+ "据 悉",
+ "广 深",
+ "第二 届",
+ "号 召",
+ "物 种",
+ "白 头",
+ "周边 地区",
+ "贫 困",
+ "抵 达",
+ "意 为",
+ "下 颌",
+ "正 经",
+ "雇 主",
+ "发布 会",
+ "戴 着",
+ "一 封",
+ "立 案",
+ "阐 述",
+ "咒 语",
+ "庙 宇",
+ "假 名",
+ "五 十",
+ "波 音",
+ "小 写",
+ "醉 酒",
+ "脏 器",
+ "食 管",
+ "酒精 肝",
+ "脑 神经",
+ "低 血糖",
+ "很 帅",
+ "1 38",
+ "13 8",
+ "1 24",
+ "12 4",
+ "压 榨",
+ "火 鸡",
+ "近 似",
+ "烟 台",
+ "中 西",
+ "法 文",
+ "蕴 含",
+ "摄 氏",
+ "可 乐",
+ "冰 块",
+ "口 音",
+ "D D",
+ "英语 翻译",
+ "网 路",
+ "三 千",
+ "自驾 游",
+ "几 十万",
+ "几十 万",
+ "大 涨",
+ "思 绪",
+ "短短 的",
+ "牵 手",
+ "英文 翻译",
+ "入 学",
+ "华 人",
+ "多种 语言",
+ "普 通话",
+ "普通 话",
+ "蚯 蚓",
+ "鸭 子",
+ "反 转",
+ "购 车",
+ "高 斯",
+ "烧 毁",
+ "左 眼",
+ "眨 眼",
+ "病 历",
+ "C G",
+ "地址 栏",
+ "性 爱",
+ "契 合",
+ "8 2",
+ "年 末",
+ "调 控",
+ "野 心",
+ "故 此",
+ "链 条",
+ "网 购",
+ "页 码",
+ "头 条",
+ "实习 生",
+ "再 度",
+ "一 季度",
+ "一季 度",
+ "午 后",
+ "绝 地",
+ "全 线",
+ "人 寿",
+ "净 利润",
+ "同 比",
+ "加 息",
+ "借 钱",
+ "风 速",
+ "嗓子 疼",
+ "e at",
+ "孟 子",
+ "第 四次",
+ "第四 次",
+ "今 早",
+ "店 家",
+ "水 是",
+ "回报 率",
+ "基因 突变",
+ "儿 科",
+ "溶 血性",
+ "溶血 性",
+ "长篇 小说",
+ "书 评",
+ "书 架",
+ "访 谈",
+ "气管 炎",
+ "施 治",
+ "穿 行",
+ "喧 嚣",
+ "岭 南",
+ "跑 鞋",
+ "极为 重要",
+ "禁 区",
+ "灯 泡",
+ "制 式",
+ "求 生",
+ "刀 具",
+ "囊 括",
+ "巴 克",
+ "原 厂",
+ "远 足",
+ "帐 篷",
+ "双 层",
+ "政治 家",
+ "阳光 明媚",
+ "出 行",
+ "传 出",
+ "A M",
+ "美好 时光",
+ "步 枪",
+ "敬 畏",
+ "顺利 进行",
+ "精力 充沛",
+ "猪 蹄",
+ "飓 风",
+ "吸血 鬼",
+ "复 仇",
+ "唤 醒",
+ "审 判",
+ "发 誓",
+ "麻 药",
+ "没 劲",
+ "跳 槽",
+ "求职 者",
+ "乔 布斯",
+ "S D",
+ "头皮 屑",
+ "端 点",
+ "太 阳光",
+ "太阳 光",
+ "大 病",
+ "远 超",
+ "m c",
+ "ab c",
+ "摄影 师",
+ "日 系",
+ "单 次",
+ "让 步",
+ "短篇 小说",
+ "几 篇",
+ "佐 料",
+ "邮 寄",
+ "写 个",
+ "演讲 稿",
+ "文 案",
+ "散 文",
+ "字 词",
+ "修 辞",
+ "语言 表达",
+ "写作 技巧",
+ "记录 下来",
+ "推 崇",
+ "源 泉",
+ "书 包",
+ "课 上",
+ "引 诱",
+ "第二 位",
+ "长 毛",
+ "天 际",
+ "马 路上",
+ "马路 上",
+ "怀 抱",
+ "难 闻",
+ "河 岸",
+ "图 画",
+ "小 姑娘",
+ "美 景",
+ "金 华",
+ "院 子",
+ "摔 跤",
+ "阵 地",
+ "知识 面",
+ "小 伙伴",
+ "小伙 伴",
+ "看 个",
+ "驾驶 证",
+ "大 队",
+ "圣 诞",
+ "少 儿",
+ "城 堡",
+ "万 千",
+ "文 法",
+ "咖啡 馆",
+ "联合 国",
+ "环 球",
+ "哈 利",
+ "l i",
+ "签 约",
+ "业务 范围",
+ "索 取",
+ "煤 气",
+ "竣 工",
+ "婚纱 照",
+ "临 产",
+ "高 浓度",
+ "步 入",
+ "北 半球",
+ "南 半球",
+ "沿海 地区",
+ "降 水",
+ "单 场",
+ "肝 腹水",
+ "丙 肝",
+ "农 药",
+ "农 产品",
+ "销售 收入",
+ "脑 外伤",
+ "嵌入 式",
+ "雨 林",
+ "难 听",
+ "泄 露",
+ "扯 淡",
+ "龙 虾",
+ "上 长",
+ "铅 笔",
+ "版 图",
+ "雕 像",
+ "以 北",
+ "大大 小小",
+ "藏 书",
+ "兴 衰",
+ "七 大",
+ "猫 猫",
+ "好 动",
+ "肚 脐",
+ "化 脓性",
+ "化脓 性",
+ "脸 颊",
+ "我 生",
+ "当 月",
+ "解 密",
+ "专 栏",
+ "录 用",
+ "搬 运",
+ "福 克斯",
+ "召 回",
+ "代 偿",
+ "R 2",
+ "几 段",
+ "真 能",
+ "三 十岁",
+ "三十 岁",
+ "橄 榄",
+ "杆 菌",
+ "洗 礼",
+ "徒 步",
+ "阶 梯",
+ "武汉 市",
+ "心 底",
+ "碎 石",
+ "迟 迟",
+ "冠军 联赛",
+ "灾难 性",
+ "葬 礼",
+ "声 称",
+ "闭 嘴",
+ "新 秀",
+ "首 发",
+ "转 会",
+ "激 进",
+ "满 满",
+ "罗 斯",
+ "强 硬",
+ "口 号",
+ "本 届",
+ "防 线",
+ "打 进",
+ "当 有",
+ "输 掉",
+ "球 场上",
+ "球场 上",
+ "智 齿",
+ "J R",
+ "冰 凉",
+ "我 方",
+ "新 东方",
+ "不容 忽视",
+ "惊 险",
+ "增 速",
+ "梅 毒",
+ "肾 病",
+ "风湿 病",
+ "抗炎 药",
+ "她 家",
+ "吉 林",
+ "顿 时",
+ "寒 假",
+ "邯 郸",
+ "瓜 子",
+ "当 着",
+ "隐 含",
+ "公 倍数",
+ "n um",
+ "保 全",
+ "自动 检测",
+ "吐 奶",
+ "肛 裂",
+ "M C",
+ "回 民",
+ "神 器",
+ "1 2%",
+ "12 %",
+ "英 勇",
+ "木 地板",
+ "童 年",
+ "纯 真",
+ "高中 生",
+ "严 峻",
+ "名 号",
+ "私 处",
+ "逃 离",
+ "巫 师",
+ "棍 子",
+ "过来 人",
+ "一 想",
+ "动 机",
+ "脚 底",
+ "准确 性",
+ "没 上",
+ "出 对",
+ "几 岁",
+ "音 调",
+ "摇 晃",
+ "虚 幻",
+ "圈 子",
+ "col or",
+ "春秋 时期",
+ "水 草",
+ "封 为",
+ "蒙古 族",
+ "蒸 馏",
+ "失 明",
+ "无 穷",
+ "独 特性",
+ "独特 性",
+ "骆 驼",
+ "撞 击",
+ "迁 徙",
+ "随身 携带",
+ "颤 动",
+ "下 沉",
+ "半 透明",
+ "圆 润",
+ "解 冻",
+ "刷 屏",
+ "西 兰花",
+ "没 事儿",
+ "没事 儿",
+ "进 位",
+ "马 达",
+ "签 发",
+ "出 境",
+ "嫌疑 人",
+ "斯坦福 大学",
+ "优 酷",
+ "两 门",
+ "病 发",
+ "不孕 症",
+ "家 畜",
+ "食肉 动物",
+ "灌 木",
+ "捕 食",
+ "天 敌",
+ "驯 化",
+ "蛀 牙",
+ "环形 山",
+ "天 文学家",
+ "天文 学家",
+ "天文学 家",
+ "右 腿",
+ "两 三次",
+ "机器 人",
+ "售票 机",
+ "集 资",
+ "分析 方法",
+ "乌 鸦",
+ "弥 漫",
+ "冤 枉",
+ "两 三年",
+ "没 戏",
+ "链 上",
+ "弱 势",
+ "赢 家",
+ "贴 身",
+ "隔 绝",
+ "调 到",
+ "判 别",
+ "O 型",
+ "文 笔",
+ "外 教",
+ "垂 体",
+ "第 三天",
+ "第三 天",
+ "街 上",
+ "拉丁 美洲",
+ "生物 学家",
+ "生物学 家",
+ "栖息 地",
+ "外 围",
+ "食物 链",
+ "短 缺",
+ "替代 品",
+ "严重 威胁",
+ "骚 扰",
+ "填 报",
+ "批 次",
+ "电 磁",
+ "没 准",
+ "不 进",
+ "果 壳",
+ "选 举",
+ "赏 识",
+ "乐 坛",
+ "恶 臭",
+ "路 易",
+ "法国 巴黎",
+ "19 68",
+ "美国 纽约",
+ "19 70",
+ "19 23",
+ "佛罗伦 萨",
+ "伊 夫",
+ "混合 型",
+ "工具 栏",
+ "教 导",
+ "班 里",
+ "社交 圈",
+ "黄 山",
+ "常 州",
+ "绍 兴",
+ "新 月",
+ "几 周",
+ "相对 而言",
+ "金 银",
+ "一 国",
+ "元 首",
+ "19 61",
+ "外交 关系",
+ "公 约",
+ "检查 和",
+ "红 辣椒",
+ "淹 没",
+ "之 日起",
+ "先后 顺序",
+ "冷 酷",
+ "专业 课",
+ "时 辰",
+ "日 晚",
+ "朦 胧",
+ "约 等于",
+ "时间 差",
+ "正 月",
+ "传 入",
+ "数 学家",
+ "数学 家",
+ "大写 字母",
+ "小写 字母",
+ "M r",
+ "L ee",
+ "Le e",
+ "降 噪",
+ "流 域",
+ "归 并",
+ "省 级",
+ "j i",
+ "候 选",
+ "偶 数",
+ "自然 数",
+ "好 消息",
+ "夫妻 生活",
+ "木 质",
+ "点 上",
+ "肉 酱",
+ "聪明 人",
+ "闹 肚子",
+ "老 爷爷",
+ "老爷 爷",
+ "孙 女",
+ "太阳 系",
+ "大 行星",
+ "天文 单位",
+ "希腊 语",
+ "最 亮",
+ "异 议",
+ "19 62",
+ "深 层次",
+ "深层 次",
+ "温室 效应",
+ "表面 温度",
+ "山 脉",
+ "巨 型",
+ "小 行星",
+ "大气 层",
+ "亿 年",
+ "2 11",
+ "21 1",
+ "闭 眼",
+ "魏 国",
+ "孤 单",
+ "加 薪",
+ "升 职",
+ "脑海 中",
+ "中 美",
+ "欧 盟",
+ "插 手",
+ "领先 地位",
+ "节 点",
+ "张 嘴",
+ "毛 皮",
+ "简单 句",
+ "To m",
+ "南方 人",
+ "主 句",
+ "往 外",
+ "耳 塞",
+ "侧 重",
+ "遥控 器",
+ "日 产",
+ "信息 系统",
+ "提 神",
+ "太阳 穴",
+ "他 出",
+ "太 监",
+ "博 学",
+ "蚂 蚁",
+ "运 送",
+ "都 督",
+ "满 清",
+ "隐 喻",
+ "处 决",
+ "脾 虚",
+ "降 血压",
+ "金融 学",
+ "复旦 大学",
+ "中国 科学院",
+ "IP O",
+ "生冷 食物",
+ "高 数",
+ "太阳 镜",
+ "参 观",
+ "押 金",
+ "长 袖",
+ "冒 犯",
+ "优 劣",
+ "好 笑",
+ "歌 剧院",
+ "歌剧 院",
+ "特 许",
+ "湖北 省",
+ "万 人",
+ "级 数",
+ "魔 方",
+ "黄 牛",
+ "文 中",
+ "交通 堵塞",
+ "珍 藏",
+ "一 卷",
+ "画 作",
+ "相似 之处",
+ "文化 交流",
+ "核心 内容",
+ "灌 输",
+ "哲 理",
+ "嗓 音",
+ "逆 转",
+ "吸 气",
+ "呼 气",
+ "脑 内",
+ "左 转",
+ "左 脚",
+ "走 动",
+ "茫 茫",
+ "协 同",
+ "评 委",
+ "钓 鱼",
+ "基本 知识",
+ "伤 残",
+ "闭 合",
+ "水 体",
+ "斑 纹",
+ "受 寒",
+ "助 消化",
+ "胃 疼",
+ "咯 血",
+ "拉 肚子",
+ "递 减",
+ "肾 阳虚",
+ "稀 饭",
+ "关注 度",
+ "升 降",
+ "生态 平衡",
+ "有 序",
+ "织 物",
+ "交 织",
+ "某 天",
+ "甲 亢",
+ "表 姐",
+ "原 装",
+ "湖 水",
+ "接 连",
+ "很 爽",
+ "普通 用户",
+ "大理 石",
+ "门 窗",
+ "堵 住",
+ "火 灾",
+ "瓷 砖",
+ "木 工",
+ "床 垫",
+ "用 纸",
+ "水 电",
+ "每 一项",
+ "每一 项",
+ "缺 口",
+ "增 减",
+ "吃 火锅",
+ "台 面",
+ "两 遍",
+ "衣 柜",
+ "书 桌",
+ "个性 化",
+ "店 面",
+ "垃圾 桶",
+ "马赛 克",
+ "统 统",
+ "洗 碗",
+ "闲 着",
+ "三 遍",
+ "入 场",
+ "第 一遍",
+ "第一 遍",
+ "遮 盖",
+ "责任 心",
+ "充 电器",
+ "充电 器",
+ "几 本书",
+ "几本 书",
+ "些 许",
+ "生日 快乐",
+ "三 度",
+ "连 通",
+ "我 以",
+ "起 个",
+ "闭 经",
+ "隐 痛",
+ "花 蜜",
+ "非常 复杂",
+ "常 量",
+ "白 蛋白",
+ "辣 味",
+ "h u",
+ "舍 弃",
+ "现金 流",
+ "屡 次",
+ "车 牌",
+ "催 化",
+ "制造 业",
+ "par t",
+ "召 集",
+ "可信 度",
+ "亿 人",
+ "珊瑚 礁",
+ "轮 船",
+ "具体 内容",
+ "睾 酮",
+ "经 量",
+ "精神 病",
+ "发育 不全",
+ "拜 访",
+ "正 值",
+ "卵巢 功能",
+ "过 频",
+ "快餐 店",
+ "腰 痛",
+ "惊 奇",
+ "生育 能力",
+ "光 顾",
+ "葡萄 柚",
+ "布 丁",
+ "吹 风",
+ "林 肯",
+ "自 传",
+ "传 记",
+ "三国 志",
+ "围 城",
+ "三 分钟",
+ "三分 钟",
+ "摩擦 力",
+ "辨 认",
+ "沒 有",
+ "武 昌",
+ "我 养",
+ "仓 鼠",
+ "国民 政府",
+ "同 胞",
+ "政 客",
+ "围 观",
+ "19 33",
+ "19 41",
+ "桥 本",
+ "结节 性",
+ "吞 咽",
+ "继 而",
+ "甲 减",
+ "亚 急性",
+ "甲状腺 炎",
+ "淋巴 细胞",
+ "新 兵",
+ "第 一批",
+ "第一 批",
+ "次 子",
+ "视 图",
+ "伤 病",
+ "豪 门",
+ "沉 迷",
+ "英 式",
+ "冲击 力",
+ "发 烫",
+ "打 赢",
+ "攻 城",
+ "库 尔",
+ "攻 入",
+ "隐 性",
+ "不适 感",
+ "极 差",
+ "太阳 辐射",
+ "环 状",
+ "电 离",
+ "打 点",
+ "变量 名",
+ "平均 工资",
+ "菜 谱",
+ "肥 肉",
+ "哪 一天",
+ "情绪 稳定",
+ "高 层次",
+ "高层 次",
+ "合同 法",
+ "高中 毕业",
+ "短 距离",
+ "错 觉",
+ "车 程",
+ "法 式",
+ "推 拿",
+ "巨 头",
+ "特 区",
+ "c t",
+ "务 实",
+ "权 重",
+ "回 升",
+ "纳 闷",
+ "闲 聊",
+ "里斯 本",
+ "普 尔",
+ "挑战 者",
+ "战 后",
+ "快 节奏",
+ "负面 影响",
+ "年 少",
+ "触 动",
+ "接 纳",
+ "塞 纳",
+ "里 奥",
+ "没 好",
+ "激素 类",
+ "在 建",
+ "雇 佣",
+ "所 长",
+ "4 56",
+ "45 6",
+ "第二 行",
+ "鲜 红色",
+ "鲜红 色",
+ "换 洗",
+ "e q",
+ "疑 问句",
+ "疑问 句",
+ "问 句",
+ "陈述 句",
+ "第三 人称",
+ "S he",
+ "历史 背景",
+ "改 组",
+ "生态 环境",
+ "产品 价格",
+ "预 见",
+ "多种 形式",
+ "工业 化",
+ "控 股",
+ "产品 销售",
+ "优惠 政策",
+ "迁 入",
+ "煤 矿",
+ "林 业",
+ "废 弃",
+ "中 兴",
+ "高 能",
+ "瓦 斯",
+ "充分 发挥",
+ "转 型",
+ "招 标",
+ "彻底 改变",
+ "通 勤",
+ "居民 点",
+ "较 近",
+ "雇 员",
+ "招 募",
+ "下 游",
+ "诸葛 亮",
+ "孙 权",
+ "疯 子",
+ "问 到",
+ "契 机",
+ "蔬 果",
+ "土 著",
+ "环 切",
+ "点 选",
+ "一 脸",
+ "豆腐 渣",
+ "性 伴侣",
+ "版 面",
+ "痔疮 膏",
+ "结 扎",
+ "瘀 血",
+ "网 民",
+ "抗 议",
+ "图 样",
+ "借款 人",
+ "划 入",
+ "名 下",
+ "开 立",
+ "o l",
+ "滴虫 性",
+ "镜 检查",
+ "这 颗",
+ "逃 脱",
+ "耕 地",
+ "逝 世",
+ "亚洲 杯",
+ "开幕 式",
+ "巴 林",
+ "组 别",
+ "异常 情况",
+ "花 香",
+ "TV B",
+ "主 唱",
+ "闯 入",
+ "计算机 硬件",
+ "灵 芝",
+ "告 终",
+ "做 作",
+ "刘 海",
+ "男 女朋友",
+ "男女 朋友",
+ "场 馆",
+ "皮 层",
+ "史 诗",
+ "污 水",
+ "下 水道",
+ "下水 道",
+ "性 知识",
+ "厌 倦",
+ "大 麻",
+ "情 愿",
+ "性交 时",
+ "壮 阳",
+ "钉 子",
+ "检 讨",
+ "达到 最佳",
+ "时 报",
+ "普遍 认为",
+ "万 亿",
+ "阶段 性",
+ "凶 猛",
+ "足球 赛",
+ "2 01",
+ "20 1",
+ "倒 车",
+ "高 雄",
+ "App le",
+ "星 体",
+ "象 牙",
+ "X L",
+ "复 苏",
+ "横 扫",
+ "追 着",
+ "装 扮",
+ "被 告",
+ "原 告",
+ "体重 减轻",
+ "连贯 性",
+ "小 船",
+ "船 上",
+ "鸟 儿",
+ "地 问",
+ "逃 出",
+ "气 球",
+ "紧 紧",
+ "非常 高兴",
+ "绩 效",
+ "老 人家",
+ "老人 家",
+ "嘱 咐",
+ "架 空",
+ "王 妃",
+ "栖 息",
+ "女 主",
+ "嬉 戏",
+ "傻 子",
+ "轻 视",
+ "在 手",
+ "秦 国",
+ "交 锋",
+ "令人 惊叹",
+ "奇 幻",
+ "直 视",
+ "纷 争",
+ "一 幕",
+ "犀 利",
+ "触 觉",
+ "武汉 大学",
+ "清华 大学",
+ "浙江 大学",
+ "短 小",
+ "莆 田",
+ "不 失",
+ "反应 速度",
+ "显 眼",
+ "个 案",
+ "迄今 为止",
+ "尿 失禁",
+ "脑 积水",
+ "19 17",
+ "假 性",
+ "基 底",
+ "饱 满",
+ "脑 膜炎",
+ "脑 萎缩",
+ "儿童 医院",
+ "神经 内科",
+ "脑 瘫",
+ "用药 治疗",
+ "不 听话",
+ "梦 里",
+ "矿 石",
+ "对 准",
+ "20 20",
+ "据 此",
+ "年 均",
+ "退 税",
+ "逐 年",
+ "国际 贸易",
+ "拉 动",
+ "对外 开放",
+ "可 持续性",
+ "银 联",
+ "邮 局",
+ "入 库",
+ "自 旋",
+ "氢 原子",
+ "简 明",
+ "重新 组合",
+ "互 为",
+ "极 性",
+ "拿 个",
+ "过滤 器",
+ "鱼 缸",
+ "角落 里",
+ "大 鱼",
+ "合 影",
+ "昨天 下午",
+ "肠 胃炎",
+ "肠胃 炎",
+ "抗 感染",
+ "流 质",
+ "选 址",
+ "山 川",
+ "东 面",
+ "朝 向",
+ "小 巷",
+ "自然 景观",
+ "航 班",
+ "客 车",
+ "往 返",
+ "走 廊",
+ "注意 安全",
+ "旅游 业",
+ "房 租",
+ "缺 损",
+ "全 集",
+ "李 白",
+ "老 娘",
+ "阴 暗",
+ "基 石",
+ "行政 部门",
+ "假 定",
+ "工作 岗位",
+ "解 雇",
+ "电影 史",
+ "本 片",
+ "苏 菲",
+ "驱 逐",
+ "学术 研究",
+ "三 四个",
+ "三四 个",
+ "丹 尼",
+ "但 愿",
+ "地 处",
+ "物 料",
+ "数 为",
+ "5 55",
+ "55 5",
+ "成绩 单",
+ "籍 贯",
+ "r un",
+ "静 音",
+ "古 董",
+ "一 枚",
+ "几 十年",
+ "几十 年",
+ "几 百年",
+ "几百 年",
+ "皇 室",
+ "3 y",
+ "相 交",
+ "截 距",
+ "一个 半月",
+ "一个半 月",
+ "动 手术",
+ "动手 术",
+ "肿 物",
+ "画 笔",
+ "滤 镜",
+ "划 痕",
+ "完 工",
+ "央 视",
+ "动 听",
+ "相 声",
+ "照 亮",
+ "夜 空",
+ "扁桃体 炎",
+ "1 2000",
+ "12 000",
+ "120 00",
+ "1200 0",
+ "沿 线",
+ "白 虎",
+ "三 号",
+ "扑克 牌",
+ "等 候",
+ "纳粹 德国",
+ "投入 使用",
+ "纳 粹",
+ "上 台",
+ "和 约",
+ "抗 击",
+ "排 水量",
+ "排水 量",
+ "基 尔",
+ "签 署",
+ "焊 接",
+ "强 有力",
+ "炸 药",
+ "杀 伤",
+ "驱逐 舰",
+ "科 隆",
+ "意 向",
+ "并 称",
+ "电 报",
+ "官 兵",
+ "趁 机",
+ "炮 台",
+ "通 向",
+ "誓 言",
+ "一 任",
+ "推 向",
+ "沉 没",
+ "知 觉",
+ "幸 存",
+ "国防 部",
+ "货 车",
+ "岳 父",
+ "度 量",
+ "装 作",
+ "新鲜 空气",
+ "意识 形态",
+ "不断 改进",
+ "书 中",
+ "值 来",
+ "走 入",
+ "极 有",
+ "辜 负",
+ "结 识",
+ "逝 去",
+ "侵 袭",
+ "考 不上",
+ "达 标",
+ "觉 悟",
+ "朝鲜 战争",
+ "挫 败",
+ "中共 中央",
+ "政治 委员",
+ "中国 共产党",
+ "19 51",
+ "19 53",
+ "攻 势",
+ "漏 斗",
+ "曝光 率",
+ "自由 度",
+ "自主 性",
+ "提 成",
+ "点击 率",
+ "做 广告",
+ "安全 可靠",
+ "校 内",
+ "照 着",
+ "红 星",
+ "团 聚",
+ "重新 排列",
+ "甚 至于",
+ "甚至 于",
+ "浮 夸",
+ "杯 赛",
+ "ma th",
+ "注册 资本",
+ "清 算",
+ "教育 资源",
+ "极 少数",
+ "极少 数",
+ "教 父",
+ "余 生",
+ "减肥 法",
+ "喝 啤酒",
+ "配 搭",
+ "胶 质",
+ "柠檬 酸",
+ "减 脂",
+ "抗 癌",
+ "口服 药物",
+ "举例 来说",
+ "第 四天",
+ "第四 天",
+ "借 着",
+ "老 旧",
+ "千 卡",
+ "祖 宗",
+ "运算 符",
+ "计算 结果",
+ "圣 地",
+ "打 分",
+ "天 河",
+ "文 胸",
+ "尺 码",
+ "棉 质",
+ "漂 洗",
+ "晾 晒",
+ "发言 权",
+ "食 肉",
+ "银 币",
+ "概 况",
+ "山 羊",
+ "牧 场",
+ "吉他 手",
+ "鼓 手",
+ "舞 曲",
+ "上班 族",
+ "出 道",
+ "影像 学",
+ "鉴 于",
+ "肥胖 症",
+ "处 置",
+ "静脉 炎",
+ "门 静脉",
+ "肝 内",
+ "肝 细胞",
+ "百 花",
+ "唐 朝",
+ "满 洲",
+ "温 带",
+ "水 银",
+ "巴 萨",
+ "赛 后",
+ "心理 疾病",
+ "理 事",
+ "决 议",
+ "公 差",
+ "第二 张",
+ "性 传播",
+ "感染 者",
+ "同 桌",
+ "蚊 虫",
+ "4 G",
+ "私 募",
+ "一 秒",
+ "涨 跌",
+ "所 作",
+ "D r",
+ "程 式",
+ "具体 操作",
+ "获得 最佳",
+ "用户 界面",
+ "拉 伸",
+ "t a",
+ "骨头 汤",
+ "温 室",
+ "汇 集",
+ "秀 才",
+ "感 触",
+ "学 派",
+ "归 于",
+ "意 式",
+ "曲 面",
+ "常 驻",
+ "法 制",
+ "温度 计",
+ "引 号",
+ "亚 军",
+ "两 旁",
+ "直 射",
+ "忘 却",
+ "溃 烂",
+ "侏 儒",
+ "高等 学校",
+ "财 政",
+ "学 位",
+ "核 准",
+ "审 计",
+ "事务 所",
+ "财务 报告",
+ "辅导 员",
+ "通知 书",
+ "退 学",
+ "本 校",
+ "全 校",
+ "合法 性",
+ "载 入",
+ "校 方",
+ "人民 日报",
+ "负责 管理",
+ "挽 留",
+ "标 本",
+ "非 专业",
+ "妆 容",
+ "取 暖",
+ "被 窝",
+ "奇 葩",
+ "长 者",
+ "女 主人",
+ "女主 人",
+ "宾 客",
+ "油 渍",
+ "西 装",
+ "匆 忙",
+ "轻 轨",
+ "中央 公园",
+ "计数 器",
+ "长 春",
+ "解 酒",
+ "19 72",
+ "国家 级",
+ "新 药",
+ "医疗 保健",
+ "报 导",
+ "一个 碗",
+ "中 多",
+ "低 估",
+ "抗 肿瘤",
+ "辅导 班",
+ "不 公",
+ "网 恋",
+ "里 拉",
+ "无 从",
+ "所 著",
+ "大 龄",
+ "谈 起",
+ "苦 难",
+ "1 56",
+ "15 6",
+ "雷 德",
+ "天 启",
+ "19 08",
+ "190 8",
+ "刑 部",
+ "宦 官",
+ "中 外",
+ "上 书",
+ "借 此",
+ "大 明",
+ "辽 东",
+ "万 历",
+ "争 端",
+ "掌 管",
+ "意 图",
+ "心 机",
+ "长 子",
+ "书 院",
+ "壮 大",
+ "后 仰",
+ "戒 掉",
+ "志 向",
+ "发 火",
+ "会 以",
+ "转 头",
+ "库 克",
+ "随 口",
+ "期 刊",
+ "来 电",
+ "骗 局",
+ "宁 愿",
+ "海 报",
+ "留 住",
+ "西 站",
+ "薪 资",
+ "明 智",
+ "匈 奴",
+ "子 孙",
+ "秦 王",
+ "转 而",
+ "集 会",
+ "齐 国",
+ "敞 开",
+ "流 淌",
+ "吞 并",
+ "刑 罚",
+ "改 设",
+ "焚 烧",
+ "愚 蠢",
+ "都 城",
+ "平 定",
+ "称 帝",
+ "孔 子",
+ "田 野",
+ "秦 朝",
+ "旗 帜",
+ "盛 宴",
+ "联系 电话",
+ "寿 司",
+ "开 药",
+ "外观 设计",
+ "制 止",
+ "著作 权",
+ "典 故",
+ "青 色",
+ "不断 创新",
+ "不 喜",
+ "暗 红色",
+ "单 从",
+ "S t",
+ "云 云",
+ "物 理学",
+ "物理 学",
+ "多 维",
+ "民 生",
+ "嘌 呤",
+ "汉 人",
+ "东 区",
+ "邮政 编码",
+ "性 腺",
+ "邮 政",
+ "羊 水",
+ "菜 刀",
+ "看 吧",
+ "布 斯",
+ "东 德",
+ "忌 口",
+ "一 文",
+ "医疗 机构",
+ "定 金",
+ "首 付",
+ "劳 工",
+ "罢 工",
+ "认真 思考",
+ "抑 制剂",
+ "抑制 剂",
+ "订 立",
+ "三 款",
+ "志愿 者",
+ "交易 系统",
+ "目 测",
+ "投 篮",
+ "起 身",
+ "相 撞",
+ "生物 学",
+ "荒 诞",
+ "历 法",
+ "冬 至",
+ "马 尔",
+ "磁 性",
+ "银河 系",
+ "一 两年",
+ "一两 年",
+ "19 10",
+ "19 19",
+ "枪 支",
+ "主义 者",
+ "全球 性",
+ "十 几个",
+ "十几 个",
+ "许 久",
+ "秘 书",
+ "C SS",
+ "CS S",
+ "模 版",
+ "算 得",
+ "反 观",
+ "巅 峰",
+ "质 心",
+ "莱 昂",
+ "放 映",
+ "当 上",
+ "女 演员",
+ "不 俗",
+ "已 久",
+ "突发 事件",
+ "片 中",
+ "怀 特",
+ "蜘蛛 侠",
+ "尔 斯",
+ "科 幻",
+ "F i",
+ "首 映",
+ "P G",
+ "变形 金刚",
+ "芬 奇",
+ "杰 克",
+ "华 纳",
+ "罪 犯",
+ "原 作者",
+ "原作 者",
+ "卡 通",
+ "卡 尔",
+ "罪 恶",
+ "克 拉克",
+ "克拉 克",
+ "邓 肯",
+ "Li ve",
+ "威 尔",
+ "大 作",
+ "主 打",
+ "制片 人",
+ "哈利 波",
+ "丹 尼尔",
+ "丹尼 尔",
+ "克 里",
+ "蒂 姆",
+ "影 业",
+ "艾 伦",
+ "麦 克",
+ "出 演",
+ "族 群",
+ "19 54",
+ "人 马",
+ "讯 号",
+ "迈 克",
+ "亚 瑟",
+ "外 公",
+ "马 修",
+ "汤 姆",
+ "三 条",
+ "国会 议员",
+ "壁 纸",
+ "很 傻",
+ "人 名",
+ "相 通",
+ "译 名",
+ "文学 作品",
+ "语 义",
+ "诗 集",
+ "国 语",
+ "拟 定",
+ "读 物",
+ "拉丁 文",
+ "修饰 语",
+ "中华 文化",
+ "语 系",
+ "驾 驭",
+ "儒 学",
+ "写 道",
+ "演 化",
+ "学 士",
+ "受 过",
+ "衰 落",
+ "18 96",
+ "实质 性",
+ "朝鲜 半岛",
+ "高 丽",
+ "道路 交通",
+ "语法 结构",
+ "四 分",
+ "十 六年",
+ "十六 年",
+ "日本 政府",
+ "忠诚 度",
+ "马 甲",
+ "水 痘",
+ "乐 团",
+ "体 面",
+ "保护 区",
+ "处理 速度",
+ "漫 天",
+ "之 光",
+ "超 人",
+ "问卷 调查",
+ "应 激",
+ "数 天",
+ "研究 者",
+ "上 任",
+ "竞争 者",
+ "吃 素",
+ "胆囊 结石",
+ "粉 碎",
+ "灌 注",
+ "索 尔",
+ "浴 缸",
+ "法 老",
+ "历史 性",
+ "令人 兴奋",
+ "一 扇",
+ "谜 团",
+ "秘书 长",
+ "这 道",
+ "古 埃及",
+ "病 痛",
+ "d d",
+ "只 见",
+ "汽车 行业",
+ "魔 戒",
+ "星球 大战",
+ "哈 里",
+ "目 睹",
+ "爱情 故事",
+ "吓 死",
+ "阿 斯",
+ "相 逢",
+ "薯 条",
+ "行 者",
+ "招 待",
+ "对 白",
+ "请 用",
+ "胶 片",
+ "全 能",
+ "生 理学",
+ "生理 学",
+ "班 上",
+ "识 字",
+ "成 书",
+ "主 编",
+ "家庭 教育",
+ "行为 习惯",
+ "书 里",
+ "自我 管理",
+ "脑 干",
+ "降 生",
+ "书 目",
+ "不仅 如此",
+ "计算 能力",
+ "生 吃",
+ "凉 拌",
+ "特 拉",
+ "主 义",
+ "操 场",
+ "乡 下",
+ "唐 氏",
+ "筛 查",
+ "我 院",
+ "免疫 系统",
+ "实际 操作",
+ "社会 性",
+ "含 蓄",
+ "折 射",
+ "意 象",
+ "陈 列",
+ "音乐 厅",
+ "阴 唇",
+ "交汇 处",
+ "小 孔",
+ "挂 号",
+ "深 水",
+ "臭 氧",
+ "评 分",
+ "陶 醉",
+ "生活 态度",
+ "情 境",
+ "游 走",
+ "消 极",
+ "性格 特点",
+ "读 懂",
+ "严重 性",
+ "别 问",
+ "痛 恨",
+ "逻辑 思维",
+ "勾 搭",
+ "瑕 疵",
+ "关键 问题",
+ "应 力",
+ "珍 视",
+ "有 幸",
+ "吃 惊",
+ "独 裁",
+ "星 等",
+ "施 肥",
+ "观赏 鱼",
+ "具体 表现",
+ "P HP",
+ "药 学",
+ "肛肠 科",
+ "有机 物",
+ "权威 性",
+ "存储 空间",
+ "g mail",
+ "客 机",
+ "机 组",
+ "头 盔",
+ "万 平方公里",
+ "逮 捕",
+ "连续 性",
+ "人 权",
+ "耐 克",
+ "身体 检查",
+ "扶 持",
+ "霸 主",
+ "绿 地",
+ "庭 院",
+ "跨 过",
+ "深 知",
+ "薯 片",
+ "这 群",
+ "一 勺",
+ "李 华",
+ "生产 商",
+ "他 来",
+ "法 治",
+ "有线 电视",
+ "干 事",
+ "党 员",
+ "组织 者",
+ "贯 彻",
+ "入 党",
+ "娱乐 活动",
+ "党 内",
+ "河 边",
+ "算 上",
+ "谦 虚",
+ "村 长",
+ "市 中心",
+ "伊 利",
+ "茅 台",
+ "艾 米",
+ "随机 变量",
+ "肛 肠",
+ "神经 功能",
+ "估 值",
+ "冒泡 排序",
+ "tr ing",
+ "数据 类型",
+ "旧 金山",
+ "永 生",
+ "本 篇",
+ "两 层",
+ "丧 生",
+ "松 懈",
+ "名 单",
+ "贴 着",
+ "站 队",
+ "数 最多",
+ "开 窗",
+ "通 络",
+ "托尔 金",
+ "欢 快",
+ "h ome",
+ "彼 得",
+ "比 利",
+ "演 唱",
+ "作曲 家",
+ "耀 眼",
+ "议 题",
+ "我 发",
+ "精 简",
+ "女孩 儿",
+ "采 摘",
+ "日 剧",
+ "纸 质",
+ "并 打印",
+ "俄 语",
+ "柜 员",
+ "格 子",
+ "分 部",
+ "一 波",
+ "克 里斯",
+ "克里 斯",
+ "瑞 德",
+ "费 城",
+ "约 翰",
+ "罗 杰",
+ "洛 夫",
+ "马 里奥",
+ "马里 奥",
+ "泰 勒",
+ "防寒 保暖",
+ "缩 放",
+ "持 仓",
+ "专科 医生",
+ "偏 激",
+ "爹 妈",
+ "社交 活动",
+ "追 捧",
+ "表现 出色",
+ "关键 因素",
+ "浙 大",
+ "班 长",
+ "病 魔",
+ "花钱 买",
+ "清洁 卫生",
+ "引 产",
+ "赠 与",
+ "有 车",
+ "网 盘",
+ "之 家",
+ "技术 支持",
+ "加 持",
+ "赫 拉",
+ "萃 取",
+ "草本 植物",
+ "旗舰 店",
+ "新华 社",
+ "电池 板",
+ "该 车",
+ "烈 日",
+ "女 宝",
+ "外 婆",
+ "H IV",
+ "临床 试验",
+ "下 层",
+ "龙 葵",
+ "路 况",
+ "卧 底",
+ "G B",
+ "探 究",
+ "零售 商",
+ "重 现",
+ "隔 开",
+ "税 前",
+ "人民 政府",
+ "住 所",
+ "警 方",
+ "身 亡",
+ "清华 北大",
+ "清 华",
+ "禾 本科",
+ "作 词",
+ "作 曲",
+ "月 薪",
+ "y 1",
+ "卫生 纸",
+ "抽 动",
+ "我 先",
+ "从业 人员",
+ "次 方",
+ "骨 干",
+ "彗 星",
+ "后 退",
+ "并 会",
+ "人 脉",
+ "崩 塌",
+ "战 时",
+ "辞 退",
+ "文 学家",
+ "文学 家",
+ "激动 人心",
+ "教育 家",
+ "认 错",
+ "情 怀",
+ "静 谧",
+ "好 书",
+ "咖啡 杯",
+ "伤 感",
+ "很久 很久",
+ "生命 体",
+ "安 娜",
+ "哭 泣",
+ "重 逢",
+ "安 逸",
+ "全 队",
+ "犯 规",
+ "基 数",
+ "自 习",
+ "民 工",
+ "碰 触",
+ "提示 音",
+ "购 票",
+ "绝 非",
+ "荒 唐",
+ "本 省",
+ "充分 考虑",
+ "及 格",
+ "教育 学",
+ "历 史学",
+ "历史 学",
+ "三 门",
+ "外 国语",
+ "外国 语",
+ "本科 生",
+ "评 审",
+ "山 里",
+ "夏 至",
+ "上 时",
+ "黑龙江 省",
+ "季 军",
+ "一 字",
+ "馅 饼",
+ "水 库",
+ "精 明",
+ "不 如意",
+ "不如 意",
+ "平 平",
+ "演 艺",
+ "园 艺",
+ "艾 灸",
+ "S FC",
+ "SF C",
+ "招 人",
+ "这 行",
+ "降 低成本",
+ "降低 成本",
+ "句 号",
+ "废 水",
+ "服务 提供商",
+ "经济 危机",
+ "商业 模式",
+ "首 任",
+ "出 任",
+ "中小 企业",
+ "硅 谷",
+ "风险 投资",
+ "马 云",
+ "商 学院",
+ "高度 评价",
+ "大阪 府",
+ "富士 山",
+ "九 州",
+ "新 宿",
+ "植 发",
+ "发 凉",
+ "抗菌 素",
+ "动脉 瘤",
+ "这 批",
+ "首 歌曲",
+ "首歌 曲",
+ "英文 版",
+ "j e",
+ "d e",
+ "p our",
+ "po ur",
+ "v al",
+ "va l",
+ "e l",
+ "v an",
+ "va n",
+ "女 歌手",
+ "萧 条",
+ "18 99",
+ "一 封信",
+ "一封 信",
+ "乐 队",
+ "店 员",
+ "乞 丐",
+ "举 措",
+ "参 议员",
+ "参议 员",
+ "矮 小",
+ "集中 营",
+ "直 译",
+ "弹 奏",
+ "访 客",
+ "为 生",
+ "基督 徒",
+ "犹太 人",
+ "信 托",
+ "音乐 会",
+ "歌 剧",
+ "资格 考试",
+ "从 大到",
+ "内 壁",
+ "磁 铁",
+ "唇 膏",
+ "喷 发",
+ "脚本 语言",
+ "洞 察",
+ "洞察 力",
+ "零售 业",
+ "衬 衣",
+ "满足 感",
+ "营 运",
+ "乐 于",
+ "制 服",
+ "不 料",
+ "大 牛",
+ "年 仅",
+ "物 资",
+ "评 级",
+ "历史 数据",
+ "看得 出来",
+ "看得出 来",
+ "不可 否认",
+ "人 渣",
+ "脾 脏",
+ "上述 情况",
+ "单 人",
+ "重 塑",
+ "重 构",
+ "画 质",
+ "兰 花",
+ "驱 动力",
+ "驱动 力",
+ "第 一本",
+ "第一 本",
+ "N o",
+ "教育 局",
+ "湿 气",
+ "较 佳",
+ "集 结",
+ "蟑 螂",
+ "纸 巾",
+ "自然 风光",
+ "漩 涡",
+ "满满 的",
+ "骑 车",
+ "王 明",
+ "外交 部",
+ "名 誉",
+ "灭 菌",
+ "保持 稳定",
+ "学 堂",
+ "学 分",
+ "处 分",
+ "第 一季",
+ "第一 季",
+ "遇 难",
+ "零 下",
+ "降雨 量",
+ "话 剧",
+ "麻辣 烫",
+ "矢 量",
+ "土 星",
+ "一 排",
+ "多 任务",
+ "特征 值",
+ "装 载",
+ "拼 接",
+ "污 渍",
+ "拖 动",
+ "测试 数据",
+ "经营 者",
+ "菜 品",
+ "抒 情",
+ "他 于",
+ "德 里",
+ "前 身",
+ "弹 力",
+ "1 42",
+ "14 2",
+ "造 谣",
+ "攀 爬",
+ "风 力",
+ "滑 动",
+ "神 学",
+ "科 大",
+ "涂 层",
+ "保 安",
+ "国 道",
+ "采 样",
+ "出 家",
+ "急 忙",
+ "德 尔",
+ "第二 阶段",
+ "酸 钠",
+ "间质 性",
+ "尿 路",
+ "软件 工程",
+ "老 兵",
+ "苏 宁",
+ "路 段",
+ "肾 小球",
+ "潜 血",
+ "低 盐",
+ "模拟 器",
+ "任 天堂",
+ "历 年",
+ "基 调",
+ "谷 丙",
+ "肌 酐",
+ "灯 笼",
+ "落 日",
+ "数 千年",
+ "数千 年",
+ "久 远",
+ "指示 灯",
+ "简 短",
+ "雷 诺",
+ "英 美",
+ "江西 省",
+ "矫 情",
+ "神 舟",
+ "升 空",
+ "捕捉 到",
+ "航 天",
+ "载 人",
+ "搜 救",
+ "邮箱 地址",
+ "观 光",
+ "天气 情况",
+ "出 为",
+ "波 浪",
+ "掌 控",
+ "自制 力",
+ "知 情",
+ "沥 干",
+ "裁 剪",
+ "游戏 机",
+ "封 锁",
+ "总 经理",
+ "纹 身",
+ "示 威",
+ "家 门口",
+ "家门 口",
+ "搬 到",
+ "AP P",
+ "开 局",
+ "镇 上",
+ "菜 市场",
+ "中 方",
+ "两 道",
+ "谷 歌",
+ "胜 出",
+ "所 选",
+ "普拉 提",
+ "柔 韧性",
+ "自 慰",
+ "c d",
+ "无 可",
+ "变 焦",
+ "取 景",
+ "阴 天",
+ "四 代",
+ "新 华",
+ "为 界",
+ "耻 骨",
+ "1 36",
+ "13 6",
+ "行 省",
+ "治 所",
+ "强 盗",
+ "复 兴",
+ "慷 慨",
+ "一代 人",
+ "凝聚 力",
+ "得 主",
+ "比 作",
+ "深 邃",
+ "鬼 神",
+ "奉 天",
+ "浪漫 主义",
+ "横 跨",
+ "心 血",
+ "二 十年",
+ "二十 年",
+ "言论 自由",
+ "梵 高",
+ "表达 方式",
+ "日 食",
+ "填 补",
+ "迷 失",
+ "欢乐 颂",
+ "采取 行动",
+ "b b",
+ "富 人",
+ "寿 险",
+ "初 试",
+ "牌 照",
+ "人工 神经网络",
+ "特征 提取",
+ "神经 网络",
+ "北 大",
+ "纠 错",
+ "大 象",
+ "拆 线",
+ "药 敏",
+ "分 型",
+ "慢性 肾炎",
+ "城市 居民",
+ "着重 于",
+ "嘶 哑",
+ "声 带",
+ "奖 项",
+ "中 环",
+ "金融 中心",
+ "今年 夏天",
+ "犯 法",
+ "化 简",
+ "相似 性",
+ "不同 点",
+ "遗 尿",
+ "体 操",
+ "不 提",
+ "五 官",
+ "热 锅",
+ "虫 草",
+ "爵 位",
+ "收 养",
+ "顺 治",
+ "礼 部",
+ "再 三",
+ "沿 途",
+ "散 播",
+ "册 封",
+ "吹 嘘",
+ "十 四年",
+ "十四 年",
+ "卡 特",
+ "自 营",
+ "兽 医",
+ "三 家",
+ "新 干线",
+ "铁 道",
+ "一个 半",
+ "算 作",
+ "范 式",
+ "啥 时候",
+ "博 主",
+ "大 阪",
+ "关 东",
+ "下 辖",
+ "纽约 州",
+ "河 口",
+ "布 朗",
+ "纽约 市",
+ "首 相",
+ "塔 桥",
+ "金融 业",
+ "首 府",
+ "神 户",
+ "此 地",
+ "go ing",
+ "高 管",
+ "增 量",
+ "投 行",
+ "年 报",
+ "财 报",
+ "剧场 版",
+ "广告 公司",
+ "若干 个",
+ "流畅 性",
+ "紧张 感",
+ "错误 率",
+ "节 操",
+ "突发 性",
+ "认知 度",
+ "原 画",
+ "20 16",
+ "201 6",
+ "咨询 师",
+ "法 是",
+ "软件 测试",
+ "养 狗",
+ "捕 鱼",
+ "繁 衍",
+ "鲸 鱼",
+ "北极 熊",
+ "鳞 片",
+ "入门 级",
+ "尼 康",
+ "画 幅",
+ "医疗 器械",
+ "异 同",
+ "共同 点",
+ "察觉 到",
+ "逆 袭",
+ "麦 田",
+ "凸 起",
+ "布 雷",
+ "犯 病",
+ "幽 门",
+ "螺旋 杆菌",
+ "先 放",
+ "特殊 字符",
+ "道 家",
+ "高 薪",
+ "南 亚",
+ "历史 学家",
+ "历史学 家",
+ "公 尺",
+ "汉 朝",
+ "北 伐",
+ "天 大",
+ "不敢 相信",
+ "此 基础",
+ "跑 过来",
+ "专业 技能",
+ "二 线",
+ "评 测",
+ "很 感兴趣",
+ "半 场",
+ "哈 哈哈哈",
+ "哈哈 哈哈",
+ "哈哈哈 哈",
+ "西 接",
+ "探 寻",
+ "大 业",
+ "三 等",
+ "生产 方式",
+ "追 寻",
+ "屈 原",
+ "雍 正",
+ "嘉 庆",
+ "道 光",
+ "孕 育",
+ "刻 画",
+ "植 被",
+ "空气 质量",
+ "丢 脸",
+ "竞 选",
+ "占 卜",
+ "史 学",
+ "长 年",
+ "私 企",
+ "没 带",
+ "街 区",
+ "章 程",
+ "新 品",
+ "相 匹配",
+ "有 太大",
+ "暴 雨",
+ "大 雨",
+ "几 件",
+ "萌 萌",
+ "恐怖 片",
+ "纪 律",
+ "不 甘",
+ "最 难",
+ "很 惨",
+ "上 阵",
+ "路 灯",
+ "海 风",
+ "离 别",
+ "天 水",
+ "清 净",
+ "倒 地",
+ "万 年",
+ "一 脚",
+ "尿 痛",
+ "偶 遇",
+ "梅 西",
+ "切 尔",
+ "起 名",
+ "概 论",
+ "教学 方法",
+ "童 鞋",
+ "明 文",
+ "派 对",
+ "海 贼",
+ "马 术",
+ "筹 建",
+ "上 校",
+ "进 修",
+ "公 关",
+ "暴 涨",
+ "显 性",
+ "合 理性",
+ "合理 性",
+ "最 坏",
+ "树 枝",
+ "中 医药",
+ "中医 药",
+ "手 球",
+ "资本 家",
+ "传 销",
+ "这 帮",
+ "科 长",
+ "两 千",
+ "小 强",
+ "反 潜",
+ "核 潜艇",
+ "孩 童",
+ "皮脂 腺",
+ "教学 楼",
+ "篮 球场",
+ "篮球 场",
+ "橡 树",
+ "棒 子",
+ "民族 主义",
+ "核 弹",
+ "硬 伤",
+ "pr int",
+ "社会 保障",
+ "左右 两个",
+ "二 期",
+ "专 属",
+ "di v",
+ "毒 蛇",
+ "追 击",
+ "上 楼",
+ "跳 过",
+ "清明 节",
+ "预 报",
+ "台 风",
+ "晴 天",
+ "坠 胀",
+ "痛 点",
+ "面 饼",
+ "股 本",
+ "总 公司",
+ "通过 观察",
+ "进一步 提高",
+ "上 游",
+ "机 枪",
+ "滑 板",
+ "枪 管",
+ "移 交",
+ "人大 代表",
+ "手机 游戏",
+ "校 对",
+ "动车 组",
+ "日 内",
+ "这 为",
+ "泡 澡",
+ "七 日",
+ "泡 面",
+ "杠 铃",
+ "踢 足球",
+ "伪 装",
+ "电 网",
+ "城市 规划",
+ "设计 院",
+ "前 缀",
+ "十 岁",
+ "文化 差异",
+ "反 差",
+ "十 多年",
+ "车 手",
+ "直径 约",
+ "小 脑",
+ "存 货",
+ "账 款",
+ "管理 层",
+ "J S",
+ "糖 果",
+ "模特 儿",
+ "广州 市",
+ "转 基因",
+ "这 两点",
+ "心 室",
+ "幽 灵",
+ "领 主",
+ "契 约",
+ "逻辑 推理",
+ "大 厂",
+ "R PG",
+ "统计 数据",
+ "画 师",
+ "人 设",
+ "剧 作家",
+ "嚣 张",
+ "c all",
+ "幽默 感",
+ "物 语",
+ "全 职",
+ "锁 骨",
+ "预 估",
+ "阿 里",
+ "几 首",
+ "金曲 奖",
+ "海 豚",
+ "专用 发票",
+ "第 五天",
+ "第五 天",
+ "卵巢 癌",
+ "性 早熟",
+ "肠 癌",
+ "更 多地",
+ "哪些 因素",
+ "万 名",
+ "六 天",
+ "曾 一度",
+ "瘦 下来",
+ "轴 承",
+ "一 局",
+ "收入 水平",
+ "延 安",
+ "专 攻",
+ "华 裔",
+ "加州 大学",
+ "抽 风",
+ "该 文",
+ "输卵管 炎",
+ "脓 液",
+ "ex ample",
+ "泰 坦",
+ "热带 雨林",
+ "种族 歧视",
+ "自由 主义",
+ "游 行",
+ "9 11",
+ "91 1",
+ "已 故",
+ "市场 调研",
+ "民 营",
+ "企 划",
+ "品牌 形象",
+ "夏 洛特",
+ "男 爵",
+ "揭 露",
+ "朗 德",
+ "儿 时",
+ "囚 犯",
+ "岸 边",
+ "吸 氧",
+ "流感 病毒",
+ "美 剧",
+ "查 出来",
+ "查出 来",
+ "租 借",
+ "癌 肿",
+ "放 疗",
+ "免疫 治疗",
+ "中医 中药",
+ "腹 水",
+ "视 神经",
+ "追 星",
+ "汽 水",
+ "洗 衣服",
+ "洗衣 服",
+ "方 正",
+ "一致 性",
+ "博士 学位",
+ "社会 科学",
+ "调查 报告",
+ "出版 物",
+ "社会 学",
+ "政治 学",
+ "几 十个",
+ "几十 个",
+ "计算机 程序",
+ "左 翼",
+ "I C",
+ "续 航",
+ "拆 分",
+ "贩 卖",
+ "摸 摸",
+ "欧 冠",
+ "羞 辱",
+ "琥 珀",
+ "博士 后",
+ "布 拉",
+ "1 16",
+ "11 6",
+ "自然 灾害",
+ "加 粗",
+ "猫 科",
+ "猫科 动物",
+ "食 者",
+ "爬行 动物",
+ "有 功",
+ "唐 诗",
+ "第 一期",
+ "第一 期",
+ "七 岁",
+ "庄 子",
+ "分隔 符",
+ "脑 损伤",
+ "脑 水肿",
+ "攻击 者",
+ "英国 伦敦",
+ "天文 台",
+ "原 址",
+ "微 粒",
+ "拍 打",
+ "同 义",
+ "O ne",
+ "On e",
+ "大奖 赛",
+ "经济 学家",
+ "经济学 家",
+ "理财 产品",
+ "螺 杆菌",
+ "千 金",
+ "引 致",
+ "浓 烈",
+ "电动 牙刷",
+ "a 1",
+ "无意 间",
+ "某 次",
+ "一 科",
+ "少量 多餐",
+ "芋 头",
+ "胸 骨",
+ "系统 地",
+ "肌 群",
+ "高 昂",
+ "理论 知识",
+ "素 描",
+ "肠 梗阻",
+ "信息 技术",
+ "监 护",
+ "计算机 软件",
+ "推 导",
+ "沸 点",
+ "半 导体",
+ "海 浪",
+ "网络 营销",
+ "可 逆",
+ "攻 破",
+ "空气 污染",
+ "标 点",
+ "护卫 舰",
+ "R GB",
+ "基本 原理",
+ "口 琴",
+ "三 生",
+ "深入 探讨",
+ "彰 显",
+ "点 名",
+ "品牌 价值",
+ "媒体 广告",
+ "检 索",
+ "产品 开发",
+ "销售 策略",
+ "当 回事",
+ "插 曲",
+ "代 数",
+ "甲状腺 癌",
+ "武 术",
+ "复 出",
+ "以 备",
+ "状 语",
+ "e very",
+ "分 词",
+ "三 只",
+ "1 75",
+ "17 5",
+ "特种 部队",
+ "朴 素",
+ "旗 号",
+ "程序 员",
+ "支持 者",
+ "毁 掉",
+ "程序 代码",
+ "制定 者",
+ "8 48",
+ "84 8",
+ "亚 当",
+ "全 天",
+ "批 判",
+ "康 德",
+ "难 懂",
+ "雨 果",
+ "可读 性",
+ "霍 金",
+ "一 读",
+ "禁 酒",
+ "踏 入",
+ "宿 命",
+ "hu man",
+ "监 禁",
+ "浮 现",
+ "祖 母",
+ "里 头",
+ "第三 届",
+ "历 届",
+ "涂 鸦",
+ "各个 领域",
+ "购买 力",
+ "搜 狐",
+ "译 作",
+ "利 亚",
+ "form at",
+ "排列 组合",
+ "日 间",
+ "柑橘 类",
+ "干 果",
+ "牡 丹",
+ "案 子",
+ "勒 布朗",
+ "遗传 学",
+ "c s",
+ "资本 主义",
+ "商品 价格",
+ "讲 台",
+ "草 根",
+ "高 学历",
+ "充 当",
+ "葱 姜",
+ "3 77",
+ "37 7",
+ "海 姆",
+ "泛 黄",
+ "建筑 材料",
+ "贝 克",
+ "尾 气",
+ "自然 资源",
+ "创业 板",
+ "两 届",
+ "咸 丰",
+ "18 61",
+ "获得 成功",
+ "西 南部",
+ "西南 部",
+ "河 内",
+ "19 15",
+ "全 省",
+ "电视 节目",
+ "流 媒体",
+ "因 数",
+ "海拔 高度",
+ "障碍 性",
+ "阿拉伯 数字",
+ "顺序 排列",
+ "荣 幸",
+ "19 01",
+ "190 1",
+ "剖 析",
+ "e n",
+ "恩 爱",
+ "干 细胞",
+ "li ne",
+ "精 索",
+ "硬 是",
+ "住 户",
+ "亲密 关系",
+ "治 不好",
+ "交 由",
+ "卢 卡斯",
+ "爆 料",
+ "本 作",
+ "拉 扯",
+ "顺 带",
+ "min i",
+ "提问 者",
+ "生活 品质",
+ "第 二期",
+ "第二 期",
+ "合唱 团",
+ "综 艺",
+ "赛 区",
+ "总 决赛",
+ "巡 演",
+ "传输 数据",
+ "直 流",
+ "学 徒",
+ "一步 步",
+ "线 下",
+ "三 甲",
+ "分 值",
+ "篮球 比赛",
+ "入 球",
+ "河 道",
+ "19 71",
+ "V R",
+ "表 单",
+ "剔 除",
+ "虐 待",
+ "伤 及",
+ "植 入",
+ "士 官",
+ "政 变",
+ "眼 界",
+ "没 敢",
+ "入 境",
+ "苦 味",
+ "溢 价",
+ "比 萨",
+ "馅 料",
+ "烤 制",
+ "矿 工",
+ "转 战",
+ "资格 赛",
+ "主 帅",
+ "基 友",
+ "松 鼠",
+ "横 滨",
+ "0 29",
+ "02 9",
+ "福 冈",
+ "釜 山",
+ "供 养",
+ "令 得",
+ "机器 翻译",
+ "聚 合",
+ "安全 漏洞",
+ "转 正",
+ "买 买",
+ "雌 性",
+ "肺 泡",
+ "血 象",
+ "19 34",
+ "财务 状况",
+ "投资 决策",
+ "可用 性",
+ "前 任",
+ "美国 国会",
+ "心 智",
+ "导 图",
+ "托 尼",
+ "思维 过程",
+ "非 线性",
+ "pr ice",
+ "CP A",
+ "副 教授",
+ "专 长",
+ "风险 管理",
+ "税 法",
+ "批 复",
+ "聊 着",
+ "很 穷",
+ "月 入",
+ "转折 点",
+ "北 非",
+ "独立 战争",
+ "逃 亡",
+ "帕 拉",
+ "活 儿",
+ "19 38",
+ "活 下去",
+ "警察 局",
+ "人 质",
+ "加 西亚",
+ "发源 地",
+ "行政 区域",
+ "行政区 域",
+ "普 里",
+ "塔 克",
+ "该 市",
+ "总 督",
+ "奥 德",
+ "特 里",
+ "一 届",
+ "恐怖 分子",
+ "修正 案",
+ "拉 美",
+ "阅 兵",
+ "任意 球",
+ "1 90",
+ "19 0",
+ "弗 雷",
+ "尼 奥",
+ "哈 特",
+ "抨 击",
+ "执 行者",
+ "执行 者",
+ "当 期",
+ "推 送",
+ "微 信",
+ "纠 葛",
+ "报 案",
+ "咳 咳",
+ "上 万",
+ "卖 萌",
+ "暹 罗",
+ "挑战 性",
+ "万 岁",
+ "参考 价值",
+ "类 比",
+ "拉 面",
+ "润 色",
+ "外 卖",
+ "小 产",
+ "反 派",
+ "太 早",
+ "拜 堂",
+ "典 礼",
+ "领 证",
+ "安 卓",
+ "福建 省",
+ "关键 作用",
+ "努力 学习",
+ "爱国 主义",
+ "保护 环境",
+ "职业 技能",
+ "传统 节日",
+ "广播 电视",
+ "表 彰",
+ "全 员",
+ "造 诣",
+ "凝 血",
+ "19 02",
+ "190 2",
+ "现 名",
+ "校 舍",
+ "象征 意义",
+ "论 点",
+ "名 言",
+ "修辞 手法",
+ "趣 事",
+ "空间 站",
+ "菊 科",
+ "大 河",
+ "分 级",
+ "柱 子",
+ "相 乘",
+ "梦 遗",
+ "送 达",
+ "项目 经理",
+ "稿 件",
+ "论 据",
+ "蒸汽 机",
+ "合 群",
+ "票 数",
+ "卡 车",
+ "永 乐",
+ "越 野",
+ "滑 雪",
+ "该 书",
+ "积极 向上",
+ "外科 医生",
+ "宝 马",
+ "学 区",
+ "锻 练",
+ "旅游 者",
+ "媒体 报道",
+ "太 晚",
+ "政 协",
+ "攻 占",
+ "荃 湾",
+ "混合 液",
+ "鲨 鱼",
+ "夸 奖",
+ "两者 之间",
+ "因果 关系",
+ "放 化疗",
+ "中 亚",
+ "联 军",
+ "汗 国",
+ "基 辅",
+ "翻 唱",
+ "d f",
+ "程序 运行",
+ "黄 绿色",
+ "退烧 药",
+ "西方 人",
+ "抵 触",
+ "白 宫",
+ "京 东",
+ "十 位数",
+ "十位 数",
+ "连锁 店",
+ "职业 生涯",
+ "拉 里",
+ "瓦 拉",
+ "时 态",
+ "we b",
+ "映 射",
+ "S tring",
+ "e x",
+ "for m",
+ "虚拟 机",
+ "自 负",
+ "信 不信",
+ "薪 酬",
+ "哪些 地方",
+ "书 信",
+ "院 士",
+ "期 权",
+ "军 区",
+ "水 分子",
+ "水分 子",
+ "原 发",
+ "量子 力学",
+ "物理 系",
+ "干 酪",
+ "小 肚子",
+ "南 阳",
+ "地 主",
+ "关 西",
+ "数 十",
+ "今 属",
+ "官 僚",
+ "汲 取",
+ "二 十一年",
+ "二十 一年",
+ "二十一 年",
+ "病 逝",
+ "既 定",
+ "量 子",
+ "原 子弹",
+ "原子 弹",
+ "完 事",
+ "好 意思",
+ "温 州",
+ "干 货",
+ "底 气",
+ "ex o",
+ "天 前",
+ "19 25",
+ "帝国 主义",
+ "19 32",
+ "一 时期",
+ "一时 期",
+ "高 音",
+ "调查 结果",
+ "详 尽",
+ "讲 座",
+ "备 考",
+ "顺 风",
+ "宝 玉",
+ "西 区",
+ "西 岸",
+ "血管 炎",
+ "口腔 癌",
+ "结核 性",
+ "声 响",
+ "宙 斯",
+ "尊 称",
+ "里 斯",
+ "奥 利",
+ "早 熟",
+ "笔 触",
+ "方 才",
+ "冗 长",
+ "卑 微",
+ "光 年",
+ "原 作",
+ "水 能",
+ "地 下水",
+ "地下 水",
+ "汇 入",
+ "沙特 阿拉伯",
+ "约 旦",
+ "陕西 省",
+ "热 身",
+ "故 宫",
+ "高 智商",
+ "静 静",
+ "大 乘",
+ "教 义",
+ "并 于",
+ "三 观",
+ "全国 性",
+ "奥 秘",
+ "高 下",
+ "在 世",
+ "门 下",
+ "学 系",
+ "佛 学",
+ "资产 阶级",
+ "生 母",
+ "双 十",
+ "留 学生",
+ "留学 生",
+ "袋 鼠",
+ "飞 舞",
+ "摇滚 乐",
+ "真人 秀",
+ "正确 性",
+ "生物 医学",
+ "同 为",
+ "围 着",
+ "大 坑",
+ "膜 炎",
+ "镜 片",
+ "押 韵",
+ "美 团",
+ "前 作",
+ "复 旦",
+ "面 糊",
+ "浮 躁",
+ "满 脸",
+ "库 中",
+ "配 不上",
+ "退 伍",
+ "台湾 人",
+ "第二 段",
+ "拆 解",
+ "足 球场",
+ "足球 场",
+ "三 名",
+ "路 子",
+ "大 炮",
+ "自 卫",
+ "更 多人",
+ "北 斗",
+ "绝 妙",
+ "倒 塌",
+ "镇痛 药",
+ "减 法",
+ "最 重",
+ "杂 音",
+ "该 游戏",
+ "S SD",
+ "SS D",
+ "旁 白",
+ "离 线",
+ "数据 表",
+ "市 级",
+ "社 长",
+ "创 刊",
+ "创 办",
+ "时 任",
+ "所 写",
+ "富 士",
+ "自我 介绍",
+ "世界 大战",
+ "掏 钱",
+ "l ol",
+ "空 缺",
+ "19 66",
+ "岛 国",
+ "情 歌",
+ "纪念 馆",
+ "年 于",
+ "凯 撒",
+ "大 赏",
+ "提 名",
+ "角 逐",
+ "放 送",
+ "该 剧",
+ "无线 电视",
+ "无线电 视",
+ "享 年",
+ "辩 护",
+ "亲 子",
+ "铭 记",
+ "月 饼",
+ "中秋 节",
+ "迈 向",
+ "音 符",
+ "完 蛋",
+ "高 铁",
+ "盎 司",
+ "纾 解",
+ "止痛 药",
+ "并 购",
+ "外 包",
+ "售 卖",
+ "出 其",
+ "各有 不同",
+ "之 路",
+ "基 督",
+ "三 体",
+ "平衡 点",
+ "二 元",
+ "几千 块",
+ "发 物",
+ "插 进",
+ "硅 胶",
+ "is very",
+ "f it",
+ "翻 盘",
+ "对 接",
+ "两 篇",
+ "o dd",
+ "社会 福利",
+ "这 组",
+ "报 社",
+ "占 位",
+ "幕 后",
+ "交通 工具",
+ "救 赎",
+ "S tep",
+ "语 种",
+ "肾 积水",
+ "p ng",
+ "贝 拉",
+ "分解 成",
+ "古 风",
+ "诺 贝尔",
+ "三 座",
+ "击 球",
+ "首 部",
+ "雅 克",
+ "陆 上",
+ "1 22",
+ "12 2",
+ "售 出",
+ "娱乐 圈",
+ "叮 嘱",
+ "刺 猬",
+ "概 要",
+ "新 意",
+ "西 欧",
+ "理事 会",
+ "就 任",
+ "卸 任",
+ "德 国人",
+ "德国 人",
+ "除 法",
+ "非 正式",
+ "下 设",
+ "盟 军",
+ "削 减",
+ "俄罗斯 联邦",
+ "题 为",
+ "第 五次",
+ "第五 次",
+ "阻滞 剂",
+ "草 图",
+ "唐 僧",
+ "组 中",
+ "ex am",
+ "助 力",
+ "赘 述",
+ "最 常",
+ "推断 出",
+ "水 瓶",
+ "伴 奏",
+ "瑞 克",
+ "小孩 儿",
+ "下 标",
+ "被动 语态",
+ "学 妹",
+ "咨询 服务",
+ "选 修",
+ "自 恋",
+ "涉 足",
+ "18 95",
+ "社会 关系",
+ "走 红",
+ "剧 团",
+ "剧 组",
+ "幸福 感",
+ "外 星",
+ "蔷 薇",
+ "写 实",
+ "整 部",
+ "o p",
+ "超 能力",
+ "摧 残",
+ "声 优",
+ "民 意",
+ "主 旨",
+ "恶 搞",
+ "男 主",
+ "美人 鱼",
+ "太 郎",
+ "直 面",
+ "移 居",
+ "期 满",
+ "庐 山",
+ "市场 份额",
+ "个人 电脑",
+ "霍 尔",
+ "病 理学",
+ "病理 学",
+ "大 佬",
+ "I V",
+ "替 换成",
+ "替换 成",
+ "海 豹",
+ "多 夫",
+ "耶 稣",
+ "快 车",
+ "警 官",
+ "师范 学院",
+ "橙 汁",
+ "杜 鹃",
+ "分类 法",
+ "花 盆",
+ "网 文",
+ "保证 数据",
+ "保持 清洁",
+ "站 名",
+ "住院 治疗",
+ "师范 学校",
+ "E l",
+ "社交 能力",
+ "及 后",
+ "例 行",
+ "平衡 性",
+ "音 高",
+ "防 疫",
+ "胃 里",
+ "农 作物",
+ "物理 量",
+ "安全 带",
+ "可 控",
+ "鱼 体",
+ "竹 林",
+ "原 图",
+ "高 额",
+ "生 计",
+ "归 宿",
+ "日 式",
+ "方便 快捷",
+ "归属 感",
+ "前 妻",
+ "之 差",
+ "没 退",
+ "溶 血",
+ "金 曲",
+ "主 办",
+ "男 歌手",
+ "开发 新",
+ "牛肉 面",
+ "三 元",
+ "以下 内容",
+ "胸 片",
+ "前 言",
+ "产品 设计",
+ "交互 式",
+ "产品 线",
+ "交互 性",
+ "书 画",
+ "不 容",
+ "满 族",
+ "中 信",
+ "侦 查",
+ "候选 人",
+ "会 面",
+ "指 控",
+ "凯 尔",
+ "凯 文",
+ "报 仇",
+ "开 枪",
+ "悲 痛",
+ "兴奋 剂",
+ "病 患",
+ "疑 似",
+ "演艺 圈",
+ "果 子",
+ "公 社",
+ "刀 片",
+ "链 表",
+ "国 立",
+ "晋 国",
+ "先 秦",
+ "凸 显",
+ "莱 德",
+ "悬 疑",
+ "孤 岛",
+ "黄金 时代",
+ "集 群",
+ "军 方",
+ "隶 属于",
+ "隶属 于",
+ "非常 重视",
+ "一 查",
+ "晚 睡",
+ "每 行",
+ "蒙 特",
+ "商 户",
+ "联 动",
+ "生命 科学",
+ "原 句",
+ "To day",
+ "乐 天",
+ "错 失",
+ "声 母",
+ "点 头",
+ "U A",
+ "尿 蛋白",
+ "交通 管理",
+ "配 角",
+ "最高 人民法院",
+ "隔 阂",
+ "尿 床",
+ "i phone",
+ "该 省",
+ "司法 考试",
+ "约翰 逊",
+ "误 判",
+ "19 18",
+ "19 22",
+ "民国 时期",
+ "公 车",
+ "世 代",
+ "花 式",
+ "特 权",
+ "湖 广",
+ "水上 运动",
+ "河 谷",
+ "地 貌",
+ "骑 行",
+ "移 步",
+ "太平洋 区",
+ "现 为",
+ "丘 陵",
+ "影视 作品",
+ "毗 邻",
+ "大 抵",
+ "日 于",
+ "经典 电影",
+ "美国 作家",
+ "米 勒",
+ "伊 斯",
+ "改编 自",
+ "格 拉",
+ "尔 巴",
+ "小说 家",
+ "巴黎 圣母院",
+ "诺 斯",
+ "广 岛",
+ "五 世",
+ "斯 坦",
+ "小 王子",
+ "小王 子",
+ "艾米 莉",
+ "威 尔斯",
+ "威尔 斯",
+ "尼 尔",
+ "密 室",
+ "罗 琳",
+ "西 游记",
+ "西游 记",
+ "大 衣",
+ "运 河",
+ "18 80",
+ "克 莱",
+ "19 14",
+ "驻 扎",
+ "家 境",
+ "一棵 树",
+ "三 期",
+ "加密 技术",
+ "no de",
+ "启 蒙",
+ "隋 朝",
+ "牛津 大学",
+ "市 长",
+ "福利 待遇",
+ "便利 性",
+ "数据 挖掘",
+ "城 乡",
+ "排 挤",
+ "合 规",
+ "吃 海鲜",
+ "多囊 肾",
+ "展 出",
+ "小 林",
+ "缺 席",
+ "弗 里",
+ "犬 科",
+ "本 部",
+ "医学 影像",
+ "颅 脑",
+ "多 部",
+ "加速 器",
+ "无 缝",
+ "拓 宽",
+ "髋 关节",
+ "市政 厅",
+ "施 加",
+ "富 豪",
+ "和 服",
+ "退 热",
+ "闪 存",
+ "18 94",
+ "直 隶",
+ "提 督",
+ "队 列",
+ "右 翼",
+ "总 兵",
+ "骑 着",
+ "进 出口",
+ "进出 口",
+ "曲 目",
+ "p m",
+ "闹 钟",
+ "日程 表",
+ "Wi Fi",
+ "扭 伤",
+ "主观 性",
+ "编写 程序",
+ "pr o",
+ "奇 点",
+ "暗 物质",
+ "星 系",
+ "分 句",
+ "贬 义",
+ "重复 性",
+ "渐 变",
+ "建筑 学",
+ "大 名",
+ "观 影",
+ "肾盂 肾炎",
+ "利尿 剂",
+ "乳头 状",
+ "肾 盂",
+ "再次 发生",
+ "膀胱 癌",
+ "国 共",
+ "捍 卫",
+ "高 血糖",
+ "展 会",
+ "存储 容量",
+ "加密 算法",
+ "前 庭",
+ "app end",
+ "麻 疹",
+ "马克思 主义",
+ "洗 脑",
+ "鼓 吹",
+ "C V",
+ "结 账",
+ "合 称",
+ "某 地",
+ "战国 时代",
+ "以 使",
+ "枪 击",
+ "驯 养",
+ "长 篇",
+ "译 本",
+ "马 匹",
+ "起 草",
+ "金融 风险",
+ "中央 银行",
+ "为 原",
+ "文章 内容",
+ "港 台",
+ "药 好",
+ "悠 闲",
+ "尾 鳍",
+ "海贼 王",
+ "助 词",
+ "建 制",
+ "浦 东",
+ "m i",
+ "中 北部",
+ "小 生",
+ "u m",
+ "历史 沿革",
+ "二 枚",
+ "考古 学",
+ "贾 母",
+ "文艺 复兴",
+ "现代 科学",
+ "地 层",
+ "万 年前",
+ "万年 前",
+ "印度 人",
+ "飞 弹",
+ "弹 幕",
+ "它 于",
+ "平均 水平",
+ "真 题",
+ "影视 剧",
+ "3 24",
+ "32 4",
+ "干 线",
+ "韩 式",
+ "次 列车",
+ "香港 大学",
+ "1 31",
+ "13 1",
+ "酋 长",
+ "伊 尔",
+ "普 京",
+ "v a",
+ "建筑 风格",
+ "巴 洛克",
+ "建筑 师",
+ "第 一座",
+ "第一 座",
+ "东 岸",
+ "伊斯 兰",
+ "管 控",
+ "p op",
+ "po p",
+ "交 汇",
+ "团 圆",
+ "编 曲",
+ "法 西斯",
+ "煽 动",
+ "意大利 语",
+ "统 帅",
+ "隧 道",
+ "b r",
+ "关联 性",
+ "西 德",
+ "总 冠军",
+ "濒 危",
+ "大 熊猫",
+ "种 群",
+ "生态 学",
+ "自然 生态",
+ "猎 杀",
+ "青海 省",
+ "电视 广告",
+ "性格 特征",
+ "机 智",
+ "羊 毛",
+ "啪 啪",
+ "哪 句",
+ "低 碳",
+ "海绵 体",
+ "罗马 数字",
+ "理 工科",
+ "理工 科",
+ "新闻 报道",
+ "先 有",
+ "算 式",
+ "但 凡",
+ "甘肃 省",
+ "饱和 度",
+ "可 选",
+ "小 游戏",
+ "祛 痰",
+ "爆 出",
+ "微 分",
+ "物理 学家",
+ "物理学 家",
+ "脊椎 动物",
+ "预 赛",
+ "吉 士",
+ "罗 宾",
+ "独 居",
+ "永 安",
+ "门 面",
+ "面 瘫",
+ "发言 人",
+ "不 退",
+ "彩 礼",
+ "台 独",
+ "盟 友",
+ "看 不上",
+ "一 块钱",
+ "一块 钱",
+ "回忆 录",
+ "校 外",
+ "辞 去",
+ "集 是",
+ "对 题",
+ "全 书",
+ "条 目",
+ "舍 友",
+ "先 发",
+ "根据 地",
+ "短 袖",
+ "随 著",
+ "标 杆",
+ "国 学",
+ "据 点",
+ "鸡 翅",
+ "深 思",
+ "年 入",
+ "大气 污染",
+ "荒 凉",
+ "弹 劾",
+ "举 出",
+ "剧 院",
+ "赫 敏",
+ "战 友",
+ "绝 佳",
+ "胶质 瘤",
+ "曾 任",
+ "接 替",
+ "遗 体",
+ "天气 炎热",
+ "石 墨",
+ "参与 者",
+ "冲 绳",
+ "增 肌",
+ "雇 用",
+ "发 文",
+ "胸 腺",
+ "礼 服",
+ "旗 袍",
+ "汉 服",
+ "展 品",
+ "这 所",
+ "选 区",
+ "圈子 里",
+ "魔术 师",
+ "赞 助",
+ "世界 大赛",
+ "瓦 尔",
+ "登 顶",
+ "球 门",
+ "爆 破",
+ "头孢 类",
+ "尔 德",
+ "渤 海",
+ "下 雨天",
+ "下雨 天",
+ "app le",
+ "计算机 系统",
+ "打 广告",
+ "鸡 血",
+ "信息 安全",
+ "革命 性",
+ "位 列",
+ "发 力",
+ "到 场",
+ "伏 笔",
+ "恐怖 袭击",
+ "营业 额",
+ "鲍 鱼",
+ "份 量",
+ "方法 论",
+ "肋 间",
+ "W i",
+ "联 队",
+ "损 毁",
+ "光 伏",
+ "发明 家",
+ "天 梯",
+ "相互 连接",
+ "不忍 心",
+ "童话 故事",
+ "笑 笑",
+ "几何 学",
+ "回忆 起",
+ "近 邻",
+ "人造 卫星",
+ "逼 近",
+ "登 月",
+ "航天 器",
+ "二 号",
+ "国 歌",
+ "高中 同学",
+ "通 车",
+ "高速 铁路",
+ "核 能",
+ "现 如今",
+ "场 均",
+ "练 字",
+ "守 望",
+ "通 胀",
+ "逍遥 丸",
+ "老 挝",
+ "凳 子",
+ "主题 公园",
+ "驻 守",
+ "福 祉",
+ "血压 高",
+ "剧 集",
+ "头 衔",
+ "字幕 组",
+ "软件 系统",
+ "生存 期",
+ "恶 露",
+ "控制 系统",
+ "饱 受",
+ "深入 研究",
+ "马 里",
+ "机 等",
+ "灵 异",
+ "差 评",
+ "门 店",
+ "小 鼠",
+ "肉 瘤",
+ "宫颈 癌",
+ "el f",
+ "贬 低",
+ "相 较",
+ "主 播",
+ "锋 利",
+ "追 溯",
+ "会 用",
+ "晕 车",
+ "彻底 消除",
+ "维 权",
+ "精神 疾病",
+ "贾 府",
+ "没 落",
+ "贾 宝玉",
+ "林 黛玉",
+ "缩 减",
+ "行动 计划",
+ "I S",
+ "亿 个",
+ "人类 学",
+ "h old",
+ "绑 架",
+ "领 队",
+ "金 门",
+ "会 有",
+ "tr ip",
+ "镇 江",
+ "背 书",
+ "音乐 作品",
+ "do c",
+ "碱 基",
+ "基因 组",
+ "递 给",
+ "小 猫咪",
+ "小猫 咪",
+ "草 稿",
+ "惊 艳",
+ "耳 光",
+ "惊 呆",
+ "跑 题",
+ "倒 计时",
+ "入 职",
+ "电影 票",
+ "肾 癌",
+ "牛 仔",
+ "京 剧",
+ "脑 残",
+ "低 俗",
+ "胡 歌",
+ "吃 货",
+ "跨 专业",
+ "先 不说",
+ "守望 者",
+ "打 麻将",
+ "图 是",
+ "武 大",
+ "每 张",
+ "19 65",
+ "年 出",
+ "签 下",
+ "常规 赛",
+ "维 奇",
+ "名人 堂",
+ "返回 值",
+ "探险 队",
+ "平 成",
+ "型 态",
+ "摔 倒",
+ "人 次",
+ "创新 性",
+ "多 难",
+ "转 行",
+ "潮 汕",
+ "回 族",
+ "参与 度",
+ "公司 总部",
+ "指南 针",
+ "乘 积",
+ "3.1 4",
+ "易 发",
+ "沙 哑",
+ "情 话",
+ "贝 格",
+ "水 稻",
+ "感受 一下",
+ "自 救",
+ "心 房",
+ "吞咽 困难",
+ "播放 列表",
+ "大 清",
+ "黑 猫",
+ "龙 珠",
+ "上 图",
+ "科幻 小说",
+ "知 县",
+ "冬 眠",
+ "明 治",
+ "交叉 学科",
+ "人工 智能",
+ "客户 关系",
+ "求 和",
+ "草 案",
+ "刚 上",
+ "灾 害",
+ "出 海",
+ "山 村",
+ "消费 品",
+ "淋巴 癌",
+ "餐 馆",
+ "摊 位",
+ "男 权",
+ "核心 思想",
+ "荒 谬",
+ "城 邦",
+ "中 南部",
+ "底 质",
+ "捕 捞",
+ "我 大",
+ "升 温",
+ "德 拉",
+ "说 不上",
+ "风 靡",
+ "可视 化",
+ "克 尔",
+ "顺 丰",
+ "功 利",
+ "贾 家",
+ "黛 玉",
+ "生 平",
+ "大 同",
+ "公共 服务",
+ "俗 名",
+ "公共 汽车",
+ "扑 克",
+ "微 调",
+ "极 地",
+ "发 球",
+ "台 南",
+ "钢琴 家",
+ "迁 至",
+ "理 工学院",
+ "理工 学院",
+ "助 教",
+ "19 05",
+ "190 5",
+ "19 09",
+ "190 9",
+ "布拉 格",
+ "母 校",
+ "大学 教授",
+ "查 理",
+ "纪念 碑",
+ "悖 论",
+ "素食 主义者",
+ "难 民",
+ "犹 太",
+ "罗 素",
+ "汉 斯",
+ "共和 党",
+ "选 票",
+ "蒂 诺",
+ "光 谱",
+ "二 十四年",
+ "二十 四年",
+ "二十四 年",
+ "兵 部",
+ "乡 试",
+ "会 试",
+ "祖 籍",
+ "侍 郎",
+ "文 集",
+ "长 文",
+ "皇 上",
+ "出 该",
+ "大 白",
+ "原子 核",
+ "双 打",
+ "警 示",
+ "蔷薇 科",
+ "灌 丛",
+ "生 物体",
+ "生物 体",
+ "大都 会",
+ "生态 旅游",
+ "武侠 小说",
+ "幸存 者",
+ "超 自然",
+ "4 K",
+ "猎 头",
+ "薪 水",
+ "胆囊 息肉",
+ "女神 像",
+ "教 徒",
+ "嘈 杂",
+ "腰 椎间盘",
+ "上 位",
+ "中 晚期",
+ "天王 星",
+ "斑 马",
+ "葡萄牙 语",
+ "阿拉伯 语",
+ "转 录",
+ "ta g",
+ "蒙古 国",
+ "提 案",
+ "分 治",
+ "半 边",
+ "保持 足够",
+ "高雄 市",
+ "政 党",
+ "捷 运",
+ "工业 生产",
+ "考 到",
+ "实现 目标",
+ "淡 定",
+ "天 朝",
+ "参议 院",
+ "行政 长官",
+ "投 身",
+ "莱 茵",
+ "入 伍",
+ "岔 开",
+ "此 文",
+ "z h",
+ "安 保",
+ "食管 癌",
+ "风 能",
+ "蜀 汉",
+ "经济 体",
+ "毁灭 性",
+ "大 喊",
+ "东 京都",
+ "东京 都",
+ "契 丹",
+ "社会 阶层",
+ "剑桥 大学",
+ "20 25",
+ "下 半场",
+ "下 架",
+ "匮 乏",
+ "闺 女",
+ "专业 术语",
+ "达尔 文",
+ "进化 论",
+ "爆 棚",
+ "市 政",
+ "烘 焙",
+ "波 尔",
+ "发展 史",
+ "网络 攻击",
+ "播 映",
+ "系列 赛",
+ "获奖 者",
+ "赛 艇",
+ "裁 定",
+ "银 牌",
+ "参赛 者",
+ "感谢 信",
+ "食道 癌",
+ "棋 手",
+ "蓬 松",
+ "表 征",
+ "拥 堵",
+ "视频 会议",
+ "吉 斯",
+ "数据 处理",
+ "复仇 者",
+ "巴 赫",
+ "计划 书",
+ "皇 子",
+ "达 尔",
+ "性 骚扰",
+ "h k",
+ "结构 化",
+ "再生 能源",
+ "m id",
+ "mi d",
+ "are a",
+ "准 决赛",
+ "宣传 片",
+ "南 洋",
+ "之 乱",
+ "人口 数量",
+ "蒙 古人",
+ "蒙古 人",
+ "鲜 卑",
+ "华 侨",
+ "无 序",
+ "冒 号",
+ "最 优",
+ "冷 笑",
+ "曲 风",
+ "前 台",
+ "拓 扑",
+ "数据 管理",
+ "包 养",
+ "干 过",
+ "学 霸",
+ "世界 纪录",
+ "蝙蝠 侠",
+ "灌 溉",
+ "听 闻",
+ "骨 转移",
+ "腺 癌",
+ "山 体",
+ "滑 坡",
+ "怎样 治",
+ "红烧 肉",
+ "生产 率",
+ "安 防",
+ "升 任",
+ "语 序",
+ "交通 系统",
+ "菜 式",
+ "酥 脆",
+ "政治 部",
+ "铁路 局",
+ "市 委",
+ "全 息",
+ "新闻 标题",
+ "文化 背景",
+ "创新 能力",
+ "吸 管",
+ "节 水",
+ "网 格",
+ "第 一组",
+ "第一 组",
+ "第二 组",
+ "雷 神",
+ "出 彩",
+ "披 萨",
+ "解剖 学",
+ "无 趣",
+ "邻 居家",
+ "邻居 家",
+ "彩 蛋",
+ "车 库",
+ "励 志",
+ "妹 子",
+ "18 76",
+ "副 局长",
+ "局 长",
+ "大 圣",
+ "二 维",
+ "虚拟 现实",
+ "水 污染",
+ "郑 爽",
+ "发明 者",
+ "混 沌",
+ "量 词",
+ "军 籍",
+ "沿 革",
+ "老 奶奶",
+ "天 文学",
+ "天文 学",
+ "超 新星",
+ "杜鹃 花",
+ "另 一组",
+ "射 箭",
+ "心理 学家",
+ "心理学 家",
+ "冰 球",
+ "b in",
+ "便携 式",
+ "主 攻",
+ "惊悚 片",
+ "爱情 片",
+ "凯 特",
+ "坐落 于",
+ "黑客 帝国",
+ "剧情 片",
+ "马 龙",
+ "科 举",
+ "获取 信息",
+ "洗 白",
+ "英文 单词",
+ "应聘 者",
+ "交互 方式",
+ "情 商",
+ "信息 处理",
+ "补 课",
+ "同 人",
+ "田 中",
+ "大 汉",
+ "太 祖",
+ "陛 下",
+ "已 然",
+ "截 断",
+ "县 长",
+ "以 西",
+ "南 至",
+ "治疗 师",
+ "阿尔卑斯 山脉",
+ "十 八年",
+ "十八 年",
+ "法 医",
+ "许 嵩",
+ "马拉 松",
+ "柔 道",
+ "帆 船",
+ "小 项",
+ "西藏 自治区",
+ "观 感",
+ "相关 检查",
+ "边 际",
+ "灯 塔",
+ "心 怀",
+ "对 口",
+ "数学 老师",
+ "数 学系",
+ "数学 系",
+ "M 1",
+ "高 通",
+ "狱 中",
+ "格 里",
+ "人 种",
+ "流行 歌曲",
+ "停止 下来",
+ "曹 魏",
+ "极 冷",
+ "这 幅",
+ "公共 交通",
+ "上 下车",
+ "上下 车",
+ "偏 题",
+ "自 变量",
+ "亚 种",
+ "一 百万",
+ "一百 万",
+ "该 句",
+ "万 亿美元",
+ "万亿 美元",
+ "合伙 人",
+ "演员 阵容",
+ "满足 条件",
+ "非常 感激",
+ "毛 笔",
+ "降 解",
+ "必需 品",
+ "美国 陆军",
+ "自习 室",
+ "应届 生",
+ "热带 地区",
+ "昭 和",
+ "其 种",
+ "抑 止",
+ "商业 区",
+ "垃圾 处理",
+ "莉 莉",
+ "红 叶",
+ "交通 运输",
+ "世界 排名",
+ "北 魏",
+ "三 峡",
+ "寓 言",
+ "歧 义",
+ "或 事物",
+ "备 胎",
+ "y 2",
+ "18 70",
+ "创 始",
+ "脏 话",
+ "总 管",
+ "濒 死",
+ "基 建",
+ "读取 数据",
+ "智 障",
+ "多 云",
+ "法兰克 福",
+ "美术 馆",
+ "数学 模型",
+ "神 明",
+ "编 组",
+ "升 格",
+ "多 囊",
+ "宜 家",
+ "德 川",
+ "守 备",
+ "尼 玛",
+ "使 徒",
+ "该 区",
+ "殿 试",
+ "18 98",
+ "清 末",
+ "清 军",
+ "音乐 节",
+ "化 学家",
+ "化学 家",
+ "学习 效果",
+ "义务 教育",
+ "20 19",
+ "201 9",
+ "放射 治疗",
+ "疾病 诊断",
+ "批判 性",
+ "北 区",
+ "指 着",
+ "面 相",
+ "花园 里",
+ "理事 长",
+ "副 校长",
+ "跳 转",
+ "词 源",
+ "倒 序",
+ "群 组",
+ "图 谱",
+ "赠 品",
+ "读 博",
+ "笑 声",
+ "夜 店",
+ "之 流",
+ "历 任",
+ "行 径",
+ "特 价",
+ "S chool",
+ "19 06",
+ "190 6",
+ "炮 兵",
+ "正 则",
+ "商 科",
+ "自 驾",
+ "read ing",
+ "推理 小说",
+ "邮 轮",
+ "日程 安排",
+ "L isa",
+ "FB I",
+ "一 众",
+ "音乐 风格",
+ "大 选",
+ "多 尔",
+ "培 根",
+ "刚 入",
+ "综艺 节目",
+ "月 刊",
+ "文本 编辑",
+ "悉 尼",
+ "旅 行者",
+ "旅行 者",
+ "口 病",
+ "计算机 科学",
+ "狗 血",
+ "达 芬奇",
+ "跨 境",
+ "月 台",
+ "账 本",
+ "两件 事",
+ "残 粉",
+ "人 脸",
+ "语言 学",
+ "就业 机会",
+ "步 长",
+ "吏 部",
+ "交通 部",
+ "最高 法院",
+ "户 部",
+ "工 部",
+ "大 学士",
+ "大学 士",
+ "巡 抚",
+ "同 知",
+ "知 府",
+ "参 议",
+ "编 修",
+ "帝 都",
+ "宗 室",
+ "藏 品",
+ "品 类",
+ "航天 飞机",
+ "备 感",
+ "分解 代谢",
+ "一 记",
+ "二 度",
+ "分类 学",
+ "四 国",
+ "涉 猎",
+ "晚 自习",
+ "斯坦 福",
+ "黑 帮",
+ "该 处",
+ "路 人",
+ "混 迹",
+ "傲 娇",
+ "逆 天",
+ "19 13",
+ "码 字",
+ "顺 眼",
+ "粗 体",
+ "星 号",
+ "减 号",
+ "转化 率",
+ "划 归",
+ "伯 格",
+ "塔 尼",
+ "脑 梗",
+ "精囊 炎",
+ "坍 缩",
+ "18 97",
+ "研究 会",
+ "任 教",
+ "咖啡 粉",
+ "咖啡 豆",
+ "高级 中学",
+ "19 04",
+ "190 4",
+ "曾 祖",
+ "IS O",
+ "健康 检查",
+ "不 坚",
+ "弥漫 着",
+ "考 完",
+ "课程 内容",
+ "恒 大",
+ "全国 政协",
+ "汉 口",
+ "文 革",
+ "论 调",
+ "二 十多年",
+ "二十 多年",
+ "吉祥 物",
+ "电子 竞技",
+ "购物 车",
+ "开 行",
+ "法 官",
+ "喝 药",
+ "保持 警惕",
+ "假 说",
+ "为 食",
+ "人 声",
+ "小 哥",
+ "吐 槽",
+ "表示 法",
+ "家居 用品",
+ "鸡 腿",
+ "逻辑 关系",
+ "山 口",
+ "节约 能源",
+ "戏 份",
+ "比萨 饼",
+ "统计 分析",
+ "观察 者",
+ "电子 表格",
+ "厂 长",
+ "孟 买",
+ "教 宗",
+ "派 系",
+ "修 士",
+ "这 则",
+ "投 奔",
+ "电 车",
+ "新 市镇",
+ "独自 一人",
+ "车 位",
+ "精神 科",
+ "燕 麦片",
+ "燕麦 片",
+ "无 糖",
+ "达 斯",
+ "短 板",
+ "临 摹",
+ "击 落",
+ "减 排",
+ "外 滩",
+ "爵士 乐",
+ "洪 武",
+ "李 氏",
+ "余 弦",
+ "澎 湖",
+ "琉 球",
+ "和 弦",
+ "可 再生",
+ "福 岛",
+ "暴 走",
+ "m mol",
+ "mm ol",
+ "面向对象 编程",
+ "肛 瘘",
+ "广 电",
+ "信任 度",
+ "差 值",
+ "西 元",
+ "总 书记",
+ "观众 们",
+ "感到 高兴",
+ "蓝 鲸",
+ "混 血",
+ "大 猩猩",
+ "同 进士",
+ "指 代",
+ "西 宁",
+ "参 军",
+ "首 长",
+ "S tate",
+ "手 工艺品",
+ "市场 趋势",
+ "失业 率",
+ "城市 化",
+ "第三 句",
+ "我 特",
+ "洁 癖",
+ "聚 落",
+ "冒 泡",
+ "in it",
+ "剪 辑",
+ "20 21",
+ "20 24",
+ "校 服",
+ "布 兰",
+ "弘 治",
+ "曾 祖父",
+ "曾祖 父",
+ "学 界",
+ "肺 动脉",
+ "曾 于",
+ "基 隆",
+ "臀 鳍",
+ "do ta",
+ "dot a",
+ "妹 纸",
+ "地 标",
+ "生产 流程",
+ "正确 处理",
+ "诟 病",
+ "梯 队",
+ "黑 猩猩",
+ "I ch",
+ "夸 克",
+ "纪念 品",
+ "喉 癌",
+ "暴 动",
+ "即时 通讯",
+ "贝 斯",
+ "平方 根",
+ "欧 拉",
+ "台 灯",
+ "大 法官",
+ "大法 官",
+ "任 内",
+ "可 汗",
+ "技术 创新",
+ "目标 值",
+ "T A",
+ "万 立方米",
+ "开 篇",
+ "措 辞",
+ "包 膜",
+ "手 抖",
+ "user name",
+ "标识 符",
+ "气 场",
+ "歌 舞",
+ "清真 寺",
+ "写 手",
+ "鹿 晗",
+ "公 演",
+ "N N",
+ "冗 余",
+ "软 文",
+ "SE O",
+ "广 受",
+ "放 缓",
+ "夜 市",
+ "洛 特",
+ "冰 盖",
+ "复 述",
+ "左 派",
+ "右 派",
+ "身 理",
+ "晋升 为",
+ "地 缘",
+ "比赛 项目",
+ "汉 子",
+ "流程 图",
+ "中央 委员会",
+ "党 组",
+ "t r",
+ "科学 依据",
+ "时 区",
+ "C P",
+ "嘧 啶",
+ "默 尔",
+ "巴伐利亚 州",
+ "总督 府",
+ "蜂 鸟",
+ "d u",
+ "咖啡 店",
+ "线性 代数",
+ "囚 禁",
+ "中文 系",
+ "纳 什",
+ "抱 团",
+ "气 旋",
+ "新 竹",
+ "子 集",
+ "骨 癌",
+ "三 流",
+ "el ection",
+ "亚 裔",
+ "方 差",
+ "一 两句话",
+ "财产 损失",
+ "教 官",
+ "直 白",
+ "闺 蜜",
+ "响应 速度",
+ "前列 腺癌",
+ "前列腺 癌",
+ "搅拌 器",
+ "古典 音乐",
+ "计算 技术",
+ "一本 正经",
+ "个人 成长",
+ "字 段",
+ "无人 驾驶",
+ "广告 投放",
+ "二 胎",
+ "代表 作品",
+ "代表作 品",
+ "芝 士",
+ "土 豪",
+ "迭 代",
+ "汉 克斯",
+ "分配 任务",
+ "T est",
+ "n on",
+ "no n",
+ "鸟 嘌呤",
+ "缩 进",
+ "该 段",
+ "泳 池",
+ "官 至",
+ "可 读",
+ "十 九年",
+ "十九 年",
+ "学 园",
+ "概率 论",
+ "能源 消耗",
+ "浮 点数",
+ "活 佛",
+ "青 旅",
+ "社 群",
+ "知识 库",
+ "电 信号",
+ "电信 号",
+ "文物 保护",
+ "孚 日",
+ "评论 者",
+ "表演 者",
+ "参 选",
+ "Thisisa n",
+ "出 入口",
+ "出入 口",
+ "炉 石",
+ "海 星",
+ "G o",
+ "开 源",
+ "脑梗 死",
+ "搭 讪",
+ "搬运 工",
+ "那会 儿",
+ "胸 膜",
+ "透 镜",
+ "孤独 感",
+ "A my",
+ "烤 面包",
+ "第三 季",
+ "韩 寒",
+ "树 形",
+ "议 程",
+ "库 里",
+ "利用 效率",
+ "证 人",
+ "阶 乘",
+ "动画 电影",
+ "北海 道",
+ "i l",
+ "古典 小说",
+ "饭 局",
+ "do g",
+ "苹果 公司",
+ "集 上",
+ "专家 系统",
+ "副 总裁",
+ "隆 庆",
+ "9 85",
+ "98 5",
+ "全 剧",
+ "艺术 作品",
+ "西 临",
+ "撵 走",
+ "商业 机会",
+ "转 述",
+ "耍 流氓",
+ "套 利",
+ "鲍 勃",
+ "韦 恩",
+ "第十 一届",
+ "第十一 届",
+ "珍 妮",
+ "微 积分",
+ "20 22",
+ "果 仁",
+ "银行 家",
+ "李 宁",
+ "18 71",
+ "微分 方程",
+ "政 委",
+ "收 视",
+ "销售 员",
+ "近 现代",
+ "乐 理",
+ "great er",
+ "拟 合",
+ "嵌 套",
+ "停 车位",
+ "停车 位",
+ "共同 体",
+ "认同 感",
+ "携 程",
+ "易 读",
+ "十 七年",
+ "十七 年",
+ "天气 现象",
+ "S an",
+ "该 州",
+ "四 十年",
+ "四十 年",
+ "连接 成",
+ "工具 包",
+ "著名 景点",
+ "嘉 义",
+ "谩 骂",
+ "最新 进展",
+ "工业 革命",
+ "酸 化",
+ "感恩 节",
+ "互相 配合",
+ "女 星",
+ "获 选",
+ "汉堡 包",
+ "流域 面积",
+ "河 川",
+ "公开 赛",
+ "同性 恋",
+ "hu i",
+ "水生 动物",
+ "界面 设计",
+ "开发 人员",
+ "人机 交互",
+ "华 晨",
+ "高 冷",
+ "洛 林",
+ "19 07",
+ "190 7",
+ "佩 奇",
+ "标准 差",
+ "菲 尔德",
+ "菲尔 德",
+ "建 模",
+ "崩 裂",
+ "库 比",
+ "图 尔",
+ "野 餐",
+ "班 次",
+ "数据 安全",
+ "F ROM",
+ "试 错",
+ "哥伦比亚 大学",
+ "立方 体",
+ "回 溯",
+ "J e",
+ "ai me",
+ "解释 性",
+ "银 翼",
+ "志愿 军",
+ "义 工",
+ "攀 岩",
+ "or g",
+ "L e",
+ "亚 科",
+ "清 真",
+ "孟加拉 国",
+ "eat ing",
+ "curr ent",
+ "u b",
+ "面试 官",
+ "洗碗 机",
+ "N one",
+ "No ne",
+ "编 导",
+ "纪录 片",
+ "翻 看",
+ "高 盐",
+ "控制 权",
+ "va r",
+ "影 评",
+ "罗 恩",
+ "偏 置",
+ "封 电子邮件",
+ "青岛 市",
+ "二 十三年",
+ "二十 三年",
+ "二 十九年",
+ "二十 九年",
+ "养 猫",
+ "复合 句",
+ "性别 歧视",
+ "市场 推广",
+ "基 站",
+ "吐 蕃",
+ "虚拟 化",
+ "纸 牌",
+ "合法 化",
+ "帝国 大厦",
+ "手 稿",
+ "真实 世界",
+ "引 言",
+ "文 库",
+ "辍 学",
+ "My SQL",
+ "ID F",
+ "疫 情",
+ "语 族",
+ "渡 边",
+ "L OL",
+ "公 投",
+ "该 站",
+ "语 态",
+ "这 货",
+ "该 镇",
+ "j s",
+ "夏 洛克",
+ "民主 党",
+ "官 话",
+ "食用 鱼",
+ "极 少量",
+ "极少 量",
+ "子 句",
+ "S M",
+ "遍 历",
+ "司 职",
+ "塑料 制品",
+ "该 党",
+ "e r",
+ "对 数",
+ "拓 跋",
+ "操作 符",
+ "数据 源",
+ "神经 科学",
+ "司 长",
+ "来 答",
+ "结 疤",
+ "健身 器材",
+ "意 淫",
+ "喜剧 电影",
+ "首 张",
+ "玛丽 亚",
+ "空 难",
+ "活 多久",
+ "小 伙",
+ "避 忌",
+ "p y",
+ "毛 子",
+ "句 点",
+ "诺 夫",
+ "利用 计算机",
+ "单 品",
+ "保 研",
+ "决策 制定",
+ "乌 斯",
+ "一 属",
+ "段 子",
+ "肺 纤维化",
+ "安 迪",
+ "公开 课",
+ "颁奖 典礼",
+ "美 帝",
+ "球 会",
+ "足球 联赛",
+ "这 封",
+ "印象 派",
+ "沙 田",
+ "元 朗",
+ "手 游",
+ "18 86",
+ "新闻 稿",
+ "唱 功",
+ "密码 学",
+ "屯 门",
+ "胸 大",
+ "C #",
+ "热 浪",
+ "泌尿 外科",
+ "堆 栈",
+ "函数 调用",
+ "代表 队",
+ "升 序",
+ "降 序",
+ "肾 囊肿",
+ "消防 员",
+ "阴阳 师",
+ "大 调",
+ "音乐 剧",
+ "基本 思路",
+ "测 序",
+ "排放 量",
+ "打印 输出",
+ "mo del",
+ "mod el",
+ "老 张",
+ "保 育",
+ "四大 发明",
+ "数据 中心",
+ "挂 科",
+ "系列 小说",
+ "两 数",
+ "诺 兰",
+ "恐怖 电影",
+ "宇宙 学",
+ "层 级",
+ "历史 博物馆",
+ "香港 政府",
+ "师 妹",
+ "比尔 盖茨",
+ "血 精",
+ "全 长约",
+ "全长 约",
+ "引 种",
+ "城 际",
+ "职 棒",
+ "CF A",
+ "禁 吃",
+ "此 剧",
+ "完 爆",
+ "格 雷",
+ "主题 词",
+ "约 莫",
+ "自由 泳",
+ "茶 道",
+ "风 控",
+ "封闭 性",
+ "形 目",
+ "me an",
+ "热门 话题",
+ "20 30",
+ "漫 威",
+ "交通 拥堵",
+ "s et",
+ "or t",
+ "科技 类",
+ "投 手",
+ "龙 科",
+ "合 租",
+ "设计 模式",
+ "佩 里",
+ "丧 尸",
+ "琳 娜",
+ "尽可能 减少",
+ "迪 拜",
+ "高效 性",
+ "p d",
+ "In c",
+ "水 军",
+ "电动 汽车",
+ "爬 虫",
+ "我 爹",
+ "音 阶",
+ "亚 目",
+ "日本 帝国",
+ "点 赞",
+ "鱼 科",
+ "迪 卡",
+ "台南 市",
+ "陆 生",
+ "信息 检索",
+ "电气 化",
+ "教 友",
+ "感叹 句",
+ "多 图",
+ "设 于",
+ "科学 计算",
+ "谬 误",
+ "停 办",
+ "quare d",
+ "盗 墓",
+ "和 物",
+ "节约 用水",
+ "商业 价值",
+ "自然 语言",
+ "渗 血",
+ "特征 向量",
+ "特色 美食",
+ "演讲 者",
+ "文章 主题",
+ "抹 黑",
+ "艾米 丽",
+ "成 化",
+ "问候 语",
+ "女 团",
+ "神 作",
+ "杰 夫",
+ "冰 原",
+ "亲 测",
+ "numbers x",
+ "盗 梦",
+ "羽 球",
+ "二 十二年",
+ "二十 二年",
+ "肉 食性",
+ "肉食 性",
+ "赛 制",
+ "苏 珊",
+ "尼 采",
+ "合 照",
+ "印度 教",
+ "第 三段",
+ "第三 段",
+ "链 是",
+ "湖人 队",
+ "希 拉里",
+ "小组 讨论",
+ "卡 牌",
+ "n p",
+ "tudy ing",
+ "多 姆",
+ "arr ay",
+ "s um",
+ "台湾 大学",
+ "编码 器",
+ "鲈 形目",
+ "Z a",
+ "协同 工作",
+ "重 述",
+ "深远 影响",
+ "喷 子",
+ "字母 表",
+ "清 北",
+ "自 干",
+ "厅 长",
+ "印刷 术",
+ "朋 克",
+ "稀 软",
+ "問 題",
+ "骰 子",
+ "绘 本",
+ "榜 单",
+ "租 界",
+ "tring 2",
+ "李 明",
+ "行政 院",
+ "立法 委员",
+ "党 籍",
+ "议 席",
+ "产品 描述",
+ "跨 界",
+ "影评 人",
+ "no un",
+ "预告 片",
+ "小 姐姐",
+ "小姐 姐",
+ "可 回收",
+ "遗传 信息",
+ "起 些",
+ "民 宿",
+ "监测 数据",
+ "大 埔",
+ "点 餐",
+ "法 学院",
+ "法学 院",
+ "字符 集",
+ "篮 球队",
+ "篮球 队",
+ "慈善 家",
+ "亚当 斯",
+ "他 們",
+ "時 候",
+ "数据 保护",
+ "幼 崽",
+ "我 們",
+ "人脸 识别",
+ "变 体",
+ "塞纳 河",
+ "en t",
+ "崇 祯",
+ "建立 联系",
+ "h 1",
+ "购物 袋",
+ "u ne",
+ "un e",
+ "艾 玛",
+ "球 季",
+ "邦 特",
+ "代码 段",
+ "甲 组",
+ "乐 视",
+ "许 多次",
+ "许多 次",
+ "归 为",
+ "市 镇",
+ "操作 数",
+ "女权 主义者",
+ "女权主义 者",
+ "某 宝",
+ "尔 特",
+ "拼写 错误",
+ "跨 学科",
+ "识字 率",
+ "汽车 品牌",
+ "跨 文化",
+ "斐 波",
+ "那 契",
+ "复杂 度",
+ "com er",
+ "come r",
+ "分布式 系统",
+ "土地 利用",
+ "地 理学",
+ "地理 学",
+ "线 性关系",
+ "线性 关系",
+ "p o",
+ "烂 片",
+ "a u",
+ "插 画",
+ "录音 室",
+ "CS V",
+ "王 五",
+ "伏 地",
+ "图像 识别",
+ "第 四季",
+ "第四 季",
+ "G UI",
+ "转 任",
+ "家 暴",
+ "在线 教育",
+ "语法 分析",
+ "中 位数",
+ "答 话",
+ "鲤 科",
+ "样本 数",
+ "女 权",
+ "do e",
+ "A CG",
+ "AC G",
+ "20 23",
+ "9 87",
+ "98 7",
+ "打 野",
+ "p red",
+ "枚 举",
+ "不 邀",
+ "神 社",
+ "del ta",
+ "n 2",
+ "参数 传递",
+ "露 西",
+ "文本 处理",
+ "桥 段",
+ "众 数",
+ "西 贡",
+ "田径 比赛",
+ "城市 交通",
+ "竞 品",
+ "岛 式",
+ "n 1",
+ "特 与",
+ "魔法 石",
+ "p r",
+ "塔 恩",
+ "社 论",
+ "科技 领域",
+ "回 文",
+ "黑色素 瘤",
+ "马尔 克斯",
+ "基准 值",
+ "因 变量",
+ "座 堂",
+ "奥 克",
+ "翻 墙",
+ "S ort",
+ "匈牙利 语",
+ "h r",
+ "阿 凡",
+ "步 数",
+ "這 個",
+ "科学 论文",
+ "挑战 赛",
+ "电 车站",
+ "电车 站",
+ "小 众",
+ "阴谋 论",
+ "元 组",
+ "关键 步骤",
+ "视 星等",
+ "自 拍",
+ "key word",
+ "黏 连",
+ "屌 丝",
+ "初 心",
+ "布 林",
+ "预测 值",
+ "放 柔",
+ "中 产",
+ "哭 啼",
+ "di git",
+ "国家 足球队",
+ "de f",
+ "隐 窝",
+ "c p",
+ "男 神",
+ "YY YY",
+ "陨石 坑",
+ "伊 勒",
+ "波 函数",
+ "男子 单打",
+ "现代 主义",
+ "登 进士",
+ "劝 退",
+ "女权 主义",
+ "卵 用",
+ "泛 化",
+ "摩 卡",
+ "颜 值",
+ "医 学生",
+ "医学 生",
+ "高 赞",
+ "dota 2",
+ "外 行星",
+ "外行 星",
+ "translate d",
+ "哈 希",
+ "待 办",
+ "u r",
+ "诊 病",
+ "题 主",
+ "新 界",
+ "维 空间",
+ "高 维",
+ "县 人",
+ "总统 大选",
+ "word s",
+ "low er",
+ "阿 甘",
+ "中心 化",
+ "最大 数",
+ "索 恩",
+ "撩 妹",
+ "逆 序",
+ "words if",
+ "cs v",
+ "推 特",
+ "中 國",
+ "M IT",
+ "二次 元",
+ "n 3",
+ "书 单",
+ "布 利",
+ "植 物种",
+ "植物 种",
+ "徒步 旅行",
+ "克 勒",
+ "啰 嗦",
+ "高 票",
+ "本 剧",
+ "台 灣",
+ "关注 点",
+ "议 长",
+ "维 基",
+ "罗宾 斯",
+ "参 政",
+ "No de",
+ "虚拟 环境",
+ "五 毛",
+ "北 起",
+ "c ol",
+ "阿 列",
+ "l en",
+ "le n",
+ "萨 利",
+ "张 艺兴",
+ "配音 员",
+ "该 村",
+ "东 野",
+ "PS 4",
+ "s team",
+ "异性 恋",
+ "咖啡 机",
+ "奶 泡",
+ "杨 洋",
+ "埃 纳",
+ "分析 模型",
+ "z A",
+ "厄 尔",
+ "卧 槽",
+ "目标 语言",
+ "正则 表达式",
+ "因 為",
+ "long est",
+ "n 4",
+ "女 优",
+ "词 干",
+ "相关 系数",
+ "数据 分布",
+ "子 串",
+ "递 归",
+ "日 治",
+ "老 罗",
+ "栖 性",
+ "生日 派对",
+ "解释 器",
+ "鲶 科",
+ "mean s",
+ "g it",
+ "气候 系统",
+ "S 21",
+ "辖 下",
+ "任务 分配",
+ "di ct",
+ "加 词",
+ "number s",
+ "nums i",
+ "站 房",
+ "艺 兴",
+ "交通 流量",
+ "赤 经",
+ "赤 纬",
+ "乡镇 级",
+ "妥 妥",
+ "专 硕",
+ "热 巴",
+ "剧 透",
+ "卢 瓦尔",
+ "夏 朗德",
+ "罗 讷",
+ "区 议会",
+ "霍 格",
+ "d p",
+ "川 普",
+ "信息 提取",
+ "概率 分布",
+ "t f",
+ "Alex a",
+ "装 逼",
+ "呼 息",
+ "t w",
+ "性 侵",
+ "聚 类",
+ "t k",
+ "自行 车道",
+ "自行车 道",
+ "计算 资源",
+ "reverse d",
+ "校 招",
+ "date 1",
+ "date 2",
+ "B 1900",
+ "B1 900",
+ "模式 识别",
+ "显 式",
+ "调查 局",
+ "男 票",
+ "陨 坑",
+ "X box",
+ "侧 式",
+ "曼 恩",
+ "merge d",
+ "该 数",
+ "超 平面",
+ "网 红",
+ "社交 互动",
+ "持 继",
+ "黛 西",
+ "S team",
+ "源 语言",
+ "雷 军",
+ "词 频",
+ "tring 1",
+ "调用 函数",
+ "细 思",
+ "num 2",
+ "递归 函数",
+ "左 子",
+ "右 子",
+ "谢 邀",
+ "迪 丽",
+ "沃 兹",
+ "date time",
+ "作 死",
+ "沃 茨",
+ "脑 补",
+ "打 脸",
+ "特征 选择",
+ "给 题",
+ "圣母 院",
+ "a is",
+ "ai s",
+ "公 知",
+ "玻璃 心",
+ "登山 者",
+ "版本 控制",
+ "软 条",
+ "闭 包",
+ "知 友",
+ "捂 脸",
+ "par am",
+ "抱 括",
+ "卢瓦尔 河",
+ "知 乎",
+ "赵 六",
+ "拜 登",
+ "g ay",
+ "此 站",
+ "入 坑",
+ "推 文",
+ "测试 函数",
+ "数 独",
+ "集 来",
+ "调 优",
+ "枢 轴",
+ "前端 开发",
+ "伤 损",
+ "孔 泰",
+ "维 莱",
+ "测试 代码",
+ "科 下",
+ "对 模型",
+ "卷 积",
+ "库 来",
+ "吊 打",
+ "图 灵",
+ "岛 峰",
+ "name s",
+ "安 德尔",
+ "list 1",
+ "tr 1",
+ "搜索 算法",
+ "lower case",
+ "upper case",
+ "新 冠",
+ "email s",
+ "怒 答",
+ "ma x2",
+ "max 2",
+ "决策 树",
+ "契 数",
+ "插入 排序",
+ "is prime",
+ "s plit",
+ "出 柜",
+ "张 三是",
+ "张三 是",
+ "讷 省",
+ "布尔 值",
+ "Windows 10",
+ "爆 照",
+ "聚类 分析",
+ "data set",
+ "逼 格",
+ "本 鱼",
+ "Z 0",
+ "序 列表",
+ "序列 表",
+ "该 庄",
+ "抖 音",
+ "Name d",
+ "码 农",
+ "tr 2",
+ "糜 乱",
+ "恐 极",
+ "多 赞",
+ "讲 真",
+ "s ort",
+ "刷 题",
+ "num 1",
+ "桃园 市",
+ "date s",
+ "num s",
+ "题主 是",
+ "哔 哩",
+ "懒 狗",
+ "绘 入",
+ "马 恩省",
+ "硬 棘",
+ "mac OS",
+ "js on",
+ "维 埃纳",
+ "众 筹",
+ "女 票",
+ "list 2",
+ "题主 问",
+ "细思 极",
+ "Do e",
+ "出 人名",
+ "numbers 3",
+ "numbers 0",
+ "G it",
+ "token ize",
+ "识别 模式",
+ "R NN",
+ "分类 器",
+ "numbers num1",
+ "numbers 5",
+ "个 斐波",
+ "el if",
+ "nums j",
+ "nums 1",
+ "nums 2",
+ "降 维",
+ "s orted",
+ "nums 0",
+ "nums if",
+ "numsi f",
+ "numbers print",
+ "prime s",
+ "词 袋",
+ "b run",
+ "br un",
+ "find all",
+ "words text",
+ "k learn",
+ "numbers append",
+ "numbers for",
+ "numbers a",
+ "numbers 2",
+ "numbers 1",
+ "numbers if",
+ "capitalize d",
+ "p ip",
+ "pi p",
+ "dates re",
+ "num py",
+ "fruit s",
+ "文章 生成",
+ "words word",
+ "quick sort",
+ "K NN",
+ "numbers list",
+ "c dot",
+ "nums print",
+ "emails re",
+ "arr 2",
+ "arr 1",
+ "78 90",
+ "Fizz Buzz",
+ "number 2",
+ "numbers j",
+ "千 玺",
+ "LG BT",
+ "塞纳 省",
+ "IS IS",
+ "脑 洞",
+ "学 渣",
+ "答 主",
+ "阿尔卑斯 省",
+ "爱 豆",
+ "脑 残粉",
+ "脑残 粉",
+ "强 答",
+ "http www",
+ "答主 说",
+ "首 答",
+ "侵 删",
+ "题主 说",
+ "约 炮",
+ "民 籍",
+ "观 政",
+ "银 经",
+ "奥 恩省",
+ "恩 省",
+ "银 纬",
+ "鲶 形"
+ ]
+ }
+}
\ No newline at end of file
diff --git a/model_save/tokenizer_config.json b/model_save/tokenizer_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..84eb4b10432ba90359c79c7802764f9cdf749354
--- /dev/null
+++ b/model_save/tokenizer_config.json
@@ -0,0 +1,66 @@
+{
+ "added_tokens_decoder": {
+ "0": {
+ "content": "[PAD]",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "1": {
+ "content": "[EOS]",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "2": {
+ "content": "[SEP]",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "3": {
+ "content": "[BOS]",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "4": {
+ "content": "[CLS]",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "5": {
+ "content": "[MASK]",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ },
+ "6": {
+ "content": "[UNK]",
+ "lstrip": false,
+ "normalized": false,
+ "rstrip": false,
+ "single_word": false,
+ "special": true
+ }
+ },
+ "clean_up_tokenization_spaces": true,
+ "eos_token": "[EOS]",
+ "model_max_length": 1000000000000000019884624838656,
+ "pad_token": "[PAD]",
+ "tokenizer_class": "PreTrainedTokenizerFast",
+ "unk_token": "[UNK]"
+}
diff --git a/pre_train.py b/pre_train.py
new file mode 100644
index 0000000000000000000000000000000000000000..915d8d0c9f0cb0e4da688030aaaaa6004464a5dc
--- /dev/null
+++ b/pre_train.py
@@ -0,0 +1,136 @@
+# coding=utf-8
+import time
+import os
+import pandas as pd
+from dataclasses import dataclass
+import torch
+from typing import Dict
+
+from tqdm import tqdm
+import numpy as np
+from transformers import PreTrainedTokenizerFast, Seq2SeqTrainer, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments
+
+from transformers.generation.configuration_utils import GenerationConfig
+from datasets import Dataset, load_dataset
+
+from model.chat_model import TextToTextModel
+from model.dataset import MyDataset
+from config import TrainConfig, T5ModelConfig
+
+from utils.functions import json_to_dataclass, get_T5_config, MyTrainerCallback
+
+tqdm.pandas()
+
+os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
+
+def get_dataset(file: str, split: str, tokenizer: PreTrainedTokenizerFast, cache_dir: str='.cache') -> Dataset:
+ """
+ 加载数据集
+ """
+ dataset = load_dataset('parquet', data_files=file, split=split, cache_dir=cache_dir)
+
+ def tokens_to_ids(samples: dict) -> Dict[str, str]:
+
+ eos_token_id = tokenizer.eos_token_id
+
+ batch_prompt = samples['prompt']
+ batch_response = samples['response']
+
+ encoded_prompt = tokenizer(batch_prompt, truncation=False, padding=False, return_attention_mask=False,)
+ encoded_response = tokenizer(batch_response, truncation=False, padding=False, return_attention_mask=False,)
+
+ # vocab size 小于65535 可以用 uint16, 每个样本都要添加eos_token_id
+ input_ids = [np.array(item + [eos_token_id], dtype=np.uint16) for item in encoded_prompt["input_ids"]]
+ labels = [np.array(item + [eos_token_id], dtype=np.uint16) for item in encoded_response["input_ids"]]
+
+ return {
+ 'input_ids': input_ids,
+ 'labels': labels,
+ }
+
+ dataset = dataset.map(tokens_to_ids, batched=True, batch_size=8192, remove_columns=dataset.column_names)
+
+ return dataset
+
+def pre_train(config: TrainConfig) -> None:
+
+ # step 1. 加载tokenizer
+ tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)
+
+ # step 2. 加载模型配置文件
+ t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
+
+ # step 3. 初始化模型
+ model = TextToTextModel(t5_config)
+
+ # Step 4: Load my dataset
+ dataset = get_dataset(file=config.train_file, split='train', tokenizer=tokenizer)
+
+ # Step 5: Define the training arguments
+
+ # T5属于sequence to sequence模型,故要使用Seq2SeqTrainingArguments、DataCollatorForSeq2Seq、Seq2SeqTrainer
+ # huggingface官网的sft工具适用于language model/LM模型
+
+ generation_config = GenerationConfig()
+ generation_config.remove_invalid_values = True
+ generation_config.eos_token_id = tokenizer.eos_token_id
+ generation_config.pad_token_id = tokenizer.pad_token_id
+ generation_config.decoder_start_token_id = tokenizer.pad_token_id
+ generation_config.max_new_tokens = 320
+ generation_config.num_beams = 1 # greedy search
+ generation_config.do_sample = False # greedy search
+
+ training_args = Seq2SeqTrainingArguments(
+ output_dir=config.output_dir,
+ per_device_train_batch_size=config.batch_size_per_gpu,
+ auto_find_batch_size=True, # 防止OOM
+ gradient_accumulation_steps=config.gradient_accumulation_steps,
+ learning_rate=config.learn_rate,
+ logging_steps=config.logging_steps,
+ num_train_epochs=config.epochs,
+ optim="adafactor",
+ report_to='tensorboard',
+ log_level='info',
+ save_steps=config.save_steps,
+ save_total_limit=3,
+ fp16=True if config.mixed_precision == 'fp16' else False,
+ bf16=True if config.mixed_precision == 'bf16' else False,
+ logging_first_step=True,
+ warmup_steps=config.warmup_steps,
+ seed=config.seed,
+ generation_config=generation_config,
+ )
+
+ # step 6: init my collator,
+ collator = DataCollatorForSeq2Seq(tokenizer, max_length=config.max_seq_len)
+ empty_cuda_cahce = MyTrainerCallback()
+
+ # Step 7: Define the Trainer
+ trainer = Seq2SeqTrainer(
+ model=model,
+ args=training_args,
+ train_dataset=dataset,
+ tokenizer=tokenizer,
+ data_collator=collator,
+ callbacks=[empty_cuda_cahce],
+ )
+
+ # step 8: train
+ trainer.train(
+ # resume_from_checkpoint=True
+ )
+
+ #step 9: save log
+ loss_log = pd.DataFrame(trainer.state.log_history)
+ log_dir = './logs'
+ if not os.path.exists(log_dir):
+ os.mkdir(log_dir)
+ loss_log.to_csv(f"{log_dir}/pre_train_log_{time.strftime('%Y%m%d-%H%M')}.csv")
+
+ # Step 10: Save the model
+ trainer.save_model(config.output_dir)
+
+
+if __name__ == '__main__':
+ config = TrainConfig()
+ pre_train(config)
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..2b342835378c47f5bb4ebb140d9daff127761379
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,29 @@
+accelerate==0.25.0
+colorlog==6.8.0
+datasets==2.15.0
+datasketch==1.6.4
+fastapi==0.109.1
+fastparquet==2023.10.1
+fire==0.5.0
+jieba==0.42.1
+matplotlib==3.8.2
+modelscope==1.11.1
+nltk==3.8.1
+numpy==1.26.2
+opencc_python_reimplemented==0.1.7
+pandas==2.1.4
+peft==0.6.2
+psutil==5.9.6
+pyarrow==14.0.1
+pydantic==2.5.2
+rich==13.7.0
+safetensors==0.4.1
+sentencepiece==0.1.99
+tokenizers==0.15.0
+torch==2.1.1
+torch_optimizer==0.3.0
+tqdm==4.66.1
+transformers==4.36.0
+trl==0.7.4
+ujson==5.8.0
+uvicorn==0.24.0.post1
diff --git a/sft_train.py b/sft_train.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe52260a5c98275af00803292d284b74dbe3f734
--- /dev/null
+++ b/sft_train.py
@@ -0,0 +1,134 @@
+# coding=utf-8
+from typing import Dict
+import time
+import os
+import pandas as pd
+import numpy as np
+import torch
+from datasets import Dataset, load_dataset
+from peft import LoraConfig
+from tqdm import tqdm
+from transformers import PreTrainedTokenizerFast, Seq2SeqTrainer, DataCollatorForSeq2Seq,Seq2SeqTrainingArguments
+from transformers.generation.configuration_utils import GenerationConfig
+
+from model.chat_model import TextToTextModel
+from config import SFTconfig, T5ModelConfig
+from utils.functions import get_T5_config, MyTrainerCallback
+
+tqdm.pandas()
+os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
+
+def get_dataset(file: str, split: str, tokenizer: PreTrainedTokenizerFast, cache_dir: str='.cache') -> Dataset:
+ """
+ 加载数据集
+ """
+
+ # 加载json数据集,如果要加载parquet,更改为'parquet'即可
+ dataset = load_dataset('json', data_files=file, split=split, cache_dir=cache_dir)
+
+ def tokens_to_ids(samples: dict) -> Dict[str, str]:
+
+ eos_token_id = tokenizer.eos_token_id
+
+ batch_prompt = samples['prompt']
+ batch_response = samples['response']
+
+ encoded_prompt = tokenizer(batch_prompt, truncation=False, padding=False, return_attention_mask=False)
+ encoded_response = tokenizer(batch_response, truncation=False, padding=False, return_attention_mask=False)
+
+ # vocab size 小于65535 可以用 uint16, 每个样本都要添加eos_token_id
+ input_ids = [np.array(item + [eos_token_id], dtype=np.uint16) for item in encoded_prompt["input_ids"]]
+ labels = [np.array(item + [eos_token_id], dtype=np.uint16) for item in encoded_response["input_ids"]]
+
+ return {
+ 'input_ids': input_ids,
+ 'labels': labels,
+ }
+
+ dataset = dataset.map(tokens_to_ids, batched=True, batch_size=8192, remove_columns=dataset.column_names)
+
+ return dataset
+
+def sft_train(config: SFTconfig) -> None:
+
+ # step 1. 加载tokenizer
+ tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)
+
+ # step 2. 加载预训练模型
+ model = None
+ if os.path.isdir(config.finetune_from_ckp_file):
+ # 传入文件夹则 from_pretrained
+ model = TextToTextModel.from_pretrained(config.finetune_from_ckp_file)
+ else:
+ # load_state_dict
+ t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
+ model = TextToTextModel(t5_config)
+ model.load_state_dict(torch.load(config.finetune_from_ckp_file, map_location='cpu')) # set cpu for no exception
+
+ # Step 4: Load the dataset
+ dataset = get_dataset(file=config.sft_train_file, split="train", tokenizer=tokenizer)
+
+ # Step 5: Define the training arguments
+ # T5属于sequence to sequence模型,故要使用Seq2SeqTrainingArguments、DataCollatorForSeq2Seq、Seq2SeqTrainer
+ # huggingface官网的sft工具适用于language model/LM模型
+ generation_config = GenerationConfig()
+ generation_config.remove_invalid_values = True
+ generation_config.eos_token_id = tokenizer.eos_token_id
+ generation_config.pad_token_id = tokenizer.pad_token_id
+ generation_config.decoder_start_token_id = tokenizer.pad_token_id
+ generation_config.max_new_tokens = 320
+ generation_config.repetition_penalty = 1.5
+ generation_config.num_beams = 1 # greedy search
+ generation_config.do_sample = False # greedy search
+
+ training_args = Seq2SeqTrainingArguments(
+ output_dir=config.output_dir,
+ per_device_train_batch_size=config.batch_size,
+ auto_find_batch_size=True, # 防止OOM
+ gradient_accumulation_steps=config.gradient_accumulation_steps,
+ learning_rate=config.learning_rate,
+ logging_steps=config.logging_steps,
+ num_train_epochs=config.num_train_epochs,
+ optim="adafactor",
+ report_to='tensorboard',
+ log_level='info',
+ save_steps=config.save_steps,
+ save_total_limit=3,
+ fp16=config.fp16,
+ logging_first_step=config.logging_first_step,
+ warmup_steps=config.warmup_steps,
+ seed=config.seed,
+ generation_config=generation_config,
+ )
+
+ # step 6: init a collator
+ collator = DataCollatorForSeq2Seq(tokenizer, max_length=config.max_seq_len)
+ empty_cuda_cahce = MyTrainerCallback()
+
+ # Step 7: Define the Trainer
+ trainer = Seq2SeqTrainer(
+ model=model,
+ args=training_args,
+ train_dataset=dataset,
+ tokenizer=tokenizer,
+ data_collator=collator,
+ callbacks=[empty_cuda_cahce]
+ )
+
+ # step 8: train
+ trainer.train(
+ # resume_from_checkpoint=True
+ )
+
+ loss_log = pd.DataFrame(trainer.state.log_history)
+ log_dir = './logs'
+ if not os.path.exists(log_dir):
+ os.mkdir(log_dir)
+ loss_log.to_csv(f"{log_dir}/sft_train_log_{time.strftime('%Y%m%d-%H%M')}.csv")
+
+ # Step 9: Save the model
+ trainer.save_model(config.output_dir)
+
+if __name__ == '__main__':
+ config = SFTconfig()
+ sft_train(config)
\ No newline at end of file
diff --git a/train.ipynb b/train.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..6c2e8610ed4b288b72c0f1901d56169e322a8fa8
--- /dev/null
+++ b/train.ipynb
@@ -0,0 +1,82 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from accelerate import notebook_launcher\n",
+ "import torch\n",
+ "\n",
+ "from model.trainer import ChatTrainer\n",
+ "from config import TrainConfig, T5ModelConfig"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_config = TrainConfig()\n",
+ "model_config = T5ModelConfig()\n",
+ "\n",
+ "print(train_config)\n",
+ "print(model_config)\n",
+ "\n",
+ "gpu_count = torch.cuda.device_count()\n",
+ "print('gpu device count: {}'.format(gpu_count))\n",
+ "\n",
+ "chat_trainer = ChatTrainer(train_config=train_config, model_config=model_config)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train = chat_trainer.train\n",
+ "\n",
+ "# chat_trainer.train() args: is_keep_training: bool, is_finetune: bool\n",
+ "train_args = (False, False)\n",
+ "\n",
+ "# 使用notebook_launcher函数启动多卡训练\n",
+ "notebook_launcher(train, num_processes=gpu_count, args=train_args, mixed_precision=train_config.mixed_precision)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "test = chat_trainer.test\n",
+ "notebook_launcher(test, num_processes=gpu_count, mixed_precision=train_config.mixed_precision)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ },
+ "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/train.py b/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..6bef2ee4c9cf166f3f03e42384724da43684d129
--- /dev/null
+++ b/train.py
@@ -0,0 +1,15 @@
+import fire
+
+from config import TrainConfig, T5ModelConfig
+from model.trainer import ChatTrainer
+
+
+if __name__ == '__main__':
+ train_config = TrainConfig()
+ model_config = T5ModelConfig()
+
+ chat_trainer = ChatTrainer(train_config=train_config, model_config=model_config)
+
+ # 解析命令行参数,执行指定函数
+ # e.g: python train.py train
+ fire.Fire(component=chat_trainer)
\ No newline at end of file
diff --git a/train_tokenizer.py b/train_tokenizer.py
new file mode 100644
index 0000000000000000000000000000000000000000..0c394459b9802e497a56206b94817751cd722e61
--- /dev/null
+++ b/train_tokenizer.py
@@ -0,0 +1,155 @@
+import os
+import pandas as pd
+import sentencepiece as spm
+import tokenizers
+from tokenizers import Tokenizer, decoders
+from tokenizers.models import BPE
+from tokenizers.trainers import BpeTrainer
+from tokenizers.pre_tokenizers import Punctuation, Digits, Metaspace
+from tokenizers.normalizers import NFKC
+from transformers import PreTrainedTokenizerFast
+
+from config import PROJECT_ROOT
+
+def check_dir_exits(dir: str) -> None:
+ '''
+ 检查文件夹是否存在,如果不存在则创建文件夹
+ '''
+ if not os.path.exists(dir):
+ os.makedirs(dir)
+
+
+def train_my_huggingface_wiki_tokenizer(cropus_file: str, max_train_line: int=None, vocab_size: int=40960,token_type: str='char') -> None:
+ '''
+ 训练tokenizer with huggingface,至少需要32G内存,运行大概需要半个小时。
+ '''
+
+ tokenizer_slow_save_path = PROJECT_ROOT + '/model_save/hf_tokenizer_slow/hf_bpe_tokenizer.josn'
+ tokenizer_fast_save_path = PROJECT_ROOT + '/model_save/hf_tokenizer'
+
+ check_dir_exits(PROJECT_ROOT + '/model_save/hf_tokenizer_slow')
+ check_dir_exits(tokenizer_fast_save_path)
+
+ def get_training_corpus(buffer_size: int=1000, chunk_len: int=2048) -> list:
+ '''
+ 一个文本块大小2048
+ '''
+ line_cnt = 0
+ buffer = []
+ with open(cropus_file, 'r', encoding='utf-8') as f_read:
+ cur_chunk_txt, txt_len = [], 0
+ for line in f_read:
+
+ cur_chunk_txt.append(line)
+ txt_len += len(line)
+ line_cnt += 1
+
+ if txt_len >= chunk_len:
+ buffer.append(
+ ''.join(cur_chunk_txt)
+ )
+ cur_chunk_txt, txt_len = [], 0
+
+ if len(buffer) >= buffer_size:
+ yield buffer
+ buffer = []
+
+ if isinstance(max_train_line, int) and line_cnt > max_train_line: break
+
+ # yield last
+ if len(buffer) > 0: yield buffer
+
+ special_tokens = ["[PAD]","[EOS]","[SEP]","[BOS]", "[CLS]", "[MASK]", "[UNK]"]
+
+ if token_type =='char':
+
+ model = BPE(unk_token="[UNK]")
+ tokenizer = Tokenizer(model)
+
+ # 用兼容等价分解合并对utf编码进行等价组合,比如全角A转换为半角A
+ tokenizer.normalizer = tokenizers.normalizers.Sequence([NFKC()])
+
+ # 标点符号,数字,及Metaspace预分割(否则decode出来没有空格)
+ tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.Sequence(
+ [Punctuation(), Digits(individual_digits=True), Metaspace()]
+ )
+
+ tokenizer.add_special_tokens(special_tokens)
+ tokenizer.decoder = decoders.Metaspace()
+ elif token_type == 'byte':
+
+ # byte BPE n不需要unk_token
+ model = BPE()
+ tokenizer = Tokenizer(model)
+ tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.ByteLevel(add_prefix_space=False, use_regex=True)
+
+ tokenizer.add_special_tokens(special_tokens)
+ tokenizer.decoder = decoders.ByteLevel(add_prefix_space=False, use_regex=True)
+ tokenizer.post_processor = tokenizers.processors.ByteLevel(trim_offsets=False)
+ else:
+ raise Exception(f'token type must be `char` or `byte`, but got {token_type}')
+
+ trainer = BpeTrainer(vocab_size=vocab_size, min_frequency=100, show_progress=True, special_tokens=special_tokens)
+ tokenizer.train_from_iterator(get_training_corpus(), trainer=trainer)
+
+ # add \t \n
+ if '\t' not in tokenizer.get_vocab():
+ tokenizer.add_tokens(['\t'])
+ if '\n' not in tokenizer.get_vocab():
+ tokenizer.add_tokens(['\n'])
+
+ tokenizer.save(tokenizer_slow_save_path)
+
+ # 将训练的tokenizer转换为PreTrainedTokenizerFast并保存
+ # 转换是为了方便作为`AutoTokenizer`传到其他`huggingface`组件使用。
+
+ # 转换时要手动指定`pad_token`、`eos_token`等特殊token,因为它不指定你原来的tokenizer中哪些字符是这些特殊字符
+
+ slow_tokenizer = tokenizer
+ fast_tokenizer = PreTrainedTokenizerFast(
+ tokenizer_object=slow_tokenizer,
+ unk_token="[UNK]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ sep_token="[SEP]",
+ mask_token="[MASK]",
+ bos_token='[BOS]',
+ eos_token='[EOS]',
+ )
+
+ fast_tokenizer.save_pretrained(tokenizer_fast_save_path)
+
+ print(f'slow tokenizer save in path: {tokenizer_slow_save_path}')
+ print(f'fast tokenizer save in path: {tokenizer_fast_save_path}')
+
+ print(f"\ntrain tokenizer finished. you can use `AutoTokenizer.from_pretrained('{tokenizer_fast_save_path}')` to load and test your tokenizer.")
+
+
+def train_my_BPE_tokenizer() -> None:
+ '''
+ 使用sentencepiece训练BPE,缺点只能加载300万行,16G内存会OOM
+ '''
+ txt_corpus_file = PROJECT_ROOT + '/data/my_corpus.txt'
+ special_tokens = ["[PAD]", "[CLS]","[SEP]", "[MASK]", "[UNK]"]
+
+ tokenizer = spm.SentencePieceTrainer.train(
+ input=txt_corpus_file,
+ model_prefix='my_tokenizer',
+ vocab_size=40960,
+ user_defined_symbols=special_tokens,
+ max_sentence_length=1024,
+ shuffle_input_sentence=True,
+ # character_coverage=1.0,
+ model_type='bpe',
+ )
+
+ # 模型文件保存在my_tokenizer下
+
+
+if __name__ == '__main__':
+
+ cropus_file = PROJECT_ROOT + '/data/wiki.simple.txt'
+
+ train_my_huggingface_wiki_tokenizer(cropus_file=cropus_file, token_type='char') # token_type must be 'char' or 'byte'
+
+
diff --git a/utils/__pycache__/functions.cpython-310.pyc b/utils/__pycache__/functions.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e62a230fe356c0c23412faeb4ce6cd4d8e469748
Binary files /dev/null and b/utils/__pycache__/functions.cpython-310.pyc differ
diff --git a/utils/dpo_data_process.py b/utils/dpo_data_process.py
new file mode 100644
index 0000000000000000000000000000000000000000..002cba57e4a5de3de732b9a2941dee386c3f79c9
--- /dev/null
+++ b/utils/dpo_data_process.py
@@ -0,0 +1,249 @@
+import sys
+sys.path.extend(['.','..'])
+import os
+import re
+
+import torch
+import pandas as pd
+import numpy as np
+import ujson
+from rich import progress
+import pyarrow.parquet as pq
+
+from model.infer import ChatBot
+from logger import Logger
+from config import PROJECT_ROOT, InferConfig
+
+from utils.raw_data_process import delete_file
+
+log = Logger('data_process', save2file=True, file_name=PROJECT_ROOT + '/logs/raw_data_process.log')
+
+def process_alpaca_gpt4_data(max_len: int=512) -> None:
+ ''''
+ 处理RM高质量回答部分
+ 数据集:https://huggingface.co/datasets/c-s-ale/alpaca-gpt4-data-zh
+ '''
+
+ read_file = PROJECT_ROOT + '/data/raw_data/alpaca_gpt4_data_zh.json'
+ save_file = PROJECT_ROOT + '/data/alpaca_gpt4_data_zh.json'
+
+ max_len += 8
+
+ my_data = []
+
+ with open(read_file, 'r', encoding='utf-8') as f:
+ data = ujson.load(f)
+ print('length of {} is {}'.format(read_file, len(data)))
+ for item in progress.track(data):
+ prompt = item['instruction']
+ inputs = item['input']
+
+ response = item['output']
+
+ if len(response) > max_len: continue # 超长的不要
+
+ if len(inputs.strip()) > 0:
+ prompt = f"{prompt},{inputs}"
+
+ if len(prompt) > max_len: continue
+
+ if len(prompt) == 0 or len(response) == 0: continue
+
+ my_data.append(
+ {
+ 'prompt': prompt,
+ 'chosen': response
+ }
+ )
+
+ print('length of {} is {}'.format(save_file, len(my_data)))
+
+ with open(save_file, 'w', encoding='utf-8') as f:
+ ujson.dump(my_data, f, indent=4, ensure_ascii=False)
+
+def generate_alpaca_gpt4_reject_response(groups_cnt: int=50000, max_len: int=320, batch_size: int=32) -> None:
+ '''生成不是很满意的回答回答
+ '''
+ print('load model...')
+
+ # load config
+ infer_config = InferConfig()
+ chatbot = ChatBot(infer_config)
+
+ model = chatbot.model
+ tokenizer = chatbot.tokenizer
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
+
+ finetune_file = PROJECT_ROOT + '/data/alpaca_gpt4_data_zh.json'
+ save_rw_json_file = PROJECT_ROOT + '/data/my_dpo_alpaca_gpt4_data_zh.json'
+ # save_rw_parquet_file = PROJECT_ROOT + '/data/my_rlhf_dataset.parquet'
+
+ data = []
+ with open(finetune_file, 'r', encoding='utf-8') as f:
+ data = ujson.load(f)
+
+ log.info('length of {} is {}'.format(save_rw_json_file, len(data)), save_to_file=True)
+
+ model_outs = []
+ batch_prompt = []
+ process_item = []
+ for i, item in progress.track(enumerate(data), total=len(data)):
+ # 模型生成的答案为拒绝答案
+ batch_prompt.append(f"{item['prompt']}[EOS]")
+ process_item.append(item)
+
+ if i % 500 == 0:
+ print('process {} items.'.format(i))
+
+ if len(batch_prompt) >= batch_size or i == len(data) - 1:
+
+ encoded = tokenizer.batch_encode_plus(batch_prompt, truncation=False, padding=True)
+
+ with torch.no_grad():
+ input_ids = torch.LongTensor(encoded.input_ids).to(device)
+ attention_mask = torch.LongTensor(encoded.attention_mask).to(device)
+
+ outputs = model.my_generate(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ max_seq_len=infer_config.max_seq_len,
+ search_type='greedy',
+ )
+
+ outputs = tokenizer.batch_decode(outputs.cpu().numpy(), clean_up_tokenization_spaces=True, skip_special_tokens=True)
+
+ model_outs.extend(outputs)
+
+
+ batch_prompt = []
+
+ if len(model_outs) % 2000 == 0:
+ for i in range(len(model_outs)):
+ process_item[i]['reject'] = model_outs[i]
+ try:
+ with open(PROJECT_ROOT + '/data/outs.ckp.json', 'w', encoding='utf-8') as f:
+ ujson.dump(process_item, f, indent=4, ensure_ascii=False)
+ except Exception as e:
+ print(e)
+
+ for i in range(len(model_outs)):
+ process_item[i]['reject'] = model_outs[i]
+
+ with open(save_rw_json_file, 'w', encoding='utf-8') as f:
+ ujson.dump(process_item, f, indent=4, ensure_ascii=False)
+
+ # df = pd.DataFrame(data)
+ # write_single_parquet_file(save_rw_parquet_file, df)
+
+def replace_line(s: str) -> str:
+ '''将双斜杠替换为单斜杠,既是 \\n 替换为 \n
+ '''
+ return re.sub('\\\\n', '\n', s)
+
+def merge_rlhf_data(max_len: int=512) -> None:
+ ''''
+ 处理RM高质量回答部分
+ 数据集:https://huggingface.co/datasets/Skepsun/huozi_rlhf_data_json
+ https://huggingface.co/datasets/beyond/rlhf-reward-single-round-trans_chinese
+ '''
+ my_data = []
+ read_files = [
+ PROJECT_ROOT + '/data/raw_data/huozi_rlhf_data.json',
+ PROJECT_ROOT + '/data/my_dpo_alpaca_gpt4_data_zh.json',
+ ]
+ save_file = PROJECT_ROOT + '/data/my_dpo_data.json'
+
+ if os.path.exists(save_file):
+ assert delete_file(save_file)
+
+ max_len += 8 # for eos token
+
+ for read_file in read_files:
+ items = []
+ with open(read_file, 'r', encoding='utf-8') as f:
+ items = ujson.load(f)
+
+ for item in progress.track(items):
+ prompt, chosen, reject = item['prompt'], item['chosen'], item['reject']
+
+ if len(prompt) > max_len or len(chosen) > max_len or len(reject) > max_len:
+ continue
+
+ # reject.strip() == chosen.strip(),这两个相同的也不要
+ if len(prompt) == 0 or len(chosen) == 0 or len(reject) == 0 or reject.strip() == chosen.strip():
+ continue
+
+ my_data.append({
+ 'prompt': replace_line(prompt),
+ 'chosen': replace_line(chosen),
+ 'rejected': replace_line(reject),
+ })
+
+
+ read_files = [
+ PROJECT_ROOT + '/data/raw_data/train-00000-of-00001-789dc5dece0f1fc1.parquet',
+ PROJECT_ROOT + '/data/raw_data/test-00000-of-00001-8ecd46436fadcf7f.parquet',
+ ]
+
+ for read_file in read_files:
+ pf = pq.read_table(read_file)
+ for prompt, chosen, rejected in progress.track(zip(pf['prompt'], pf['chosen'], pf['rejected']), total=pf.num_rows):
+
+ prompt, chosen, rejected = prompt.as_py(), chosen.as_py(), rejected.as_py()
+
+ if len(prompt) > max_len or len(chosen) > max_len or len(rejected) > max_len:
+ continue
+
+ if len(prompt) == 0 or len(chosen) == 0 or len(rejected) == 0 or rejected.strip() == chosen.strip():
+ continue
+
+ my_data.append({
+ 'prompt': replace_line(prompt),
+ 'chosen': replace_line(chosen),
+ 'rejected': replace_line(rejected),
+ })
+ print('length of {} is {}'.format(save_file, len(my_data)))
+
+ with open(save_file, 'w', encoding='utf-8') as f:
+ ujson.dump(my_data, f, indent=4, ensure_ascii=False)
+
+def split_train_eval_dataset() -> None:
+ '''划分数据集
+ '''
+ rw_json_file = PROJECT_ROOT + '/data/my_dpo_data.json'
+ train_file = PROJECT_ROOT + '/data/my_dpo_train.json'
+ eval_file = PROJECT_ROOT + '/data/my_dpo_eval.json'
+
+ data = []
+
+ with open(rw_json_file, 'r', encoding='utf-8') as f:
+ data = ujson.load(f)
+
+ np.random.shuffle(data)
+ split_idx = int(len(data) * 0.99)
+
+ train_data = data[0: split_idx]
+ eval_data = data[split_idx: ]
+
+ log.info('train size: {}, eval size:{}'.format(len(train_data), len(eval_data)), save_to_file=True)
+
+ with open(train_file, 'w', encoding='utf-8') as f:
+ ujson.dump(train_data, f, indent=4, ensure_ascii=False)
+
+ with open(eval_file, 'w', encoding='utf-8') as f:
+ ujson.dump(eval_data, f, indent=4, ensure_ascii=False)
+
+
+
+if __name__ == '__main__':
+ # 1. 处理chosen文本
+ # process_alpaca_gpt4_data()
+
+ # 2. 生成rejected文本
+ # generate_alpaca_gpt4_reject_response()
+
+ # 合并数据集
+ merge_rlhf_data()
+
+ # 3. split train and eval dataset
+ # split_train_eval_dataset()
\ No newline at end of file
diff --git a/utils/functions.py b/utils/functions.py
new file mode 100644
index 0000000000000000000000000000000000000000..7c301b2fb55f23fddb7b8008f8cb6da9bb70bd44
--- /dev/null
+++ b/utils/functions.py
@@ -0,0 +1,378 @@
+from collections import Counter
+from typing import Union
+from dataclasses import make_dataclass, field
+from transformers import T5Config
+import ctypes
+import os
+import platform
+import re
+import torch
+
+from datasketch import MinHash, MinHashLSH
+from collections import defaultdict
+from transformers.trainer_callback import TrainerControl, TrainerState
+from transformers import TrainingArguments, TrainerCallback
+
+# from nltk import ngrams
+from nltk.translate.bleu_score import sentence_bleu
+import numpy as np
+import ujson
+
+from config import T5ModelConfig
+
+# 结束标点符号
+END_PUN = set(".。!!))》}】??\"”")
+
+class MyTrainerCallback(TrainerCallback):
+ log_cnt = 0
+ def on_log(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
+ '''
+ 在打印 n 次日志后清除cuda缓存,适合低显存设备,能防止OOM
+ '''
+ self.log_cnt += 1
+ if self.log_cnt % 2 == 0:
+ torch.cuda.empty_cache()
+
+ def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
+ '''
+ 在 on_epoch_end 时保存一次模型。
+ TrainingArguments的 save_strategy 中 epoch 和 steps 不兼容。要实现每隔 save_steps 步保存一次检查点,考虑到磁盘空间大小,最多只保存最近N个检查点。
+ '''
+ # 设置should_save=True并返回即可
+ control.should_save = True
+ return control
+
+
+# 保留中文和英文、下划线,不要标点符号
+NON_CHAR = re.compile("[^[\u4E00-\u9FA5|A-Za-z_0-9]")
+
+def _get_doc_mini_hash(doc: list[str] | str, num_perm: int) -> MinHash:
+ '''
+ 获取一段文本的mini hash
+ '''
+ mini_hash = MinHash(num_perm=num_perm)
+ for s in doc:
+ mini_hash.update(s.encode('utf-8'))
+ return mini_hash
+
+class DropDatasetDuplicate:
+
+ def __init__(self, threshold: float=0.85, num_perm: int=256) -> None:
+ '''
+ 获取一个数据集中所有重复(相似的超过threshold)的index,输入为:list[str],一个str元素为一段文本(doc)
+ 如输入: [a, b, c, d, c, d, e] 返回:{4, 5} (后面两个 c, d 的index)
+ '''
+ self.similar_index_cluster = defaultdict(set)
+ self.data_lsh = MinHashLSH(threshold=threshold, num_perm=num_perm)
+ self.num_perm = num_perm
+
+ def add_doc(self, index: object, doc: str,) -> set[int]:
+ '''
+ 添加文档,
+ index: 文档的索引
+ doc: 文档本身
+ '''
+
+ # 只保留中文和英文、下划线,不要标点符号
+ doc = ''.join(NON_CHAR.split(doc))
+ # doc = [''.join(t) for t in list(ngrams(doc, 3))]
+
+ doc_hash = _get_doc_mini_hash(doc, self.num_perm)
+ close_duplicates = self.data_lsh.query(doc_hash)
+
+ self.data_lsh.insert(index, doc_hash)
+
+ # 所有相似的doc在similar_index_cluster中的key都是最早出现的idx
+ # 如:data中索引inndex 2, 7, 8, 9, 10, 12 是相似的,则在similar_index_cluster中表现为 {2: {8, 9, 10, 12}}
+ if len(close_duplicates) > 0:
+ min_idx= min(close_duplicates)
+ self.similar_index_cluster[min_idx].add(index)
+
+ def get_duplicate_indexs(self):
+ '''
+ 返回所有的重复文档索引
+ '''
+ similar_index_cluster = self.similar_index_cluster
+ need_to_remove_idx = set()
+
+ for key_idx in similar_index_cluster.keys():
+ need_to_remove_idx |= similar_index_cluster[key_idx]
+
+ return need_to_remove_idx
+
+
+def get_T5_config(config: T5ModelConfig, vocab_size: int, decoder_start_token_id: int=0, eos_token_id: int=1) -> T5Config:
+ '''
+ 用户配置转换为T5Config
+ '''
+ t5_config = T5Config()
+ # t5_config.model_type = 'TextToTextModel'
+ # 初始化
+ t5_config.d_ff = config.d_ff
+ t5_config.d_kv = config.d_kv
+ t5_config.d_model = config.d_model
+ t5_config.num_decoder_layers = config.num_decoder_layers
+ t5_config.num_heads = config.num_heads
+ t5_config.num_layers = config.num_layers
+ t5_config.vocab_size = vocab_size
+ t5_config.decoder_start_token_id = decoder_start_token_id
+ t5_config.eos_token_id = eos_token_id
+
+ return t5_config
+
+def f1_p_r_compute(spo_list_pred: list, spo_list_true: list, repair: bool=False):
+ '''
+ spo_list: [ [(s,p,o)...], [(s,p,o)]], 每一行[(s,p,o)...]为一个句子中的spo
+ 计算spo的f1分数,精确率,召回率,
+ '''
+ assert len(spo_list_pred) == len(spo_list_true)
+
+ def repair_song_album(spo_list: list, song: list, album: list):
+ '''
+ 修复一条文本的'歌曲'和'专辑'的spo。对于歌曲x(subject)的关系歌手、作词、作曲,x必须同时存在于song和album中
+ '''
+ if len(song) == 0 and len(album) == 0:
+ return spo_list
+
+ ps = ['歌手', '作词', '作曲']
+ new_spo_list = []
+ for spo in spo_list:
+ s, p = spo[0], spo[1]
+ if p in ps and s in album and s not in song:
+ continue
+ new_spo_list.append(spo)
+
+ return new_spo_list
+
+ def repair_song_album_list(spo_list: list):
+ '''
+ '''
+ new_spo_list = []
+ for spos in spo_list:
+ song, album = [], []
+ for spo in spos:
+ s, p, o = spo
+ if p == '所属专辑':
+ song.append(s)
+ album.append(o)
+ new_spo_list.append(repair_song_album(spos, song, album))
+
+ return new_spo_list
+ if repair:
+ spo_list_pred = repair_song_album_list(spo_list_pred)
+ spo_list_true = repair_song_album_list(spo_list_true)
+
+ TP = 1e-10 # 正类判定为正类, A
+ # TN = 1e-10 # 负类判定为负类
+ TP_FP = 1e-10 # 检索到的, A + B
+ TP_FN = 1e-10 # 真正想要的,A + C
+ # FP = 1e-10 # 负类判定为正类
+ # FN = 1e-10 # 正类判定为负类
+
+ # p = a / (a + b)
+ # r = a / (a + c)
+ # f1 = 2pr / (p + r)
+
+ for i in range(len(spo_list_true)):
+ pred_set = set(spo_list_pred[i])
+ true_set = set(spo_list_true[i])
+
+ pred_true_set = pred_set & true_set # 预测和真实取交集
+
+ TP += len(pred_true_set) # 检索到且是想要的, A
+ TP_FP += len(pred_set) # 检索到的,包括想要的和不想要的,A + B
+ TP_FN += len(true_set) # 真正想要的, 包括检索到和没检索到的,A + C
+
+ p = TP / TP_FP
+ r = TP / TP_FN
+ f1 = (2 * p * r) / (p + r)
+
+ return f1, p, r
+
+
+def fixed_response(item: str) -> str:
+ '''
+ 修复被截断的回答,从末尾往回找第一个结束标点
+ '''
+ if len(item) <= 1: return item
+ if item[-1] in END_PUN: return item
+
+ n = len(item)
+ i = n - 1
+ while i > 0 and item[i] not in END_PUN:
+ i -= 1
+
+ return ''.join(item[0: i + 1])
+
+
+def fixed_space(sentence: str)->str:
+ '''单个空格删除,连续两个空格保留一个
+ '''
+ n = len(sentence)
+ new_sentence = []
+ i = 0
+ while i < n:
+ word = sentence[i]
+ if word != ' ':
+ new_sentence.append(word)
+ elif i + 1 < n and sentence[i + 1] == ' ':
+ new_sentence.append(word)
+ i += 1 # 两个空格保留一个,指针往下走一步
+ i += 1
+
+ return ''.join(new_sentence)
+
+def get_free_space_of_disk(folder: str='./') -> float:
+ '''
+ 获取指定目录所在磁盘大小,返回单位: GB
+ '''
+ res_val = 0.0
+ if platform.system() == 'Windows':
+ free_bytes = ctypes.c_ulonglong(0)
+ ctypes.windll.kernel32.GetDiskFreeSpaceExW(ctypes.c_wchar_p(folder), None, None, ctypes.pointer(free_bytes))
+ res_val = free_bytes.value
+ else:
+ st = os.statvfs(folder)
+ res_val = st.f_bavail * st.f_frsize
+
+ return res_val / (1024 ** 3)
+
+def my_average(arry_list: list[float]) -> float:
+ '''
+ 自定义均值计算,空数组返回0.0
+ '''
+ if len(arry_list) == 0: return 0.0
+
+ return np.average(arry_list)
+
+
+def json_to_dataclass(json_file: str, class_name: str='Config') -> type:
+ '''
+ 将json配置文件转换为dataclass
+ >>> example:
+ >>> data_class = json_to_dataclass('my_config.json', 'Config')
+ >>> my_config = data_class()
+ >>> assert my_config.name == 'Alice'
+ >>> my_config.name = 'Bob'
+ '''
+ json_dict = {}
+ with open(json_file, 'r', encoding='utf-8') as f:
+ json_dict = ujson.load(f)
+
+ # 将dict转换为可迭代的属性名称、属性类型,默认值
+ fields_list = []
+ for k, v in json_dict.items():
+ fields_list.append( (k, type(v), field(default=v)) )
+
+ data_class = make_dataclass(cls_name=class_name, fields=fields_list)
+
+ return data_class
+
+
+def get_path_of_suffix_files(root: str, suffix: str, with_create_time: bool=False) -> list:
+ '''
+ 获取指定目录下下指定后缀的所有文件的绝对路径
+ '''
+ suffix_files = []
+ for root, _, files in os.walk(root):
+ for file in files:
+ if file.endswith(suffix):
+ full_path = '{}/{}'.format(root, file)
+ if with_create_time:
+ suffix_files.append( (full_path, os.path.getctime(full_path)) )
+ else:
+ suffix_files.append(full_path)
+
+ return suffix_files
+
+def get_bleu4_score(reference: Union[str, list[str]], outputs: Union[str, list[str]], n_gram: int=4) -> float:
+ '''
+ 获取bleu4分数
+ '''
+
+ weights = np.ones(n_gram) * (1.0 / n_gram)
+
+ outputs_len, reference_len = len(outputs), len(reference)
+
+ if not type(reference) is list:
+ reference = list(reference)
+ if not type(outputs) is list:
+ outputs = list(outputs)
+
+ outputs_counter = extract_Ngram(outputs, n_gram=n_gram)
+ reference_counter = extract_Ngram(reference, n_gram=n_gram)
+
+ ngram_counter_clip = outputs_counter & reference_counter
+
+ clip_counter = np.zeros(n_gram)
+ output_ngram_counter = np.zeros(n_gram)
+
+ for (key, ngram), cnt in ngram_counter_clip.items():
+ clip_counter[ngram - 1] += cnt
+
+ for (key, ngram), cnt in outputs_counter.items():
+ output_ngram_counter[ngram - 1] += cnt
+
+ # print(clip_counter, output_ngram_counter)
+ if np.min(clip_counter) == 0.0:
+ return np.array(0.0)
+
+ precision_scores = clip_counter / output_ngram_counter
+
+ # bleu
+ log_precision_scores = weights * np.log(precision_scores)
+
+ # 几何平均形式求平均值然后加权
+ geometric_mean = np.exp(np.sum(log_precision_scores))
+ brevity_penalty = np.exp(1 - (reference_len / outputs_len))
+
+ # brevity_penalty = 1.0, bleu = sentence_bleu([reference], outputs)
+ # brevity_penalty = 1.0
+
+ bleu = brevity_penalty * geometric_mean
+
+ return bleu
+
+
+def extract_Ngram(words_list: list[str], n_gram: int) -> tuple:
+ '''
+ 获取一个句子的n_grama
+ return:
+ ngram_counter: key = ('w1 w2 ... wn', n_gram), value: count of key
+ '''
+ n = len(words_list)
+ ngram_counter = Counter()
+
+ for i in range(1, n_gram + 1):
+ for j in range(n - i + 1):
+ key = ' '.join(words_list[j: j + i])
+ ngram_counter[(key, i)] += 1
+
+ return ngram_counter
+
+
+def save_model_config(config_dict: dict, file: str) -> None:
+ '''
+ 将模型配置写入到json文件, 输入模型保存的目录及文件名
+ '''
+ # file = file.replace('\\', '/')
+ # file = '{}/model_config.json'.format('/'.join(file.split('/')[0: -1]))
+
+ with open(file, 'w', encoding='utf-8') as f:
+ ujson.dump(config_dict, f, indent=4, ensure_ascii=False)
+
+if __name__ == '__main__':
+ ref = '抱歉,我不知道ABB代表什么意思'
+ out = '我不明白ABB是什么意思'
+ b1 = sentence_bleu([list(out)], list(ref), weights=(0.25, 0.25, 0.25, 0.25))
+ print(b1)
+ b2 = get_bleu4_score(out, ref)
+ print(b2)
+
+
+ candidate_corpus = ['i', 'have', 'a', 'pen', 'on', 'my', 'desk', 'a', 'b', 'c', 'd','f','f']
+ reference_corpus = ['there', 'is', 'a', 'pen', 'on', 'my', 'desk', 'a', 'b', 'd', 'd', 'fd']
+
+ print('----')
+ print(sentence_bleu([reference_corpus], candidate_corpus, weights=(0.25, 0.25, 0.25, 0.25)))
+ print(get_bleu4_score(reference_corpus, candidate_corpus))
\ No newline at end of file
diff --git a/utils/logger.py b/utils/logger.py
new file mode 100644
index 0000000000000000000000000000000000000000..65c6283d3cc46db060d6ca1d9b6e46eda8ddad60
--- /dev/null
+++ b/utils/logger.py
@@ -0,0 +1,104 @@
+import logging
+from os.path import dirname, abspath
+import os
+import colorlog
+import time
+
+from config import PROJECT_ROOT
+
+# 自定义日志格式
+class Logger(object):
+ def __init__(self, logger_name: str, level=logging.DEBUG, std_out: bool=True, save2file: bool=False, file_name: str=None) ->None:
+ super().__init__()
+
+ if std_out == False and save2file == False:
+ raise ValueError('args: [std_out, save2file], at less one of them must be True')
+
+ # 默认的格式化
+ datefmt = "%Y-%m-%d %H:%M:%S"
+
+ # 输出到控制台
+ if std_out:
+
+ std_logfmt = "[%(asctime)s.%(msecs)03d] [%(levelname)s]: %(log_color)s%(message)s"
+
+ self.stdout_logger = logging.getLogger('{}_std'.format(logger_name))
+ self.stdout_logger.setLevel(level)
+
+ # 彩色输出格式化
+ log_colors_config = {
+ 'DEBUG': 'cyan',
+ 'INFO': 'green',
+ 'WARNING': 'yellow',
+ 'ERROR': 'red',
+ 'CRITICAL': 'red'
+ }
+ formatter = colorlog.ColoredFormatter(
+ fmt=std_logfmt,
+ datefmt=datefmt,
+ log_colors=log_colors_config,
+ )
+
+ sh = logging.StreamHandler()
+ sh.setLevel(level)
+ sh.setFormatter(formatter)
+
+ self.stdout_logger.addHandler(sh)
+
+
+ # 输出到文件
+ if save2file:
+
+ file_logfmt = "[%(asctime)s.%(msecs)03d] [%(levelname)s]: %(message)s"
+
+ self.file_logger = logging.getLogger('{}_file'.format(logger_name))
+ self.file_logger.setLevel(level)
+
+ base_dir = PROJECT_ROOT + '/logs' # 获取上级目录的绝对路径
+ if not os.path.exists(base_dir):
+ os.mkdir(base_dir)
+
+ log_file = ''
+ if file_name is not None:
+ log_file = file_name
+ else:
+ log_file = base_dir + '/' + logger_name + '-' + str(time.strftime('%Y%m%d', time.localtime())) +'.log'
+
+ fh = logging.FileHandler(filename=log_file, mode='a', encoding='utf-8')
+ fh.setLevel(level)
+ save_formatter = logging.Formatter(
+ fmt=file_logfmt,
+ datefmt=datefmt,
+ )
+ fh.setFormatter(save_formatter)
+ self.file_logger.addHandler(fh)
+
+ def info(self, message: str, std_out: bool=True, save_to_file: bool=False) -> None:
+ if std_out:
+ self.stdout_logger.info(message)
+ if save_to_file:
+ self.file_logger.info(message)
+
+ def debug(self, message: str, std_out: bool=True, save_to_file: bool=False) -> None:
+ if std_out:
+ self.stdout_logger.debug(message)
+ if save_to_file:
+ self.file_logger.debug(message)
+
+ def warning(self, message: str, std_out: bool=True, save_to_file: bool=False) -> None:
+ if std_out:
+ self.stdout_logger.warning(message)
+ if save_to_file:
+ self.file_logger.warning(message)
+
+ def error(self, message: str, std_out: bool=True, save_to_file: bool=False) -> None:
+ if std_out:
+ self.stdout_logger.error(message)
+ if save_to_file:
+ self.file_logger.error(message)
+
+if __name__ == "__main__":
+ log = Logger('test', std_out=True, save2file=True, file_name='../logs/test.log')
+ # log = Logger('test', save2file=True)
+ log.info('test info')
+ log.info('test file log', save_to_file=True)
\ No newline at end of file
diff --git a/utils/plot_data.ipynb b/utils/plot_data.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..5930cc9a6d0c6f74e4548fdbbafb361003ddcbac
--- /dev/null
+++ b/utils/plot_data.ipynb
@@ -0,0 +1,402 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import seaborn as sns \n",
+ "from matplotlib import pyplot as plt\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sft_log_file = '../logs/sft_train_log_20231211-2250.csv'\n",
+ "dpo_log_file = '../logs/dpo_train_log_20231213-0214.csv'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Unnamed: 0 | \n",
+ " epoch | \n",
+ " learning_rate | \n",
+ " loss | \n",
+ " step | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.00 | \n",
+ " 1.400000e-08 | \n",
+ " 2.5986 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.00 | \n",
+ " 1.400000e-06 | \n",
+ " 2.6353 | \n",
+ " 100 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0.01 | \n",
+ " 2.800000e-06 | \n",
+ " 2.4905 | \n",
+ " 200 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0.01 | \n",
+ " 4.200000e-06 | \n",
+ " 2.3610 | \n",
+ " 300 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 0.01 | \n",
+ " 5.600000e-06 | \n",
+ " 2.2837 | \n",
+ " 400 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 epoch learning_rate loss step\n",
+ "0 0 0.00 1.400000e-08 2.5986 1\n",
+ "1 1 0.00 1.400000e-06 2.6353 100\n",
+ "2 2 0.01 2.800000e-06 2.4905 200\n",
+ "3 3 0.01 4.200000e-06 2.3610 300\n",
+ "4 4 0.01 5.600000e-06 2.2837 400"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sft_df = pd.read_csv(sft_log_file)\n",
+ "dpo_df = pd.read_csv(dpo_log_file)\n",
+ "sft_df.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# plt.title('learning_rate')\n",
+ "sns.lineplot(\n",
+ " x=\"step\", \n",
+ " y=\"learning_rate\", \n",
+ " data=sft_df,\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.title('sft loss')\n",
+ "sns.lineplot(\n",
+ " x=\"step\", \n",
+ " y=\"loss\", \n",
+ " color='dodgerblue',\n",
+ " data=sft_df,\n",
+ " )\n",
+ "plt.savefig('../img/sft_loss.png')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Unnamed: 0 | \n",
+ " epoch | \n",
+ " learning_rate | \n",
+ " logits/chosen | \n",
+ " logits/rejected | \n",
+ " logps/chosen | \n",
+ " logps/rejected | \n",
+ " loss | \n",
+ " rewards/accuracies | \n",
+ " rewards/chosen | \n",
+ " rewards/margins | \n",
+ " rewards/rejected | \n",
+ " step | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.00 | \n",
+ " 1.000000e-08 | \n",
+ " -3.525447 | \n",
+ " -3.550683 | \n",
+ " -256.702698 | \n",
+ " -143.308243 | \n",
+ " 0.7689 | \n",
+ " 0.437500 | \n",
+ " -0.044875 | \n",
+ " -0.072844 | \n",
+ " 0.027969 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.01 | \n",
+ " 2.000000e-07 | \n",
+ " -3.509013 | \n",
+ " -3.557282 | \n",
+ " -270.281708 | \n",
+ " -150.850433 | \n",
+ " 0.7438 | \n",
+ " 0.486842 | \n",
+ " 0.002034 | \n",
+ " -0.020194 | \n",
+ " 0.022228 | \n",
+ " 20 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0.01 | \n",
+ " 4.000000e-07 | \n",
+ " -3.509622 | \n",
+ " -3.544898 | \n",
+ " -286.783966 | \n",
+ " -162.946915 | \n",
+ " 0.7038 | \n",
+ " 0.529688 | \n",
+ " 0.024229 | \n",
+ " 0.046643 | \n",
+ " -0.022414 | \n",
+ " 40 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0.02 | \n",
+ " 6.000000e-07 | \n",
+ " -3.521220 | \n",
+ " -3.554179 | \n",
+ " -267.424896 | \n",
+ " -151.984573 | \n",
+ " 0.7218 | \n",
+ " 0.507812 | \n",
+ " 0.004973 | \n",
+ " 0.008775 | \n",
+ " -0.003803 | \n",
+ " 60 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 0.03 | \n",
+ " 8.000000e-07 | \n",
+ " -3.513215 | \n",
+ " -3.551011 | \n",
+ " -281.538208 | \n",
+ " -157.784546 | \n",
+ " 0.6995 | \n",
+ " 0.548437 | \n",
+ " 0.057179 | \n",
+ " 0.069537 | \n",
+ " -0.012358 | \n",
+ " 80 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 epoch learning_rate logits/chosen logits/rejected \\\n",
+ "0 0 0.00 1.000000e-08 -3.525447 -3.550683 \n",
+ "1 1 0.01 2.000000e-07 -3.509013 -3.557282 \n",
+ "2 2 0.01 4.000000e-07 -3.509622 -3.544898 \n",
+ "3 3 0.02 6.000000e-07 -3.521220 -3.554179 \n",
+ "4 4 0.03 8.000000e-07 -3.513215 -3.551011 \n",
+ "\n",
+ " logps/chosen logps/rejected loss rewards/accuracies rewards/chosen \\\n",
+ "0 -256.702698 -143.308243 0.7689 0.437500 -0.044875 \n",
+ "1 -270.281708 -150.850433 0.7438 0.486842 0.002034 \n",
+ "2 -286.783966 -162.946915 0.7038 0.529688 0.024229 \n",
+ "3 -267.424896 -151.984573 0.7218 0.507812 0.004973 \n",
+ "4 -281.538208 -157.784546 0.6995 0.548437 0.057179 \n",
+ "\n",
+ " rewards/margins rewards/rejected step \n",
+ "0 -0.072844 0.027969 1 \n",
+ "1 -0.020194 0.022228 20 \n",
+ "2 0.046643 -0.022414 40 \n",
+ "3 0.008775 -0.003803 60 \n",
+ "4 0.069537 -0.012358 80 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dpo_df.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.title('dpo loss')\n",
+ "sns.lineplot(\n",
+ " x=\"step\", \n",
+ " y=\"loss\", \n",
+ " color='orange',\n",
+ " data=dpo_df[0: 6000 // 20], # 只使用了到6000步的checkpoit,后面的有过拟合迹象\n",
+ " )\n",
+ "plt.savefig('../img/dpo_loss.png')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import sys, os\n",
+ "root = os.path.realpath('.').replace('\\\\','/').split('/')[0: -1]\n",
+ "root = '/'.join(root)\n",
+ "sys.path.append(root)\n",
+ "\n",
+ "from model.infer import ChatBot\n",
+ "from config import InferConfig\n",
+ "\n",
+ "bot = ChatBot(InferConfig())\n",
+ "model = bot.model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "model parameters size: 210.19 M = 0.21B\n",
+ "GPU memory used: 0.40GB\n"
+ ]
+ }
+ ],
+ "source": [
+ "param_size = sum([p.numel() for p in model.parameters()]) / 1000 / 1000\n",
+ "print('model parameters size: {:.2f} M = {:.2f}B'.format( param_size , param_size / 1000))\n",
+ "\n",
+ "print('GPU memory used: {:.2f}GB'.format(torch.cuda.memory_allocated() / (1024 ** 3)))"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "py310",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/utils/plt_log.py b/utils/plt_log.py
new file mode 100644
index 0000000000000000000000000000000000000000..eca0b87a2fd9a8dace0079098c2b4fbc784cfaa9
--- /dev/null
+++ b/utils/plt_log.py
@@ -0,0 +1,82 @@
+# log 画图
+from datetime import datetime
+import numpy as np
+import pandas as pd
+
+from matplotlib import pyplot as plt
+
+import sys
+sys.path.extend(['.', '..'])
+
+from config import PROJECT_ROOT
+
+def str_to_timestamp(string: str) -> float:
+ '''
+ '''
+ date_fmt = '%Y-%m-%d %H:%M:%S.%f'
+ string = string.replace('[', '').replace(']', '')
+
+ # 转化为时间戳
+ return datetime.strptime(string, date_fmt).timestamp()
+
+def plot_traing_loss(log_file: str, start_date: str, end_date: str, pic_save_to_file: str=None) -> None:
+ '''
+ 将log日志中记录的画图,按需保存到文件,由于log日志打印内容较多,需要指定要打印loss的开始时间和结束时间
+ examlpe:
+ >>> plot_traing_loss('./logs/trainer.log', '[2023-10-01 08:44:39.303]', '[2023-10-01 11:29:12.376]')
+ >>> plot_traing_loss('./logs/trainer.log', '2023-10-01 08:44:39.303', '2023-10-01 11:29:12.376')
+ '''
+ start_timestamp = str_to_timestamp(start_date)
+ end_timestamp = str_to_timestamp(end_date)
+
+ loss_list = []
+ with open(log_file, 'r', encoding='utf-8') as f:
+
+ for line in f:
+ if 'training loss: epoch:' in line:
+ line = line.split(' ')
+ date = ' '.join(line[0: 2])
+ if str_to_timestamp(date) < start_timestamp:
+ continue
+
+ if str_to_timestamp(date) > end_timestamp:
+ break
+
+ if len(line) != 9: continue
+
+ epoch = line[5][6: -1] # 'epoch:0,'
+ step = line[6][5: -1] # 'step:0,'
+ loss = float(line[7][5: -1]) # 'loss:0.11086619377136231\n'
+ device = line[8][7: -1]
+ loss_list.append([epoch, step, loss, device])
+
+ df = pd.DataFrame(loss_list, columns=['epoch', 'step', 'loss', 'device'])
+
+ # 多项式拟合
+ x = list(range(0, len(df['loss'])))
+ x_range = np.arange(0, len(df['loss']), step=0.005)
+ fit3 = np.polyfit(x, df['loss'], 3)
+ p1d = np.poly1d(fit3)
+ y_fit = p1d(x_range)
+
+ plt.figure(figsize=(8, 6),dpi=100)
+ plt.plot(df['loss'],'g',label = 'loss')
+ plt.plot(x_range, y_fit, 'r', label='fit loss')
+ plt.ylabel('loss')
+ plt.xlabel('sampling step')
+ plt.legend() #个性化图例(颜色、形状等)
+
+ if pic_save_to_file is not None:
+ plt.savefig(pic_save_to_file)
+
+ plt.show()
+
+
+if __name__ == '__main__':
+
+ # plot_traing_loss(PROJECT_ROOT + '/logs/chat_trainer-20231011.log', '[2023-10-11 11:04:53.960]', '[2023-10-18 01:41:40.540]', pic_save_to_file=PROJECT_ROOT + '/img/train_loss.png')
+
+ # plot_traing_loss(PROJECT_ROOT + '/logs/chat_trainer-20231018.log', '[2023-10-18 02:06:28.137]', '[2023-10-18 18:03:35.230]', pic_save_to_file=PROJECT_ROOT + '/img/finetune_loss.png')
+
+ pass
+
\ No newline at end of file
diff --git a/utils/raw_data_process.py b/utils/raw_data_process.py
new file mode 100644
index 0000000000000000000000000000000000000000..3aaeb21bafe55206f24abe16de6edee6411ba722
--- /dev/null
+++ b/utils/raw_data_process.py
@@ -0,0 +1,1216 @@
+import ujson
+import re
+from os.path import dirname, abspath, exists, isdir
+from os import remove, mkdir, walk
+import time
+from collections import defaultdict
+
+from matplotlib import pyplot as plt
+import codecs, csv
+import pandas as pd
+import numpy as np
+from rich import progress
+from rich.table import Table
+from rich.console import Console
+from fastparquet import ParquetFile, write
+import pyarrow.parquet as pq
+from opencc import OpenCC
+
+import sys
+sys.path.extend(['.','..'])
+
+from logger import Logger
+from config import PROJECT_ROOT
+from utils.functions import get_path_of_suffix_files, DropDatasetDuplicate
+
+log = Logger('data_process', save2file=True, file_name=PROJECT_ROOT + '/logs/raw_data_process.log')
+
+punctuation = set("!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~.,;《》?!“”‘’@#¥%…&×()——+【】{};;●,。&~、|\s::\n")
+en_punctuation = ",().!;:"
+zh_punctuation = ",()。!;:"
+
+def delete_file(file: str)-> bool:
+ '''
+ 询问删除文件
+ '''
+ if exists(file):
+ ans = input('delete file: {} ? Yes (y) or No (n)'.format(file))
+ ans = ans.lower()
+ if ans in ('yes', 'y'):
+ remove(file)
+ print('deleted.')
+ return True
+ return False
+
+def remove_duplicate_punctuation(sentence: str) -> str:
+ '''
+ 删除句子中重复的标点符号、重复的空格,同时将换行变为特殊字符'\n'
+ '''
+ # 将空格(全角空格)替换为逗号, 可能会有重复的空客,下面删除重复标点会删除
+ sentence = re.sub(' | ', ',', sentence)
+
+ ans = ''
+ n = len(sentence)
+ p = 0
+ while p < n:
+ ans += sentence[p]
+
+ while p + 1 < n and sentence[p] in punctuation and sentence[p + 1] in punctuation:
+ p += 1
+ p += 1
+
+ return ans
+
+def convert_en_punctuation_to_zh_punct(sentence: str) -> str:
+ '''
+ 将句子中的英文标点替换文中文标点
+ '''
+ n = len(zh_punctuation)
+ for i in range(n):
+ sentence = sentence.replace(en_punctuation[i], zh_punctuation[i])
+ return sentence
+
+def get_sentences_dice_similarity(st_a: str, st_b: str) -> float:
+ '''
+ 获取两个句子的Dice相似度(Dice similarity)
+ s(a, b) = 2 * len( set(a) & set(b) ) / (len(set(a)) + len(set(b)))
+ '''
+ set_a, set_b = set(st_a), set(st_b)
+ total_len = len(set_a) + len(set_b)
+
+ if total_len == 0: return 0.0
+
+ inter_set = set_a & set_b
+
+ return ( 2 * len(inter_set)) / total_len
+
+def write_single_parquet_file(file_name: str, data_frame: pd.DataFrame) -> None:
+ '''
+ 将dataframe写到单独的parquet file中
+ '''
+ append = False
+ if exists(file_name):
+ append = True
+
+ write(file_name, data_frame, compression='GZIP',append=append)
+
+
+def read_and_write_template(read_file: str, write_to_file: str, call_back: object, group_cnt: int=10000) -> None:
+ '''
+ 处理数据读写模板,需要提供一个回调函数call_back,
+ read_file: 原始数据文件
+ write_to_file:处理后的要保存数据文件
+ call_back:函数输入一个字符串,输出一个处理后的字典dict,如果输入的字符串为无效数据,请返回None
+ group_cnt: parquet file分割行数
+ 如:
+ >>> def call_back(inputs: str) -> dict:
+ >>> if check(inputs) not valid:
+ >>> return None
+ ...
+ ... do something for inputs
+ ...
+ >>> my_dict = {
+ >>> 'prompt': inputs['p'],
+ >>> 'response': inputs['a1'] + inputs['a2'],
+ >>> ...
+ >>> }
+ >>> return my_dict
+ '''
+
+ log.info('process file:{}'.format(read_file), save_to_file=True)
+ start = time.time()
+
+ raw_line_cnt = 0
+ keep_line_cnt = 0
+
+ with progress.open(read_file, 'r', encoding='utf-8') as f_read:
+ cur_rows = []
+ append = cur_rows.append
+ for line in f_read:
+ try:
+ raw_line_cnt += 1
+
+ write_dict = call_back(line)
+
+ if write_dict is None: continue
+
+ keep_line_cnt += 1
+ append(write_dict)
+ # ujson.dump(write_obj, f_write, indent=4, ensure_ascii=False)
+ # ujson.dump(write_obj, f_write, ensure_ascii=False,)
+ # f_write.write('\n')
+
+ if len(cur_rows) >= group_cnt:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(write_to_file, df)
+ cur_rows = []
+ append = cur_rows.append
+
+ except Exception as e:
+ # log.error('处理文件异常:{}, content:{}'.format(str(e), line))
+ print(line)
+ raise e
+
+ # end for
+ # 处理末尾部分
+ if len(cur_rows) > 0:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(write_to_file, df)
+ cur_rows = []
+
+ end = time.time()
+
+ log.info('原始文件:{},共{}行,处理后剩余{}行,保存到文件:{}。耗时:{:.6}s'\
+ .format(read_file, raw_line_cnt, keep_line_cnt, write_to_file, end - start), save_to_file=True)
+
+
+
+#=====================================数据集处理=================================
+
+def process_web_text(keep_start: int=5, response_less_word: int=10) -> None:
+ '''
+ 处理425万社区问答webtext2019zh知识类数据集
+ keep_start: 只保留点赞数大于keep_start的问答
+ response_less_word: 答案至少要有response_less_word个字
+ '''
+ file_names = [
+ '/data/raw_data/web_text_zh_test.json',
+ '/data/raw_data/web_text_zh_train.json',
+ '/data/raw_data/web_text_zh_valid.json',
+ ]
+
+ save_file_name = PROJECT_ROOT + '/data/my_data/my_web_text_zh.parquet'
+
+ # 后续append写入,存在文件先删除
+ if exists(save_file_name):
+ assert delete_file(save_file_name)
+
+ def process_function(line: str) -> dict:
+ item = ujson.loads(line)
+
+ if item['star'] < keep_start or len(item['content']) < response_less_word:
+ return None
+
+ # 数据清洗
+ # 去除重复的标点符号
+ prompt = remove_duplicate_punctuation(item['title'])
+ response = remove_duplicate_punctuation(item['content'])
+ write_dict = {
+ "prompt": prompt,
+ "response": response,
+ }
+ return write_dict
+
+ for file_name in file_names:
+ read_file = PROJECT_ROOT + file_name
+
+ read_and_write_template(read_file, save_file_name, process_function)
+
+
+def process_bake_qa(response_less_word: int=15) -> None:
+ '''
+ 处理147万百度知道知识类数据集
+
+ '''
+ file_names = [
+ '/data/raw_data/baike_qa_train.json',
+ '/data/raw_data/baike_qa_valid.json',
+ ]
+
+ save_file_name = PROJECT_ROOT + '/data/my_data/my_baike_qa.parquet'
+ # 后续append写入,存在文件先删除
+ if exists(save_file_name):
+ assert delete_file(save_file_name)
+
+ def process_function(line: str) -> dict:
+ item = ujson.loads(line)
+
+ if len(item['answer']) < response_less_word:
+ return None
+
+ # 数据清洗
+ prompt = ''
+ if get_sentences_dice_similarity(item['title'], item['desc']) >= 0.90:
+ # title 和desc 相似度过高,只用title作为问题
+ prompt = item['title']
+ else:
+ # title 和desc拼接形成问题
+ prompt = "{}{}".format(item['title'], item['desc'])
+
+ # 删除\r
+ prompt = prompt.replace('\r','')
+
+ # 删除重复的标点符号
+ prompt = remove_duplicate_punctuation(prompt)
+
+ # 去除重复的标点符号
+ response = item['answer'].replace('\r','')
+ response = remove_duplicate_punctuation(response)
+
+ # 剔除问题和答案过短的数据
+ if len(prompt) < 3 or len(response) < response_less_word:
+ return None
+
+ write_dict = {
+ "prompt": prompt,
+ "response": response,
+ }
+
+ return write_dict
+
+ for file_name in file_names:
+ read_file = PROJECT_ROOT + file_name
+
+ read_and_write_template(read_file, save_file_name, process_function)
+
+
+def repair_line_error_csv_file(raw_csv_file: str, save_suffix: str, read_encoding: str='utf-8', ) -> None:
+ '''
+ 修复csv文件,将文件中换行符替换为\n,字段中的英文字符替换为中文字符
+ '''
+
+ with codecs.open(raw_csv_file, 'r', encoding=read_encoding, errors='ignore') as f:
+ reader = csv.reader(f)
+ new_lines = []
+
+ for line in reader:
+ for i in range(len(line)):
+ line[i] = line[i].replace('\n', '\\n') # 处理异常的换行符
+ line[i] = line[i].replace(',', ',') # 英文逗号换为中文逗号
+ new_lines.append(line)
+
+ with open(raw_csv_file[: -4] + save_suffix, 'w', encoding='utf-8', newline="") as f:
+ writer = csv.writer(f)
+ writer.writerows(new_lines)
+
+def process_chinese_medical_datasets(response_less_word: int=15) -> None:
+ '''
+ 处理中国医药领域问答数据集
+ '''
+ raw_dataset_dir = PROJECT_ROOT + '/data/raw_data/chinese_medical_dialogue_datasets'
+
+ raw_data_files = get_path_of_suffix_files(raw_dataset_dir, '.csv')
+
+ # 如果没有修复的文件,则修复csv文件换行异常
+ suffix = '.repaired.csv'
+ need_to_repair_files = [
+ file_name for file_name in raw_data_files \
+ if not file_name.endswith(suffix) and file_name[0: -4] + suffix not in raw_data_files
+ ]
+
+ # 修复异常换行的文件
+ for file_name in need_to_repair_files:
+ repair_line_error_csv_file(file_name, suffix, read_encoding='gb2312')
+
+ # 重新获取原始文件(即修复后的文件)
+ raw_data_files = get_path_of_suffix_files(raw_dataset_dir, suffix)
+
+ # 获取要保存的文件名
+ save_file = PROJECT_ROOT + '/data/my_data/my_chinese_medical_dialogue.parquet'
+ # for file_name in raw_data_files:
+ # file_name = file_name.split('/')[-1][0: -(len(suffix))] + '.parquet'
+ # file_name = PROJECT_ROOT + '/data/my_data/' + file_name
+ # save_files.append(file_name)
+
+ # 后续append写入,存在文件先删除
+ if exists(save_file):
+ assert delete_file(save_file)
+
+ def process_function(line: str) -> dict:
+ # department,title,ask,answer
+ item = line.split(',') # csv文件逗号分割
+ if len(item) < 4:
+ print(item)
+ return None
+
+ if len(item[3]) < response_less_word:
+ return None
+
+ # 数据清洗
+ prompt = ''
+ if get_sentences_dice_similarity(item[1], item[2]) >= 0.90:
+ # title 和ask 相似度过高,只用ask作为问题
+ prompt = item[2]
+ else:
+ # title 和 ask 拼接形成问题
+ prompt = "{}{}".format(item[1], item[2])
+
+ # 删除\r
+ prompt = prompt.replace('\r','')
+
+ # 删除重复的标点符号
+ prompt = remove_duplicate_punctuation(prompt)
+
+ # 去除重复的标点符号
+ response = ''.join(item[3: ]).replace('\r','')
+ response = remove_duplicate_punctuation(response)
+
+ # 剔除问题和答案过短的数据
+ if len(prompt) < 3 or len(response) < response_less_word:
+ return None
+
+ write_dict = {
+ "prompt": prompt,
+ "response": response,
+ }
+
+ return write_dict
+
+ for i, file_name in enumerate(raw_data_files):
+ read_file = file_name
+
+ read_and_write_template(read_file, save_file, process_function)
+
+
+def process_finace_dataset(prompt_less_word: int=10, response_less_word: int=15) -> None:
+ '''
+ 处理金融问答数据集
+ '''
+ finace_data_file = PROJECT_ROOT + '/data/raw_data/financezhidao_filter.csv'
+
+ suffix = '.repaired.csv'
+ if not exists(finace_data_file[0: -4] + suffix):
+ repair_line_error_csv_file(finace_data_file, save_suffix=suffix, read_encoding='utf-8')
+
+
+ def process_function(line: str) -> dict:
+ # title,prompt,reply,is_best
+ item = line.split(',') # csv文件逗号分割
+ if len(item) < 4:
+ print(item)
+ return None
+
+ if len(item[0]) + len(item[1]) < prompt_less_word or len(item[2]) < response_less_word:
+ return None
+
+ # 数据清洗
+ prompt = ''
+ if get_sentences_dice_similarity(item[0], item[1]) >= 0.90:
+ # title 和prompt 相似度过高,只用最长的作为问题
+ prompt = item[0] if len(item[0]) > len(item[0]) else item[1]
+ else:
+ # title 和 ask 拼接形成问题
+ prompt = "{}{}".format(item[0], item[1])
+
+ # 删除\r
+ prompt = prompt.replace('\r','')
+
+ # 删除重复的标点符号
+ prompt = remove_duplicate_punctuation(prompt)
+
+ # 去除重复的标点符号
+ response = ''.join(item[2]).replace('\r','')
+ response = remove_duplicate_punctuation(response)
+
+ # 剔除问题和答案过短的数据
+ if len(prompt) < prompt_less_word or len(response) < response_less_word:
+ return None
+
+ write_obj = {
+ "prompt": prompt,
+ "response": response,
+ }
+
+ return write_obj
+
+
+ read_file = finace_data_file[0: -4] + suffix
+ write_file = PROJECT_ROOT + '/data/my_data/' + read_file.split('/')[-1][0: -(len(suffix))] + '.parquet'
+
+ # 后续append写入,存在文件先删除
+ if exists(write_file):
+ assert delete_file(write_file)
+
+ read_and_write_template(read_file, write_file, process_function)
+
+
+def process_zhihu_kol_dataset(prompt_less_word: int=4, response_less_word: int=10, group_cnt: int=10000) -> None:
+ '''
+ 处理知乎数据集
+
+ '''
+ raw_zhihu_data_path = abspath(dirname(dirname(__file__))) + '/data/raw_data/zhihu-kol'
+ file_names = []
+ suffix = '.parquet'
+ for root, _, files in walk(raw_zhihu_data_path):
+ for file in files:
+ if file.endswith(suffix):
+ file_names.append(root + '/' + file)
+
+
+ def process_function(sentence: str) -> str:
+ '''
+ 针对一个句子的数据清洗
+ '''
+ # 删除\r
+ sentence = sentence.replace('\r','')
+
+ # 删除重复的标点符号
+ sentence = remove_duplicate_punctuation(sentence)
+
+ return sentence
+
+ # row keys :['INSTRUCTION', 'RESPONSE', 'SOURCE', 'METADATA']
+ save_file = PROJECT_ROOT + '/data/my_data/zhihu_kol.parquet'
+
+ # 后续append写入,存在文件先删除
+ if exists(save_file):
+ assert delete_file(save_file)
+
+ all_cnt, keep_cnt = 0, 0
+ cur_rows = []
+ append = cur_rows.append
+ for file in file_names:
+ pf = pq.read_table(file)
+ log.info('process file: {}'.format(file), save_to_file=True)
+
+ for prompt, response in progress.track(zip(pf['INSTRUCTION'], pf['RESPONSE']), total=pf.num_rows):
+ all_cnt += 1
+ prompt, response = prompt.as_py(), response.as_py()
+
+ prompt = process_function(prompt)
+ response = process_function(response)
+
+ if len(prompt) < prompt_less_word or len(response) < response_less_word:
+ continue
+
+ keep_cnt += 1
+ write_dict = {
+ 'prompt': prompt,
+ 'response': response,
+ }
+ append(write_dict)
+
+ if len(cur_rows) >= group_cnt:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(save_file, df)
+ cur_rows = []
+ append = cur_rows.append
+
+ # end for
+ if len(cur_rows) > 0:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(save_file, df)
+ cur_rows = []
+
+ log.info('save file to: {}, 全部数据共{}行,清洗后剩余{}行'.format(save_file, all_cnt, keep_cnt), save_to_file=True)
+
+
+def process_belle_knowledge_enhanced_dataset(response_less_words: int=15, group_cnt: int=10000) -> None:
+ '''
+ 处理belle开源的知识增强数据集
+ '''
+ file_names = [
+ '/data/raw_data/bell_open_source/train_2M_CN.json',
+ '/data/raw_data/bell_open_source/train_0.8M_CN.json',
+ '/data/raw_data/bell_open_source/Belle_open_source_1M.json',
+ ]
+
+ save_file = PROJECT_ROOT + '/data/my_data/my_belll_3M_cn.parquet'
+
+ # 后续append写入,存在文件先删除
+ if exists(save_file):
+ assert delete_file(save_file)
+
+ def process_function(line: str) -> dict:
+ '''
+ 每行的处理函数
+ '''
+ item = ujson.loads(line)
+ prompt = item['instruction']
+ response = item['output']
+
+ # 剔除翻译任务
+ if '翻译' in prompt or 'translate' in prompt.lower():
+ return None
+
+ # 删除表格类任务
+ if '表格' in prompt or '-----' in prompt or '-----' in response:
+ return None
+
+ if len(response) < response_less_words:
+ return None
+
+ prompt = remove_duplicate_punctuation(prompt)
+ response = remove_duplicate_punctuation(response)
+
+ if len(response) < response_less_words:
+ return None
+
+ write_dict = {
+ 'prompt': prompt,
+ 'response': response
+ }
+
+ return write_dict
+
+ for file in file_names:
+ file = PROJECT_ROOT + file
+
+ read_and_write_template(file, save_file, process_function)
+
+def convert_wiki_to_simple_zh(buffer_size: int=10000) -> None:
+ '''
+ 将繁体wiki转换为简体Wiki
+ '''
+ raw_zh_wiki_file = PROJECT_ROOT + '/data/raw_data/wiki.txt'
+ save_zh_wiki_simple_file = PROJECT_ROOT + '/data/raw_data/wiki.simple.txt'
+
+ if exists(save_zh_wiki_simple_file):
+ assert delete_file(save_zh_wiki_simple_file)
+
+ cc = OpenCC('t2s')
+ cur_rows = []
+ append = cur_rows.append
+ def procees_line(line: str) -> str:
+ '''
+ 处理一行文本
+ '''
+ # 将繁体转换为简体
+ line = cc.convert(line)
+
+ line = re.sub(r"\「|\」|\「|\」|\『|\』", '\"', line) # 将「」「」『』这些符号替换成引号
+ line = re.sub(r"\,\)|\;\)", ')', line) # 罗德·法尼(Rod Dodji Fanni,)
+ line = re.sub(r"\(\,|\(\,", '(', line) # 阿魯拉·基馬(Alula Girma (,
+
+ line = convert_en_punctuation_to_zh_punct(line) # 英文标点转换为中文标点
+ line = remove_duplicate_punctuation(line) # 删除中文空括号和重复的标点
+
+ return line
+ with progress.open(raw_zh_wiki_file, 'r', encoding='utf-8') as read_f:
+ with open(save_zh_wiki_simple_file, 'a', encoding='utf-8') as write_f:
+ for line in read_f:
+ line = procees_line(line)
+ if len(line.strip()) == 0: continue
+
+ line = '{}\n'.format(line)
+ append(line)
+
+ if len(cur_rows) >= buffer_size:
+ write_f.writelines(cur_rows)
+ cur_rows = []
+ append = cur_rows.append
+
+ if len(cur_rows) > 0:
+ write_f.writelines(cur_rows)
+ cur_rows = []
+
+
+def process_zh_wiki_data_to_datset(groups_cnt: int=10000, max_len: int=512, seed: int=23333) -> None:
+ '''
+ 将Wiki中文数转换为问答数据集
+ wiki 下载地址:https://dumps.wikimedia.org/zhwiki/
+ 将下载的bz2文件转换为wiki.txt参考:https://github.com/apertium/WikiExtractor
+ '''
+ raw_zh_wiki_file = PROJECT_ROOT + '/data/raw_data/wiki.txt'
+ zhwiki_simple_file = PROJECT_ROOT + '/data/my_data/wiki_zh_simple.parquet'
+
+ # 删除已经存在的数据
+ if exists(zhwiki_simple_file):
+ assert delete_file(zhwiki_simple_file)
+
+ # 将繁体转换为简体
+ cc = OpenCC('t2s')
+ all_cnt, keep_cnt = 0, 0
+
+ # 构造问题的前缀
+ prompt_prefix = [
+ '什么是{}?',
+ '介绍一下{}',
+ '介绍一下什么是{}',
+ '写一篇关于{}的介绍',
+ '{}是什么?',
+ '你知道{}吗?',
+ '生成关于{}的介绍',
+ '我想知道关于{}的详细信息',
+ '你了解{}吗?',
+ '请解释一下{}',
+ '对于{},你有什么了解或看法吗?',
+ '请告诉我关于{}的信息',
+ '请简要描述一下{}',
+ '请提供有关{}的一些详细信息',
+ '能否解释一下{}是什么?',
+ '请分享一些关于{}的背景知识',
+ '请简要概括一下{}',
+ '能给我一些关于{}的背景资料吗?',
+ '有关{}的信息可以分享一下吗?',
+ '你能告诉我{}是什么吗?',
+ ]
+
+ def procees_line(line: str) -> str:
+ '''
+ 处理一行文本
+ '''
+ # 将繁体转换为简体
+ line = cc.convert(line)
+
+ line = re.sub(r"\「|\」|\「|\」|\『|\』", '\"', line) # 将「」「」『』这些符号替换成引号
+ line = re.sub(r"\,\)|\;\)", ')', line) # 罗德·法尼(Rod Dodji Fanni,)
+ line = re.sub(r"\(\,|\(\,", '(', line) # 阿魯拉·基馬(Alula Girma (,
+
+ line = convert_en_punctuation_to_zh_punct(line) # 英文标点转换为中文标点
+ line = remove_duplicate_punctuation(line) # 删除中文空括号和重复的标点
+
+ return line
+
+ np.random.seed(seed)
+ choice = np.random.choice
+
+ with progress.open(raw_zh_wiki_file, 'r', encoding='utf-8') as read_file:
+ prompt = ''
+ response = ''
+ pre_line_len = 0
+ cur_rows = []
+ append = cur_rows.append
+ for line in read_file:
+ all_cnt += 1
+
+ # prompt已经保存,但是仍有多余的行,这些行使得response的长度>max_len,故跳过,不处理
+ if len(prompt) == 0 and pre_line_len > 0:
+ pre_line_len = len(line.strip())
+ continue
+
+ # 清洗一行
+ line = procees_line(line)
+
+
+ # 确定问题,pre_line_len是0,既是上一行是空行,则当前行是新的百科词条,设置为prompt
+ if prompt == '' and line.endswith(':') and pre_line_len == 0:
+ prompt = choice(prompt_prefix).format(line[0: -1])
+ continue
+
+ pre_line_len = len(line.strip())
+
+ # 问题下来若干行为答案
+ if prompt != '' and not line.endswith(':'):
+ # 其实,pre_line_len已经是len(line.strip())了,如果len(line.strip())=0,既是当前行是0,则不管答案长度够不够,都需要保存了
+ if len(response) + len(line) <= max_len and pre_line_len != 0:
+ response = '{}{}'.format(response, line)
+ elif len(response) + len(line) > max_len or pre_line_len == 0:
+ # 长度超了或者当前的百科已经结束,保存一条样例
+ keep_cnt += 1
+ response = '{}{}'.format(response, line)
+ append({'prompt': prompt, 'response': ''.join(response[0: max_len])})
+ prompt = ''
+ response = ''
+
+ # =groups_cnt保存到文件
+ if len(cur_rows) >= groups_cnt:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(zhwiki_simple_file, df)
+ cur_rows = []
+ append = cur_rows.append
+
+ # end for
+ if len(prompt) > 0 and len(response) > 0:
+ keep_cnt += 1
+ append({'prompt': prompt, 'response': response})
+
+ if len(cur_rows) > 0:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(zhwiki_simple_file, df)
+ cur_rows = []
+
+ log.info("merge into file: {}, 全部数据共{}行,清洗后剩余{}行".format(zhwiki_simple_file, all_cnt, keep_cnt), save_to_file=True)
+
+
+
+def merge_dataset_as_single_file(groups_cnt: int=50000, max_len: int=512, min_len: int=3, cut_max_len: bool=False) -> None:
+ '''
+ 将多个数据集合并为一个数据集
+ '''
+ from_parquet_files = get_path_of_suffix_files(PROJECT_ROOT + '/data/my_data', '.parquet')
+
+ save_file = PROJECT_ROOT + '/data/my_dataset.parquet'
+
+ # 后续append写入,存在文件先删除
+ if exists(save_file):
+ assert delete_file(save_file)
+
+ cur_rows = []
+ append = cur_rows.append
+
+ all_cnt, keep_cnt = 0, 0
+ for file in from_parquet_files:
+ print('process file: {}'.format(file))
+
+ parquet_table = pq.read_table(file)
+
+ for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
+
+ prompt, response = prompt.as_py(), response.as_py()
+ all_cnt += 1
+
+ if len(prompt) < min_len or len(response) < min_len:
+ continue
+
+ if cut_max_len and (len(prompt) > max_len or len(response) > max_len):
+ prompt = prompt[0: max_len]
+ response = response[0: max_len]
+
+ keep_cnt += 1
+ append({'prompt': prompt , 'response': response})
+
+ if len(cur_rows) >= groups_cnt:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(save_file, df)
+ cur_rows = []
+ append = cur_rows.append
+
+ # 处理末尾部分
+ if len(cur_rows) > 0:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(save_file, df)
+ cur_rows = []
+
+ log.info("merge into file: {}, 全部数据共{}行,清洗后剩余{}行".format(save_file, all_cnt, keep_cnt), save_to_file=True)
+
+
+def remove_dataset_duplicate_rows(groups_cnt: int=50000) -> None:
+ '''
+ 使用mini_hash删除数据集中重复的部分
+ '''
+ from_parquet_files = PROJECT_ROOT + '/data/my_dataset.parquet'
+
+ save_file = PROJECT_ROOT + '/data/my_dataset_no_dulpticates.parquet'
+
+ # 后续append写入,存在文件先删除
+ if exists(save_file):
+ assert delete_file(save_file)
+
+ cur_rows = []
+ all_cnt, keep_cnt = 0, 0
+ row_index = -1
+ drop_dataset_duplicate = DropDatasetDuplicate(threshold=0.85, num_perm=256)
+
+ parquet_table = pq.read_table(from_parquet_files)
+ all_cnt = parquet_table.num_rows
+
+ # 先顺序遍历获取哪些行是重复的
+ for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
+ row_index += 1
+
+ doc = f"{prompt.as_py()}{response.as_py()}"
+ drop_dataset_duplicate.add_doc(index=row_index, doc=doc)
+
+ row_index = -1
+ need_to_drop_indexs = drop_dataset_duplicate.get_duplicate_indexs()
+
+ # 再顺序遍历一遍,重复的行不添加到新的数据集
+ for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
+ row_index += 1 # 不管有没有跳过行, row_index都必须+1
+
+ # 重复的行跳过
+ if row_index in need_to_drop_indexs:
+ continue
+
+ cur_rows.append({'prompt': prompt.as_py() , 'response': response.as_py()})
+ keep_cnt += 1
+
+ if len(cur_rows) >= groups_cnt:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(save_file, df)
+ cur_rows = []
+
+ # 处理末尾部分
+ if len(cur_rows) > 0:
+ df = pd.DataFrame(cur_rows)
+ write_single_parquet_file(save_file, df)
+
+ log.info("merge into file: {}, 全部数据共{}行,文档去重后剩余{}行".format(save_file, all_cnt, keep_cnt), save_to_file=True)
+
+def shuffle_parquet_dataset(parquet_file: str, shuffle_file: str, seed: int=23333, groups_cnt: int=65536) -> None:
+ '''
+ 打乱一个parquet文件数据集
+ '''
+ if not exists(parquet_file):
+ raise Exception('can not find parquet file: {}'.format(parquet_file))
+
+ print('start shuffle...')
+ pf = pq.read_table(parquet_file)
+ df = pf.to_pandas()
+ df = df.sample(frac=1.0, replace=False, random_state=seed, axis=0)
+
+ if exists(shuffle_file):
+ assert delete_file(shuffle_file)
+
+ # 分块写入parquet,否则小内存读取直接OOM
+ n = len(df)
+ for i in range(0, n, groups_cnt):
+ cur_group_df = df[i: i + groups_cnt]
+ write_single_parquet_file(shuffle_file, cur_group_df)
+
+def count_my_json_data() -> None:
+ '''
+ 统计目前的所有数据集数据量
+ '''
+ my_data_files = get_path_of_suffix_files(PROJECT_ROOT + '/data/my_data', '.json')
+ result = [['file_name', 'count']]
+ all_cnt = 0
+ for file in my_data_files:
+ file_name = file.split('/')[-1]
+ cur_cnt = 0
+ with progress.open(file, 'r', encoding='utf-8') as f:
+ for _ in f:
+ cur_cnt += 1
+
+ all_cnt += cur_cnt
+ result.append([file_name, cur_cnt])
+
+ result.append(['汇总', all_cnt])
+
+ log.info(str(result), save_to_file=True)
+
+ console = Console()
+ table = Table(show_header=True, show_lines=True,)
+
+ for col in result[0]:
+ table.add_column(col)
+ for i in range(1, len(result)): # 跳过表头
+ table.add_row(str(result[i][0]), str(result[i][1]))
+
+ console.print(table)
+
+
+def count_my_parquet_data(parquet_file: str=None) -> None:
+ '''
+ 统计dir目录下所有parquet数据集数据量
+ '''
+ my_data_files = []
+
+ if not parquet_file:
+ my_data_files = get_path_of_suffix_files(PROJECT_ROOT + '/data/my_data', '.parquet')
+ elif isdir(parquet_file):
+ my_data_files = get_path_of_suffix_files(parquet_file, '.parquet')
+ elif parquet_file.endswith('.parquet'):
+ my_data_files = [parquet_file]
+
+
+ result = [['file_name', 'count']]
+ all_cnt = 0
+ for file in my_data_files:
+ file_name = file.split('/')[-1]
+ cur_cnt = 0
+ pf = ParquetFile(file)
+
+ for pf_chunk in pf:
+ cur_cnt += pf_chunk.info['rows']
+
+ all_cnt += cur_cnt
+ result.append([file_name, cur_cnt])
+
+ result.append(['汇总', all_cnt])
+
+ log.info(str(result), save_to_file=True)
+
+ console = Console()
+ table = Table(show_header=True, show_lines=True,)
+
+ for col in result[0]:
+ table.add_column(col)
+ for i in range(1, len(result)): # 跳过表头
+ table.add_row(str(result[i][0]), str(result[i][1]))
+
+ console.print(table)
+
+
+def split_train_valid_test_datasets(source_parquet_file: str, max_len: int=320, seed: int=23333, train_ratio: float=0.91, test_ratio: float=0.0875, valid_ratio: float=0.0025, groups_cnt: int=50000) -> None:
+ '''
+ 将原始数据拆分为训练集、测试集和验证集
+ '''
+ assert train_ratio + test_ratio + valid_ratio == 1.0
+
+ train_parquet_file = PROJECT_ROOT + '/data/my_train_dataset.parquet'
+ test_parquet_file = PROJECT_ROOT + '/data/my_test_dataset.parquet'
+ valid_parquet_file = PROJECT_ROOT + '/data/my_valid_dataset.parquet'
+
+ if exists(train_parquet_file): assert delete_file(train_parquet_file)
+ if exists(test_parquet_file): assert delete_file(test_parquet_file)
+ if exists(valid_parquet_file): assert delete_file(valid_parquet_file)
+
+ np.random.seed(seed)
+
+ train, test, valid = [], [], []
+
+ parquet_table = pq.read_table(source_parquet_file)
+
+ for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
+
+ prompt, response = prompt.as_py(), response.as_py()
+ rand = np.random.random()
+ cur_data = {'prompt': ''.join(prompt[0: max_len]) , 'response': ''.join(response[0: max_len])}
+
+ if 0 <= rand < train_ratio:
+ train.append(cur_data)
+ elif train_ratio <= rand < train_ratio + test_ratio:
+ test.append(cur_data)
+ else:
+ valid.append(cur_data)
+
+ if len(train) >= groups_cnt:
+ write_single_parquet_file(train_parquet_file, pd.DataFrame(train))
+ train = []
+
+ if len(test) >= groups_cnt:
+ write_single_parquet_file(test_parquet_file, pd.DataFrame(test))
+ test = []
+
+ if len(valid) >= groups_cnt:
+ write_single_parquet_file(valid_parquet_file, pd.DataFrame(valid))
+ valid = []
+
+
+ if len(train) > 0:
+ write_single_parquet_file(train_parquet_file, pd.DataFrame(train))
+ train = []
+
+ if len(test) > 0:
+ write_single_parquet_file(test_parquet_file, pd.DataFrame(test))
+ test = []
+
+ if len(valid) > 0:
+ write_single_parquet_file(valid_parquet_file, pd.DataFrame(valid))
+ valid = []
+
+def parquet_to_text(sep='[SEP]', buffer_size: int=50000) -> None:
+ '''
+ 将parquet文件转换为txt预料,句子之间用sep隔开
+ txt文件用于训练tokenizer,使用huggingface的BPE训练会导致OOM
+ '''
+ parquet_file = PROJECT_ROOT + '/data/my_dataset.parquet'
+ txt_file = PROJECT_ROOT + '/data/my_corpus.txt'
+
+ if exists(txt_file):
+ assert delete_file(txt_file)
+
+ source_pf = ParquetFile(parquet_file)
+ cur_rows = []
+ append = cur_rows.append
+ with open(txt_file, 'a', encoding='utf-8') as f_write:
+ for pf_chunk in progress.track(source_pf):
+ for rows in pf_chunk.iter_row_groups():
+ for prompt, response in zip(rows['prompt'], rows['response']):
+ append(prompt + sep + response + sep + '\n')
+
+ if len(cur_rows) >= buffer_size:
+ f_write.writelines(cur_rows)
+ cur_rows = []
+ append = cur_rows.append
+
+ # end for
+ if len(cur_rows) > 0:
+ f_write.writelines(cur_rows)
+ cur_rows = []
+
+def parquet_to_json() -> None:
+ '''
+ 将parquet文件转换为json
+ '''
+ parquet_file = PROJECT_ROOT + '/data/my_finetune_data_zh.parquet'
+ json_file = PROJECT_ROOT + '/data/sft_train.json'
+
+ if exists(json_file):
+ assert delete_file(json_file)
+
+ source_pf = ParquetFile(parquet_file)
+ cur_rows = []
+ append = cur_rows.append
+
+ for pf_chunk in progress.track(source_pf):
+ for rows in pf_chunk.iter_row_groups():
+ for prompt, response in zip(rows['prompt'], rows['response']):
+ if len(response) == 0 or len(prompt) == 0: continue
+ append({
+ 'prompt': str(prompt),
+ 'response': str(response),
+ })
+
+ with open(json_file, 'w', encoding='utf-8') as f:
+ ujson.dump(cur_rows, f, indent=4, ensure_ascii=False)
+
+def dataset_length_cnt() -> None:
+
+ dataset_file = PROJECT_ROOT + '/data/my_dataset.shuffle.parquet'
+ parquet_table = pq.read_table(dataset_file)
+
+ que_len_dict, ans_len_dict = defaultdict(int), defaultdict(int)
+
+ for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
+
+ prompt, response = prompt.as_py(), response.as_py()
+
+ que_len_dict[len(prompt)] += 1
+ ans_len_dict[len(response)] += 1
+
+ que_len, ans_len = [], []
+ for k, v in que_len_dict.items():
+ que_len.append([k, v])
+ for k, v in ans_len_dict.items():
+ ans_len.append([k, v])
+
+ def gather_gt_x(array: list[tuple], x: int=512) -> list:
+ '''
+ 长度大于x的合并在一起
+ '''
+ new_array = []
+ gt_x_cnt = 0
+ for item in array:
+ if item[0] < x:
+ new_array.append([item[0], item[1]])
+ else:
+ gt_x_cnt += item[1]
+ new_array.append([x, gt_x_cnt])
+
+ return new_array
+
+ max_len = 512
+ ans_list = gather_gt_x(ans_len, max_len)
+ ans_list.sort(key=lambda x: x[0])
+ que_list = gather_gt_x(que_len, max_len)
+ que_list.sort(key=lambda x: x[0])
+
+ ans_pd = pd.DataFrame(ans_list, columns=['length', 'count'])
+ que_pd = pd.DataFrame(que_list, columns=['length', 'count'])
+
+ def plot_sub_bar(plt, x, y, title: str, color: str='g') ->None:
+ plt.bar(x, y, color=color, label='sample count')
+ plt.ticklabel_format(style='sci',scilimits=(0,0), axis='y')
+ plt.legend()
+ plt.xlabel('length')
+ plt.ylabel('count')
+ plt.title(title)
+
+ plt.figure(figsize=(10, 10),dpi=200)
+ plt.subplot(2, 2, 1)
+ plot_sub_bar(plt, que_pd['length'], que_pd['count'], title='prompt length', color='c')
+
+ plt.subplot(2, 2, 2)
+ plot_sub_bar(plt, ans_pd['length'], ans_pd['count'], title='response length', color='g')
+
+ le512_pd = ans_pd[ans_pd['length'] < 512]
+ plt.subplot(2, 2, 3)
+ plot_sub_bar(plt, le512_pd['length'], le512_pd['count'], title='response length < 512', color='limegreen')
+
+ le320_pd = ans_pd[ans_pd['length'] < 320]
+ plt.subplot(2, 2, 4)
+ plot_sub_bar(plt, le320_pd['length'], le320_pd['count'], title='response length < 320', color='limegreen')
+
+ plt.savefig(PROJECT_ROOT + '/img/sentence_length.png')
+ plt.show()
+
+def process_belle_knowledge_enhanced_dataset_for_finetune(max_len: int=320, group_cnt: int=50000) -> None:
+ '''
+ 处理belle开源的知识增强数据集
+ '''
+ file_names = [
+ '/data/raw_data/bell_open_source/Belle_open_source_0.5M.json',
+ '/data/raw_data/bell_open_source/train_conv_2.json',
+ '/data/raw_data/bell_open_source/generated_chat_0.4M.json',
+ ]
+
+ save_file = PROJECT_ROOT + '/data/my_finetune_data_zh.parquet'
+
+ # 后续append写入,存在文件先删除
+ if exists(save_file):
+ assert delete_file(save_file)
+
+ def process_function(line: str) -> dict:
+ '''
+ 每行的处理函数
+ '''
+ item = ujson.loads(line)
+ prompt = item['instruction']
+ response = item['output']
+
+ # 剔除翻译任务
+ if 'translate' in prompt.lower(): return None
+ for word in ('翻译', '英译', '译英', '中译', '译中', '汉译', '译汉'):
+ if word in prompt:
+ return None
+
+ # 删除表格类任务
+ if '表格' in prompt or '-----' in prompt or '-----' in response:
+ return None
+
+ if len(prompt) > max_len or len(response) > max_len:
+ return None
+
+ write_dict = {
+ 'prompt': prompt,
+ 'response': response
+ }
+
+ return write_dict
+
+ for file in file_names:
+ file = PROJECT_ROOT + file
+
+ read_and_write_template(file, save_file, process_function)
+
+
+if __name__ == '__main__':
+
+ processed_file_dir = PROJECT_ROOT + '/data/my_data'
+ if not exists(processed_file_dir):
+ mkdir(processed_file_dir)
+
+ # 注释了,不重复处理
+ # 1.
+ # process_web_text(keep_start=5, response_less_word=15)
+
+ # 2.
+ # process_bake_qa(response_less_word=15)
+
+ # 3.
+ # process_chinese_medical_datasets(response_less_word=15)
+
+ # 4. 金融问答数据集质量太差了
+ # process_finace_dataset(prompt_less_word=10, response_less_word=15)
+
+ # 5.
+ # process_zhihu_kol_dataset(prompt_less_word=4, response_less_word=10)
+
+ # 6.
+ # process_belle_knowledge_enhanced_dataset(response_less_words=5)
+
+ # convert_wiki_to_simple_zh()
+
+ # 7.
+ # process_zh_wiki_data_to_datset(groups_cnt=10000, max_len=512)
+
+ #=================================================================
+
+ # merge
+ # merge_dataset_as_single_file(groups_cnt=50000, min_len=3, max_len=512, cut_max_len=True)
+
+
+ remove_dataset_duplicate_rows(groups_cnt=50000)
+
+ # # shuffle
+ # shuffle_parquet_dataset(
+ # parquet_file=PROJECT_ROOT + '/data/my_dataset.parquet',
+ # shuffle_file=PROJECT_ROOT + '/data/my_dataset.shuffle.parquet',
+ # seed=23333
+ # )
+
+ # split train validated and test
+ # split_train_valid_test_datasets(
+ # source_parquet_file=PROJECT_ROOT + '/data/my_dataset.shuffle.parquet',
+ # max_len=320,
+ # groups_cnt=50000
+ # )
+
+ # parquet_to_text()
+
+ # count_my_parquet_data(PROJECT_ROOT + '/data/my_dataset.parquet')
+
+ # dataset_length_cnt()
+
+ # process_belle_knowledge_enhanced_dataset_for_finetune(max_len=320, group_cnt=50000)
+
+ # count_my_parquet_data(PROJECT_ROOT + '/data/')
+
+ parquet_to_json()
+ # count_my_json_data()
+
+
diff --git a/utils/train_tokenizer.ipynb b/utils/train_tokenizer.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c487555097dd5ae56f18d8f712c60c4270b0eb66
--- /dev/null
+++ b/utils/train_tokenizer.ipynb
@@ -0,0 +1,339 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pyarrow.parquet as pq \n",
+ "from transformers import AutoTokenizer, PreTrainedTokenizerFast\n",
+ "from rich import progress"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### 训练集数据训练tokenizer,小于16G内存的机器容易OOM"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pq_file = '../data/my_dataset.shuffle.parquet'\n",
+ "pf = pq.read_table(pq_file)\n",
+ "\n",
+ "def get_training_corpus():\n",
+ " buffer = []\n",
+ " for prompt, response in progress.track(zip(pf['prompt'], pf['response']), total=pf.num_rows):\n",
+ "\n",
+ " buffer.append(\n",
+ " f\"{prompt.as_py()}\\n{response.as_py()}\"\n",
+ " )\n",
+ "\n",
+ " if len(buffer) >= 1000:\n",
+ " yield buffer\n",
+ " buffer = []\n",
+ "\n",
+ " if buffer: yield buffer\n",
+ "iter_training_corpus = get_training_corpus()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## step 1: 加载T5模型自带的tokenizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "old_tokenizer = AutoTokenizer.from_pretrained('t5-base')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## step 2: 加载Wiki中文语料,1.6GB\n",
+ "备注: 全量预训练语料文本大小约7GB"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lines = []\n",
+ "with open('../data/raw_data/wiki.simple.txt', 'r', encoding='utf-8') as f:\n",
+ " lines = f.readlines()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "len(lines)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## step 3 定义一个语料的迭代生成器\n",
+ "一个文本块(段落)的最小长度为2048,迭代一次返回1000个文本块"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_training_corpus():\n",
+ " buffer = []\n",
+ " i = 0 \n",
+ " txt = []\n",
+ " len_cnt = 0\n",
+ " for line in progress.track(lines):\n",
+ " \n",
+ " len_cnt += len(line)\n",
+ " txt.append(line)\n",
+ " if len_cnt >= 2048:\n",
+ " buffer.append(\n",
+ " ''.join(txt)\n",
+ " )\n",
+ " txt = []\n",
+ " len_cnt = 0\n",
+ " \n",
+ " if len(buffer) >= 1000:\n",
+ " yield buffer\n",
+ " buffer = []\n",
+ " i += 1\n",
+ "\n",
+ " # yield last buffer\n",
+ " if len(buffer) > 0:\n",
+ " yield buffer\n",
+ "\n",
+ "iter_training_corpus = get_training_corpus()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for i in get_training_corpus():\n",
+ " print(len(i))\n",
+ " print([len(t) for t in i][0:20])\n",
+ " break\n",
+ "## 1000\n",
+ "## [2104, 2053, 2176, 2224, 2172, 2068, 2054, 2258, 2058, 2085, 2142, 2274, 2184, 2246, 2144, 2223, 2075, 2058, 2164, 2178]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## step 4: 训练tokenizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tokenizer = old_tokenizer.train_new_from_iterator(iter_training_corpus, vocab_size=40960)\n",
+ "\n",
+ "# cpu计算密集型任务 13600K大概需要1个小时,最大内存占用20G"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## step 5: 保存训练好的tokenizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tokenizer.save_pretrained('../model_save/my_tokenizer_wiki')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 补充内容: 自定义模型、及特殊字符训练"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from transformers import PreTrainedTokenizerFast\n",
+ "from tokenizers.pre_tokenizers import Whitespace, Punctuation, Digits, ByteLevel, Metaspace\n",
+ "from tokenizers.normalizers import NFKC\n",
+ "from tokenizers import Tokenizer, decoders\n",
+ "from tokenizers.models import BPE\n",
+ "import tokenizers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 字符级别的 BPE toeknizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model = BPE(unk_token=\"[UNK]\")\n",
+ "tokenizer = Tokenizer(model)\n",
+ "\n",
+ "# 用兼容等价分解合并对utf编码进行等价组合,比如全角A转换为半角A\n",
+ "tokenizer.normalizer = tokenizers.normalizers.Sequence([NFKC()])\n",
+ "\n",
+ "# 标点符号,数字,及Metaspace预分割(否则decode出来没有空格)\n",
+ "tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.Sequence(\n",
+ " [Punctuation(), Digits(individual_digits=True), Metaspace()])\n",
+ "\n",
+ "tokenizer.add_special_tokens([\"[PAD]\",\"[EOS]\",\"[SEP]\",\"[BOS]\", \"[CLS]\", \"[MASK]\", \"[UNK]\"])\n",
+ "tokenizer.decoder = decoders.Metaspace()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 字节级别(ByteLevel) BPE toeknizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# byte BPE n不需要unk_token\n",
+ "model = BPE() \n",
+ "tokenizer = Tokenizer(model)\n",
+ "\n",
+ "tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.ByteLevel(add_prefix_space=False)\n",
+ "\n",
+ "tokenizer.add_special_tokens([\"[PAD]\",\"[EOS]\",\"[SEP]\",\"[BOS]\", \"[CLS]\", \"[MASK]\", \"[UNK]\"])\n",
+ "tokenizer.decoder = decoders.ByteLevel(add_prefix_space=True, use_regex=True)\n",
+ "tokenizer.post_processor = tokenizers.processors.ByteLevel(trim_offsets=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# PreTrainedTokenizerFast类无法从 tokenizer 对象推断出哪个标记是掩码标记、[CLS] 标记等,需要手动指定\n",
+ "# 上文的通过from_pretrained('t5-base')定义的old_tokenizer,自带了特殊标记,不用指定\n",
+ "# 到这一步和上文 step 4 一致了\n",
+ "old_tokenizer = PreTrainedTokenizerFast(\n",
+ " tokenizer_object=tokenizer,\n",
+ " unk_token=\"[UNK]\",\n",
+ " pad_token=\"[PAD]\",\n",
+ " cls_token=\"[CLS]\",\n",
+ " sep_token=\"[SEP]\",\n",
+ " mask_token=\"[MASK]\",\n",
+ " bos_token='[BOS]',\n",
+ " eos_token='[EOS]', \n",
+ ")\n",
+ "tokenizer = old_tokenizer.train_new_from_iterator(iter_training_corpus, vocab_size=40960)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# add \\t \\n if char level tokenizer\n",
+ "# if '\\t' not in tokenizer.vcoab:\n",
+ "# tokenizer.add_tokens(['\\t'])\n",
+ "# if '\\n' not in tokenizer.vcoab:\n",
+ "# tokenizer.add_tokens(['\\n'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tokenizer.save_pretrained('../model_save/my_tokenizer_wiki')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "txt = '这是一段中英混输的句子, (chinese and English, here are words.)'\n",
+ "# toeknize\n",
+ "tokens = tokenizer.tokenize(txt)\n",
+ "print(tokens)\n",
+ "# 字级别输出:\n",
+ "# ['▁这是', '一段', '中英', '混', '输', '的', '句子', '▁,', '▁(', '▁ch', 'inese', '▁and', '▁Eng', 'lish', '▁,', '▁h', 'ere', '▁', 'are', '▁w', 'ord', 's', '▁.', '▁)']\n",
+ "\n",
+ "# Byte级别输出\n",
+ "# ['Ġè¿Ļæĺ¯', 'ä¸Ģ段', 'ä¸Ńèĭ±', 'æ··', 'è¾ĵ', 'çļĦ', 'åı¥åŃIJ', 'Ġ,', 'Ġ(', 'Ġch', 'inese', 'Ġand', 'ĠEng', 'lish', 'Ġ,', 'Ġh', 'ere', 'Ġare', 'Ġw', 'ord', 's', 'Ġ.', 'Ġ)']\n",
+ "\n",
+ "# decode\n",
+ "ids = tokenizer.encode(txt)\n",
+ "tokenizer.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "py310",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}