from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # import pathlib # temp = pathlib.PosixPath # pathlib.PosixPath = pathlib.WindowsPath learn = load_learner('model.pkl') categories = ('Dog', 'Cat') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.components.Image(type="pil", height=192, width=192) label = gr.Label() examples = ['bear.jpg', 'cat.jpg', 'dog.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)