import os import PyPDF2 import docx import pandas as pd import json import csv from typing import List, Dict, Any, Optional import logging from pathlib import Path from config.settings import Settings logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class FileProcessor: def __init__(self): self.supported_extensions = { '.txt': self._process_text, '.pdf': self._process_pdf, '.docx': self._process_docx, '.doc': self._process_docx, '.csv': self._process_csv, '.xlsx': self._process_excel, '.xls': self._process_excel, '.json': self._process_json, '.py': self._process_code, '.js': self._process_code, '.html': self._process_code, '.css': self._process_code, '.md': self._process_text, } def process_file(self, file_path: str) -> Dict[str, Any]: """ Process a file and extract its content """ try: file_path = Path(file_path) if not file_path.exists(): return {'error': f'File not found: {file_path}'} # Check file size file_size = file_path.stat().st_size / (1024 * 1024) # MB if file_size > Settings.MAX_FILE_SIZE_MB: return {'error': f'File too large: {file_size:.1f}MB (max: {Settings.MAX_FILE_SIZE_MB}MB)'} extension = file_path.suffix.lower() if extension not in self.supported_extensions: return {'error': f'Unsupported file type: {extension}'} # Process the file processor = self.supported_extensions[extension] content = processor(file_path) return { 'filename': file_path.name, 'extension': extension, 'size_mb': file_size, 'content': content, 'metadata': self._extract_metadata(file_path) } except Exception as e: logger.error(f"Error processing file {file_path}: {e}") return {'error': str(e)} def _process_text(self, file_path: Path) -> str: """ Process plain text files """ try: with open(file_path, 'r', encoding='utf-8') as f: return f.read() except UnicodeDecodeError: # Try with different encoding with open(file_path, 'r', encoding='latin-1') as f: return f.read() def _process_pdf(self, file_path: Path) -> str: """ Process PDF files """ try: text_content = [] with open(file_path, 'rb') as f: pdf_reader = PyPDF2.PdfReader(f) for page_num, page in enumerate(pdf_reader.pages): try: text = page.extract_text() if text.strip(): text_content.append(f"--- Page {page_num + 1} ---\n{text}") except Exception as e: logger.warning(f"Error extracting page {page_num + 1}: {e}") continue return "\n\n".join(text_content) except Exception as e: logger.error(f"Error processing PDF: {e}") return f"Error processing PDF: {str(e)}" def _process_docx(self, file_path: Path) -> str: """ Process Word documents """ try: doc = docx.Document(file_path) paragraphs = [] for paragraph in doc.paragraphs: if paragraph.text.strip(): paragraphs.append(paragraph.text) # Also extract tables for table in doc.tables: table_data = [] for row in table.rows: row_data = [cell.text.strip() for cell in row.cells] table_data.append(" | ".join(row_data)) if table_data: paragraphs.append("\n--- Table ---\n" + "\n".join(table_data)) return "\n\n".join(paragraphs) except Exception as e: logger.error(f"Error processing DOCX: {e}") return f"Error processing DOCX: {str(e)}" def _process_csv(self, file_path: Path) -> str: """ Process CSV files """ try: df = pd.read_csv(file_path) # Basic info about the CSV info_parts = [ f"CSV File Analysis:", f"Rows: {len(df)}", f"Columns: {len(df.columns)}", f"Column Names: {', '.join(df.columns.tolist())}", "", "First 5 rows:", df.head().to_string(), "", "Data Types:", df.dtypes.to_string(), "", "Basic Statistics:", df.describe().to_string() if len(df.select_dtypes(include=['number']).columns) > 0 else "No numeric columns" ] return "\n".join(info_parts) except Exception as e: logger.error(f"Error processing CSV: {e}") return f"Error processing CSV: {str(e)}" def _process_excel(self, file_path: Path) -> str: """ Process Excel files """ try: # Read all sheets excel_file = pd.ExcelFile(file_path) content_parts = [f"Excel File: {file_path.name}"] content_parts.append(f"Sheets: {', '.join(excel_file.sheet_names)}") for sheet_name in excel_file.sheet_names: df = pd.read_excel(file_path, sheet_name=sheet_name) content_parts.append(f"\n--- Sheet: {sheet_name} ---") content_parts.append(f"Rows: {len(df)}, Columns: {len(df.columns)}") content_parts.append(f"Columns: {', '.join(df.columns.tolist())}") content_parts.append("\nFirst 3 rows:") content_parts.append(df.head(3).to_string()) return "\n".join(content_parts) except Exception as e: logger.error(f"Error processing Excel: {e}") return f"Error processing Excel: {str(e)}" def _process_json(self, file_path: Path) -> str: """ Process JSON files """ try: with open(file_path, 'r', encoding='utf-8') as f: data = json.load(f) # Format JSON for better readability if isinstance(data, dict): content_parts = [ f"JSON Object with {len(data)} keys:", f"Keys: {', '.join(data.keys())}", "", "Content (formatted):", json.dumps(data, indent=2, ensure_ascii=False)[:2000] + "..." if len(str(data)) > 2000 else json.dumps(data, indent=2, ensure_ascii=False) ] elif isinstance(data, list): content_parts = [ f"JSON Array with {len(data)} items", f"First item type: {type(data[0]).__name__}" if data else "Empty array", "", "Content (first 3 items):", json.dumps(data[:3], indent=2, ensure_ascii=False) ] else: content_parts = [ f"JSON {type(data).__name__}:", str(data) ] return "\n".join(content_parts) except Exception as e: logger.error(f"Error processing JSON: {e}") return f"Error processing JSON: {str(e)}" def _process_code(self, file_path: Path) -> str: """ Process code files """ try: content = self._process_text(file_path) # Add some analysis lines = content.split('\n') non_empty_lines = [line for line in lines if line.strip()] analysis_parts = [ f"Code File Analysis:", f"Language: {file_path.suffix[1:].upper()}", f"Total lines: {len(lines)}", f"Non-empty lines: {len(non_empty_lines)}", f"Estimated complexity: {'High' if len(non_empty_lines) > 100 else 'Medium' if len(non_empty_lines) > 50 else 'Low'}", "", "Content:", content ] return "\n".join(analysis_parts) except Exception as e: logger.error(f"Error processing code file: {e}") return f"Error processing code file: {str(e)}" def _extract_metadata(self, file_path: Path) -> Dict[str, Any]: """ Extract file metadata """ try: stat = file_path.stat() return { 'size_bytes': stat.st_size, 'created': stat.st_ctime, 'modified': stat.st_mtime, 'extension': file_path.suffix, 'name': file_path.stem } except Exception as e: logger.error(f"Error extracting metadata: {e}") return {} def process_multiple_files(self, file_paths: List[str]) -> List[Dict[str, Any]]: """ Process multiple files """ results = [] for file_path in file_paths: result = self.process_file(file_path) results.append(result) return results def extract_key_information(self, content: str, file_type: str) -> Dict[str, Any]: """ Extract key information from processed content """ try: key_info = { 'word_count': len(content.split()), 'char_count': len(content), 'line_count': len(content.split('\n')), 'file_type': file_type } # Type-specific extraction if file_type in ['.csv', '.xlsx', '.xls']: # Extract numerical data mentions import re numbers = re.findall(r'\d+', content) key_info['numeric_values_found'] = len(numbers) elif file_type in ['.py', '.js', '.html', '.css']: # Extract function/class names for code files import re if file_type == '.py': functions = re.findall(r'def\s+(\w+)', content) classes = re.findall(r'class\s+(\w+)', content) key_info['functions'] = functions[:10] # First 10 key_info['classes'] = classes[:10] return key_info except Exception as e: logger.error(f"Error extracting key information: {e}") return {'error': str(e)} def save_processed_content(self, content: str, output_path: str) -> bool: """ Save processed content to a file """ try: with open(output_path, 'w', encoding='utf-8') as f: f.write(content) logger.info(f"Saved processed content to: {output_path}") return True except Exception as e: logger.error(f"Error saving content: {e}") return False def get_supported_formats(self) -> List[str]: """ Get list of supported file formats """ return list(self.supported_extensions.keys()) def format_file_summary_for_llm(self, file_result: Dict[str, Any]) -> str: """ Format file processing results for LLM consumption """ if 'error' in file_result: return f"Error processing file: {file_result['error']}" summary_parts = [ f"File: {file_result['filename']}", f"Type: {file_result['extension']}", f"Size: {file_result['size_mb']:.2f} MB", "", "Content Summary:", file_result['content'][:1000] + "..." if len(file_result['content']) > 1000 else file_result['content'] ] return "\n".join(summary_parts)