#include "llama.h" #include #include #include #include struct quant_option { std::string name; llama_ftype ftype; std::string desc; }; static const std::vector QUANT_OPTIONS = { { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M", }, { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L", }, { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M", }, { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M", }, #ifdef GGML_USE_K_QUANTS { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended", }, { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss", }, { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss", }, { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss", }, { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", }, { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.56G, +0.1149 ppl @ 7B - small, significant quality loss", }, { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*", }, { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", }, { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*", }, { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*", }, { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss", }, #endif { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended", }, { "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B - extremely large, virtually no quality loss - not recommended", }, { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B - absolutely huge, lossless - not recommended", }, }; bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) { std::string ftype_str; for (auto ch : ftype_str_in) { ftype_str.push_back(std::toupper(ch)); } for (auto & it : QUANT_OPTIONS) { if (it.name == ftype_str) { ftype = it.ftype; ftype_str_out = it.name; return true; } } try { int ftype_int = std::stoi(ftype_str); for (auto & it : QUANT_OPTIONS) { if (it.ftype == ftype_int) { ftype = it.ftype; ftype_str_out = it.name; return true; } } } catch (...) { // stoi failed } return false; } // usage: // ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads] // void usage(const char * executable) { fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable); fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); fprintf(stderr, "\nAllowed quantization types:\n"); for (auto & it : QUANT_OPTIONS) { printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str()); } exit(1); } int main(int argc, char ** argv) { if (argc < 3) { usage(argv[0]); } llama_model_quantize_params params = llama_model_quantize_default_params(); int arg_idx = 1; for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) { params.quantize_output_tensor = false; } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) { params.allow_requantize = true; } else { usage(argv[0]); } } if (argc - arg_idx < 3) { usage(argv[0]); } llama_backend_init(false); // parse command line arguments const std::string fname_inp = argv[arg_idx]; arg_idx++; std::string fname_out; std::string ftype_str; if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { std::string fpath; const size_t pos = fname_inp.find_last_of('/'); if (pos != std::string::npos) { fpath = fname_inp.substr(0, pos + 1); } // export as [inp path]/ggml-model-[ftype].bin fname_out = fpath + "ggml-model-" + ftype_str + ".bin"; arg_idx++; } else { fname_out = argv[arg_idx]; arg_idx++; if (argc <= arg_idx) { fprintf(stderr, "%s: missing ftype\n", __func__); return 1; } if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]); return 1; } arg_idx++; } // parse nthreads if (argc > arg_idx) { try { params.nthread = std::stoi(argv[arg_idx]); } catch (const std::exception & e) { fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what()); return 1; } } fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str()); if (params.nthread > 0) { fprintf(stderr, " using %d threads", params.nthread); } fprintf(stderr, "\n"); const int64_t t_main_start_us = llama_time_us(); int64_t t_quantize_us = 0; // load the model { const int64_t t_start_us = llama_time_us(); if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) { fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str()); return 1; } t_quantize_us = llama_time_us() - t_start_us; } // report timing { const int64_t t_main_end_us = llama_time_us(); printf("\n"); printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0); } llama_backend_free(); return 0; }