# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe

from typing import Optional

import torch


class HarmonicEmbedding(torch.nn.Module):
    def __init__(
        self, n_harmonic_functions: int = 6, omega_0: float = 1.0, logspace: bool = True, append_input: bool = True
    ) -> None:
        """
        The harmonic embedding layer supports the classical
        Nerf positional encoding described in
        `NeRF <https://arxiv.org/abs/2003.08934>`_
        and the integrated position encoding in
        `MIP-NeRF <https://arxiv.org/abs/2103.13415>`_.

        During the inference you can provide the extra argument `diag_cov`.

        If `diag_cov is None`, it converts
        rays parametrized with a `ray_bundle` to 3D points by
        extending each ray according to the corresponding length.
        Then it converts each feature
        (i.e. vector along the last dimension) in `x`
        into a series of harmonic features `embedding`,
        where for each i in range(dim) the following are present
        in embedding[...]::

            [
                sin(f_1*x[..., i]),
                sin(f_2*x[..., i]),
                ...
                sin(f_N * x[..., i]),
                cos(f_1*x[..., i]),
                cos(f_2*x[..., i]),
                ...
                cos(f_N * x[..., i]),
                x[..., i],              # only present if append_input is True.
            ]

        where N corresponds to `n_harmonic_functions-1`, and f_i is a scalar
        denoting the i-th frequency of the harmonic embedding.


        If `diag_cov is not None`, it approximates
        conical frustums following a ray bundle as gaussians,
        defined by x, the means of the gaussians and diag_cov,
        the diagonal covariances.
        Then it converts each gaussian
        into a series of harmonic features `embedding`,
        where for each i in range(dim) the following are present
        in embedding[...]::

            [
                sin(f_1*x[..., i]) * exp(0.5 * f_1**2 * diag_cov[..., i,]),
                sin(f_2*x[..., i]) * exp(0.5 * f_2**2 * diag_cov[..., i,]),
                ...
                sin(f_N * x[..., i]) * exp(0.5 * f_N**2 * diag_cov[..., i,]),
                cos(f_1*x[..., i]) * exp(0.5 * f_1**2 * diag_cov[..., i,]),
                cos(f_2*x[..., i]) * exp(0.5 * f_2**2 * diag_cov[..., i,]),,
                ...
                cos(f_N * x[..., i]) * exp(0.5 * f_N**2 * diag_cov[..., i,]),
                x[..., i],              # only present if append_input is True.
            ]

        where N equals `n_harmonic_functions-1`, and f_i is a scalar
        denoting the i-th frequency of the harmonic embedding.

        If `logspace==True`, the frequencies `[f_1, ..., f_N]` are
        powers of 2:
            `f_1, ..., f_N = 2**torch.arange(n_harmonic_functions)`

        If `logspace==False`, frequencies are linearly spaced between
        `1.0` and `2**(n_harmonic_functions-1)`:
            `f_1, ..., f_N = torch.linspace(
                1.0, 2**(n_harmonic_functions-1), n_harmonic_functions
            )`

        Note that `x` is also premultiplied by the base frequency `omega_0`
        before evaluating the harmonic functions.

        Args:
            n_harmonic_functions: int, number of harmonic
                features
            omega_0: float, base frequency
            logspace: bool, Whether to space the frequencies in
                logspace or linear space
            append_input: bool, whether to concat the original
                input to the harmonic embedding. If true the
                output is of the form (embed.sin(), embed.cos(), x)
        """
        super().__init__()

        if logspace:
            frequencies = 2.0 ** torch.arange(n_harmonic_functions, dtype=torch.float32)
        else:
            frequencies = torch.linspace(
                1.0, 2.0 ** (n_harmonic_functions - 1), n_harmonic_functions, dtype=torch.float32
            )

        self.register_buffer("_frequencies", frequencies * omega_0, persistent=False)
        self.register_buffer("_zero_half_pi", torch.tensor([0.0, 0.5 * torch.pi]), persistent=False)
        self.append_input = append_input

    def forward(self, x: torch.Tensor, diag_cov: Optional[torch.Tensor] = None, **kwargs) -> torch.Tensor:
        """
        Args:
            x: tensor of shape [..., dim]
            diag_cov: An optional tensor of shape `(..., dim)`
                representing the diagonal covariance matrices of our Gaussians, joined with x
                as means of the Gaussians.

        Returns:
            embedding: a harmonic embedding of `x` of shape
            [..., (n_harmonic_functions * 2 + int(append_input)) * num_points_per_ray]
        """
        # [..., dim, n_harmonic_functions]
        embed = x[..., None] * self._frequencies
        # [..., 1, dim, n_harmonic_functions] + [2, 1, 1] => [..., 2, dim, n_harmonic_functions]
        embed = embed[..., None, :, :] + self._zero_half_pi[..., None, None]
        # Use the trig identity cos(x) = sin(x + pi/2)
        # and do one vectorized call to sin([x, x+pi/2]) instead of (sin(x), cos(x)).
        embed = embed.sin()
        if diag_cov is not None:
            x_var = diag_cov[..., None] * torch.pow(self._frequencies, 2)
            exp_var = torch.exp(-0.5 * x_var)
            # [..., 2, dim, n_harmonic_functions]
            embed = embed * exp_var[..., None, :, :]

        embed = embed.reshape(*x.shape[:-1], -1)

        if self.append_input:
            return torch.cat([embed, x], dim=-1)
        return embed

    @staticmethod
    def get_output_dim_static(input_dims: int, n_harmonic_functions: int, append_input: bool) -> int:
        """
        Utility to help predict the shape of the output of `forward`.

        Args:
            input_dims: length of the last dimension of the input tensor
            n_harmonic_functions: number of embedding frequencies
            append_input: whether or not to concat the original
                input to the harmonic embedding
        Returns:
            int: the length of the last dimension of the output tensor
        """
        return input_dims * (2 * n_harmonic_functions + int(append_input))

    def get_output_dim(self, input_dims: int = 3) -> int:
        """
        Same as above. The default for input_dims is 3 for 3D applications
        which use harmonic embedding for positional encoding,
        so the input might be xyz.
        """
        return self.get_output_dim_static(input_dims, len(self._frequencies), self.append_input)