# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ All the functions to build the relevant solvers and used objects from the Hydra config. """ from enum import Enum import logging import typing as tp import dora import flashy import omegaconf import torch from torch import nn from torch.optim import Optimizer # LRScheduler was renamed in some torch versions try: from torch.optim.lr_scheduler import LRScheduler # type: ignore except ImportError: from torch.optim.lr_scheduler import _LRScheduler as LRScheduler from .base import StandardSolver from .. import adversarial, data, losses, metrics, optim from ..utils.utils import dict_from_config, get_loader logger = logging.getLogger(__name__) class DatasetType(Enum): AUDIO = "audio" MUSIC = "music" SOUND = "sound" def get_solver(cfg: omegaconf.DictConfig) -> StandardSolver: """Instantiate solver from config.""" from .audiogen import AudioGenSolver from .compression import CompressionSolver from .musicgen import MusicGenSolver from .diffusion import DiffusionSolver klass = { 'compression': CompressionSolver, 'musicgen': MusicGenSolver, 'audiogen': AudioGenSolver, 'lm': MusicGenSolver, # backward compatibility 'diffusion': DiffusionSolver, 'sound_lm': AudioGenSolver, # backward compatibility }[cfg.solver] return klass(cfg) # type: ignore def get_optim_parameter_groups(model: nn.Module): """Create parameter groups for the model using the appropriate method if defined for each modules, to create the different groups. Args: model (nn.Module): torch model Returns: List of parameter groups """ seen_params: tp.Set[nn.parameter.Parameter] = set() other_params = [] groups = [] for name, module in model.named_modules(): if hasattr(module, 'make_optim_group'): group = module.make_optim_group() params = set(group['params']) assert params.isdisjoint(seen_params) seen_params |= set(params) groups.append(group) for param in model.parameters(): if param not in seen_params: other_params.append(param) groups.insert(0, {'params': other_params}) parameters = groups return parameters def get_optimizer(params: tp.Union[nn.Module, tp.Iterable[torch.Tensor]], cfg: omegaconf.DictConfig) -> Optimizer: """Build torch optimizer from config and set of parameters. Supported optimizers: Adam, AdamW Args: params (nn.Module or iterable of torch.Tensor): Parameters to optimize. cfg (DictConfig): Optimization-related configuration. Returns: torch.optim.Optimizer. """ if 'optimizer' not in cfg: if getattr(cfg, 'optim', None) is not None: raise KeyError("Optimizer not found in config. Try instantiating optimizer from cfg.optim?") else: raise KeyError("Optimizer not found in config.") parameters = get_optim_parameter_groups(params) if isinstance(params, nn.Module) else params optimizer: torch.optim.Optimizer if cfg.optimizer == 'adam': optimizer = torch.optim.Adam(parameters, lr=cfg.lr, **cfg.adam) elif cfg.optimizer == 'adamw': optimizer = torch.optim.AdamW(parameters, lr=cfg.lr, **cfg.adam) elif cfg.optimizer == 'dadam': optimizer = optim.DAdaptAdam(parameters, lr=cfg.lr, **cfg.adam) else: raise ValueError(f"Unsupported LR Scheduler: {cfg.lr_scheduler}") return optimizer def get_lr_scheduler(optimizer: torch.optim.Optimizer, cfg: omegaconf.DictConfig, total_updates: int) -> tp.Optional[LRScheduler]: """Build torch learning rate scheduler from config and associated optimizer. Supported learning rate schedulers: ExponentialLRScheduler, PlateauLRScheduler Args: optimizer (torch.optim.Optimizer): Optimizer. cfg (DictConfig): Schedule-related configuration. total_updates (int): Total number of updates. Returns: torch.optim.Optimizer. """ if 'lr_scheduler' not in cfg: raise KeyError("LR Scheduler not found in config") lr_sched: tp.Optional[LRScheduler] = None if cfg.lr_scheduler == 'step': lr_sched = torch.optim.lr_scheduler.StepLR(optimizer, **cfg.step) elif cfg.lr_scheduler == 'exponential': lr_sched = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=cfg.exponential) elif cfg.lr_scheduler == 'cosine': kwargs = dict_from_config(cfg.cosine) warmup_steps = kwargs.pop('warmup') lr_sched = optim.CosineLRScheduler( optimizer, warmup_steps=warmup_steps, total_steps=total_updates, **kwargs) elif cfg.lr_scheduler == 'polynomial_decay': kwargs = dict_from_config(cfg.polynomial_decay) warmup_steps = kwargs.pop('warmup') lr_sched = optim.PolynomialDecayLRScheduler( optimizer, warmup_steps=warmup_steps, total_steps=total_updates, **kwargs) elif cfg.lr_scheduler == 'inverse_sqrt': kwargs = dict_from_config(cfg.inverse_sqrt) warmup_steps = kwargs.pop('warmup') lr_sched = optim.InverseSquareRootLRScheduler(optimizer, warmup_steps=warmup_steps, **kwargs) elif cfg.lr_scheduler == 'linear_warmup': kwargs = dict_from_config(cfg.linear_warmup) warmup_steps = kwargs.pop('warmup') lr_sched = optim.LinearWarmupLRScheduler(optimizer, warmup_steps=warmup_steps, **kwargs) elif cfg.lr_scheduler is not None: raise ValueError(f"Unsupported LR Scheduler: {cfg.lr_scheduler}") return lr_sched def get_ema(module_dict: nn.ModuleDict, cfg: omegaconf.DictConfig) -> tp.Optional[optim.ModuleDictEMA]: """Initialize Exponential Moving Average. Args: module_dict (nn.ModuleDict): ModuleDict for which to compute the EMA. cfg (omegaconf.DictConfig): Optim EMA configuration. Returns: optim.ModuleDictEMA: EMA version of the ModuleDict. """ kw: tp.Dict[str, tp.Any] = dict(cfg) use = kw.pop('use', False) decay = kw.pop('decay', None) device = kw.pop('device', None) if not use: return None if len(module_dict) == 0: raise ValueError("Trying to build EMA but an empty module_dict source is provided!") ema_module = optim.ModuleDictEMA(module_dict, decay=decay, device=device) return ema_module def get_loss(loss_name: str, cfg: omegaconf.DictConfig): """Instantiate loss from configuration.""" klass = { 'l1': torch.nn.L1Loss, 'l2': torch.nn.MSELoss, 'mel': losses.MelSpectrogramL1Loss, 'mrstft': losses.MRSTFTLoss, 'msspec': losses.MultiScaleMelSpectrogramLoss, 'sisnr': losses.SISNR, }[loss_name] kwargs = dict(getattr(cfg, loss_name)) return klass(**kwargs) def get_balancer(loss_weights: tp.Dict[str, float], cfg: omegaconf.DictConfig) -> losses.Balancer: """Instantiate loss balancer from configuration for the provided weights.""" kwargs: tp.Dict[str, tp.Any] = dict_from_config(cfg) return losses.Balancer(loss_weights, **kwargs) def get_adversary(name: str, cfg: omegaconf.DictConfig) -> nn.Module: """Initialize adversary from config.""" klass = { 'msd': adversarial.MultiScaleDiscriminator, 'mpd': adversarial.MultiPeriodDiscriminator, 'msstftd': adversarial.MultiScaleSTFTDiscriminator, }[name] adv_cfg: tp.Dict[str, tp.Any] = dict(getattr(cfg, name)) return klass(**adv_cfg) def get_adversarial_losses(cfg) -> nn.ModuleDict: """Initialize dict of adversarial losses from config.""" device = cfg.device adv_cfg = getattr(cfg, 'adversarial') adversaries = adv_cfg.get('adversaries', []) adv_loss_name = adv_cfg['adv_loss'] feat_loss_name = adv_cfg.get('feat_loss') normalize = adv_cfg.get('normalize', True) feat_loss: tp.Optional[adversarial.FeatureMatchingLoss] = None if feat_loss_name: assert feat_loss_name in ['l1', 'l2'], f"Feature loss only support L1 or L2 but {feat_loss_name} found." loss = get_loss(feat_loss_name, cfg) feat_loss = adversarial.FeatureMatchingLoss(loss, normalize) loss = adversarial.get_adv_criterion(adv_loss_name) loss_real = adversarial.get_real_criterion(adv_loss_name) loss_fake = adversarial.get_fake_criterion(adv_loss_name) adv_losses = nn.ModuleDict() for adv_name in adversaries: adversary = get_adversary(adv_name, cfg).to(device) optimizer = get_optimizer(adversary.parameters(), cfg.optim) adv_loss = adversarial.AdversarialLoss( adversary, optimizer, loss=loss, loss_real=loss_real, loss_fake=loss_fake, loss_feat=feat_loss, normalize=normalize ) adv_losses[adv_name] = adv_loss return adv_losses def get_visqol(cfg: omegaconf.DictConfig) -> metrics.ViSQOL: """Instantiate ViSQOL metric from config.""" kwargs = dict_from_config(cfg) return metrics.ViSQOL(**kwargs) def get_fad(cfg: omegaconf.DictConfig) -> metrics.FrechetAudioDistanceMetric: """Instantiate Frechet Audio Distance metric from config.""" kwargs = dict_from_config(cfg.tf) xp = dora.get_xp() kwargs['log_folder'] = xp.folder return metrics.FrechetAudioDistanceMetric(**kwargs) def get_kldiv(cfg: omegaconf.DictConfig) -> metrics.KLDivergenceMetric: """Instantiate KL-Divergence metric from config.""" kld_metrics = { 'passt': metrics.PasstKLDivergenceMetric, } klass = kld_metrics[cfg.model] kwargs = dict_from_config(cfg.get(cfg.model)) return klass(**kwargs) def get_text_consistency(cfg: omegaconf.DictConfig) -> metrics.TextConsistencyMetric: """Instantiate Text Consistency metric from config.""" text_consistency_metrics = { 'clap': metrics.CLAPTextConsistencyMetric } klass = text_consistency_metrics[cfg.model] kwargs = dict_from_config(cfg.get(cfg.model)) return klass(**kwargs) def get_chroma_cosine_similarity(cfg: omegaconf.DictConfig) -> metrics.ChromaCosineSimilarityMetric: """Instantiate Chroma Cosine Similarity metric from config.""" assert cfg.model == 'chroma_base', "Only support 'chroma_base' method for chroma cosine similarity metric" kwargs = dict_from_config(cfg.get(cfg.model)) return metrics.ChromaCosineSimilarityMetric(**kwargs) def get_audio_datasets(cfg: omegaconf.DictConfig, dataset_type: DatasetType = DatasetType.AUDIO) -> tp.Dict[str, torch.utils.data.DataLoader]: """Build AudioDataset from configuration. Args: cfg (omegaconf.DictConfig): Configuration. dataset_type: The type of dataset to create. Returns: dict[str, torch.utils.data.DataLoader]: Map of dataloader for each data split. """ dataloaders: dict = {} sample_rate = cfg.sample_rate channels = cfg.channels seed = cfg.seed max_sample_rate = cfg.datasource.max_sample_rate max_channels = cfg.datasource.max_channels assert cfg.dataset is not None, "Could not find dataset definition in config" dataset_cfg = dict_from_config(cfg.dataset) splits_cfg: dict = {} splits_cfg['train'] = dataset_cfg.pop('train') splits_cfg['valid'] = dataset_cfg.pop('valid') splits_cfg['evaluate'] = dataset_cfg.pop('evaluate') splits_cfg['generate'] = dataset_cfg.pop('generate') execute_only_stage = cfg.get('execute_only', None) for split, path in cfg.datasource.items(): if not isinstance(path, str): continue # skipping this as not a path if execute_only_stage is not None and split != execute_only_stage: continue logger.info(f"Loading audio data split {split}: {str(path)}") assert ( cfg.sample_rate <= max_sample_rate ), f"Expecting a max sample rate of {max_sample_rate} for datasource but {sample_rate} found." assert ( cfg.channels <= max_channels ), f"Expecting a max number of channels of {max_channels} for datasource but {channels} found." split_cfg = splits_cfg[split] split_kwargs = {k: v for k, v in split_cfg.items()} kwargs = {**dataset_cfg, **split_kwargs} # split kwargs overrides default dataset_cfg kwargs['sample_rate'] = sample_rate kwargs['channels'] = channels if kwargs.get('permutation_on_files') and cfg.optim.updates_per_epoch: kwargs['num_samples'] = ( flashy.distrib.world_size() * cfg.dataset.batch_size * cfg.optim.updates_per_epoch) num_samples = kwargs['num_samples'] shuffle = kwargs['shuffle'] return_info = kwargs.pop('return_info') batch_size = kwargs.pop('batch_size', None) num_workers = kwargs.pop('num_workers') if dataset_type == DatasetType.MUSIC: dataset = data.music_dataset.MusicDataset.from_meta(path, **kwargs) elif dataset_type == DatasetType.SOUND: dataset = data.sound_dataset.SoundDataset.from_meta(path, **kwargs) elif dataset_type == DatasetType.AUDIO: dataset = data.info_audio_dataset.InfoAudioDataset.from_meta(path, return_info=return_info, **kwargs) else: raise ValueError(f"Dataset type is unsupported: {dataset_type}") loader = get_loader( dataset, num_samples, batch_size=batch_size, num_workers=num_workers, seed=seed, collate_fn=dataset.collater if return_info else None, shuffle=shuffle, ) dataloaders[split] = loader return dataloaders