# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Adapted from MIT code under the original license # Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) import typing as tp import torch from torch import nn from torch.nn import functional as F # TODO: Replace with torchaudio.STFT? def _stft(x: torch.Tensor, fft_size: int, hop_length: int, win_length: int, window: tp.Optional[torch.Tensor], normalized: bool) -> torch.Tensor: """Perform STFT and convert to magnitude spectrogram. Args: x: Input signal tensor (B, C, T). fft_size (int): FFT size. hop_length (int): Hop size. win_length (int): Window length. window (torch.Tensor or None): Window function type. normalized (bool): Whether to normalize the STFT or not. Returns: torch.Tensor: Magnitude spectrogram (B, C, #frames, fft_size // 2 + 1). """ B, C, T = x.shape x_stft = torch.stft( x.view(-1, T), fft_size, hop_length, win_length, window, normalized=normalized, return_complex=True, ) x_stft = x_stft.view(B, C, *x_stft.shape[1:]) real = x_stft.real imag = x_stft.imag # NOTE(kan-bayashi): clamp is needed to avoid nan or inf return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1) class SpectralConvergenceLoss(nn.Module): """Spectral convergence loss. """ def __init__(self, epsilon: float = torch.finfo(torch.float32).eps): super().__init__() self.epsilon = epsilon def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor): """Calculate forward propagation. Args: x_mag: Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag: Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: torch.Tensor: Spectral convergence loss value. """ return torch.norm(y_mag - x_mag, p="fro") / (torch.norm(y_mag, p="fro") + self.epsilon) class LogSTFTMagnitudeLoss(nn.Module): """Log STFT magnitude loss. Args: epsilon (float): Epsilon value for numerical stability. """ def __init__(self, epsilon: float = torch.finfo(torch.float32).eps): super().__init__() self.epsilon = epsilon def forward(self, x_mag: torch.Tensor, y_mag: torch.Tensor): """Calculate forward propagation. Args: x_mag (torch.Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (torch.Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: torch.Tensor: Log STFT magnitude loss value. """ return F.l1_loss(torch.log(self.epsilon + y_mag), torch.log(self.epsilon + x_mag)) class STFTLosses(nn.Module): """STFT losses. Args: n_fft (int): Size of FFT. hop_length (int): Hop length. win_length (int): Window length. window (str): Window function type. normalized (bool): Whether to use normalized STFT or not. epsilon (float): Epsilon for numerical stability. """ def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600, window: str = "hann_window", normalized: bool = False, epsilon: float = torch.finfo(torch.float32).eps): super().__init__() self.n_fft = n_fft self.hop_length = hop_length self.win_length = win_length self.normalized = normalized self.register_buffer("window", getattr(torch, window)(win_length)) self.spectral_convergenge_loss = SpectralConvergenceLoss(epsilon) self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss(epsilon) def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]: """Calculate forward propagation. Args: x (torch.Tensor): Predicted signal (B, T). y (torch.Tensor): Groundtruth signal (B, T). Returns: torch.Tensor: Spectral convergence loss value. torch.Tensor: Log STFT magnitude loss value. """ x_mag = _stft(x, self.n_fft, self.hop_length, self.win_length, self.window, self.normalized) # type: ignore y_mag = _stft(y, self.n_fft, self.hop_length, self.win_length, self.window, self.normalized) # type: ignore sc_loss = self.spectral_convergenge_loss(x_mag, y_mag) mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) return sc_loss, mag_loss class STFTLoss(nn.Module): """Single Resolution STFT loss. Args: n_fft (int): Nb of FFT. hop_length (int): Hop length. win_length (int): Window length. window (str): Window function type. normalized (bool): Whether to use normalized STFT or not. epsilon (float): Epsilon for numerical stability. factor_sc (float): Coefficient for the spectral loss. factor_mag (float): Coefficient for the magnitude loss. """ def __init__(self, n_fft: int = 1024, hop_length: int = 120, win_length: int = 600, window: str = "hann_window", normalized: bool = False, factor_sc: float = 0.1, factor_mag: float = 0.1, epsilon: float = torch.finfo(torch.float32).eps): super().__init__() self.loss = STFTLosses(n_fft, hop_length, win_length, window, normalized, epsilon) self.factor_sc = factor_sc self.factor_mag = factor_mag def forward(self, x: torch.Tensor, y: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]: """Calculate forward propagation. Args: x (torch.Tensor): Predicted signal (B, T). y (torch.Tensor): Groundtruth signal (B, T). Returns: torch.Tensor: Single resolution STFT loss. """ sc_loss, mag_loss = self.loss(x, y) return self.factor_sc * sc_loss + self.factor_mag * mag_loss class MRSTFTLoss(nn.Module): """Multi resolution STFT loss. Args: n_ffts (Sequence[int]): Sequence of FFT sizes. hop_lengths (Sequence[int]): Sequence of hop sizes. win_lengths (Sequence[int]): Sequence of window lengths. window (str): Window function type. factor_sc (float): Coefficient for the spectral loss. factor_mag (float): Coefficient for the magnitude loss. normalized (bool): Whether to use normalized STFT or not. epsilon (float): Epsilon for numerical stability. """ def __init__(self, n_ffts: tp.Sequence[int] = [1024, 2048, 512], hop_lengths: tp.Sequence[int] = [120, 240, 50], win_lengths: tp.Sequence[int] = [600, 1200, 240], window: str = "hann_window", factor_sc: float = 0.1, factor_mag: float = 0.1, normalized: bool = False, epsilon: float = torch.finfo(torch.float32).eps): super().__init__() assert len(n_ffts) == len(hop_lengths) == len(win_lengths) self.stft_losses = torch.nn.ModuleList() for fs, ss, wl in zip(n_ffts, hop_lengths, win_lengths): self.stft_losses += [STFTLosses(fs, ss, wl, window, normalized, epsilon)] self.factor_sc = factor_sc self.factor_mag = factor_mag def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """Calculate forward propagation. Args: x (torch.Tensor): Predicted signal (B, T). y (torch.Tensor): Groundtruth signal (B, T). Returns: torch.Tensor: Multi resolution STFT loss. """ sc_loss = torch.Tensor([0.0]) mag_loss = torch.Tensor([0.0]) for f in self.stft_losses: sc_l, mag_l = f(x, y) sc_loss += sc_l mag_loss += mag_l sc_loss /= len(self.stft_losses) mag_loss /= len(self.stft_losses) return self.factor_sc * sc_loss + self.factor_mag * mag_loss