MelodyFlow / demos /melodyflow_app.py
Gael Le Lan
Initial commit
9d0d223
raw
history blame
21.4 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under thmage license found in the
# LICENSE file in the root directory of this source tree.
import spaces
import argparse
import logging
import os
from pathlib import Path
import subprocess as sp
import sys
from tempfile import NamedTemporaryFile
import time
import typing as tp
import warnings
import torch
import gradio as gr
from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_read, audio_write
from audiocraft.models import MelodyFlow
MODEL = None # Last used model
SPACE_ID = os.environ.get('SPACE_ID', '')
MODEL_PREFIX = os.environ.get('MODEL_PREFIX', 'facebook/')
IS_HF_SPACE = (MODEL_PREFIX + "MelodyFlow") in SPACE_ID
MAX_BATCH_SIZE = 12
N_REPEATS = 3
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
EULER = "euler"
MIDPOINT = "midpoint"
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version=(MODEL_PREFIX + "melodyflow-t24-30secs")):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
# Clear PyTorch CUDA cache and delete model
del MODEL
if torch.cuda.is_available():
torch.cuda.empty_cache()
MODEL = None # in case loading would crash
MODEL = MelodyFlow.get_pretrained(version)
def _do_predictions(texts,
melodies,
solver,
steps,
target_flowstep,
regularize,
regularization_strength,
duration,
progress=False,
):
MODEL.set_generation_params(solver=solver,
steps=steps,
duration=duration,)
MODEL.set_editing_params(solver=solver,
steps=steps,
target_flowstep=target_flowstep,
regularize=regularize,
lambda_kl=regularization_strength)
print("new batch", len(texts), texts, [None if m is None else m for m in melodies])
be = time.time()
processed_melodies = []
target_sr = 48000
target_ac = 2
for melody in melodies:
if melody is None:
processed_melodies.append(None)
else:
melody, sr = audio_read(melody)
if melody.dim() == 2:
melody = melody[None]
if melody.shape[-1] > int(sr * MODEL.duration):
melody = melody[..., :int(sr * MODEL.duration)]
melody = convert_audio(melody, sr, target_sr, target_ac)
melody = MODEL.encode_audio(melody.to(MODEL.device))
processed_melodies.append(melody)
try:
if any(m is not None for m in processed_melodies):
outputs = MODEL.edit(
prompt_tokens=torch.cat(processed_melodies, dim=0).repeat(len(texts), 1, 1),
descriptions=texts,
src_descriptions=[""] * len(texts),
progress=progress,
return_tokens=False,
)
else:
outputs = MODEL.generate(texts, progress=progress, return_tokens=False)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
outputs = outputs.detach().cpu().float()
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
out_wavs.append(file.name)
file_cleaner.add(file.name)
print("batch finished", len(texts), time.time() - be)
print("Tempfiles currently stored: ", len(file_cleaner.files))
return out_wavs
@spaces.GPU(duration=30)
def predict(model, text,
solver, steps, target_flowstep,
regularize,
regularization_strength,
duration,
melody=None,
model_path=None,
progress=gr.Progress()):
if melody is not None:
if solver == MIDPOINT:
steps = steps//2
else:
steps = steps//5
global INTERRUPTING
INTERRUPTING = False
progress(0, desc="Loading model...")
if model_path:
model_path = model_path.strip()
if not Path(model_path).exists():
raise gr.Error(f"Model path {model_path} doesn't exist.")
if not Path(model_path).is_dir():
raise gr.Error(f"Model path {model_path} must be a folder containing "
"state_dict.bin and compression_state_dict_.bin.")
model = model_path
load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
wavs = _do_predictions(
[text] * N_REPEATS, [melody],
solver=solver,
steps=steps,
target_flowstep=target_flowstep,
regularize=regularize,
regularization_strength=regularization_strength,
duration=duration,
progress=True,)
outputs_ = [wav for wav in wavs]
return tuple(outputs_)
def toggle_audio_src(choice):
if choice == "mic":
return gr.update(sources=["microphone", "upload"], value=None, label="Microphone")
else:
return gr.update(sources=["upload", "microphone"], value=None, label="File")
def toggle_melody(melody):
if melody is None:
return gr.update(value=MIDPOINT)
else:
return gr.update(value=EULER)
def toggle_solver(solver, melody):
if melody is None:
if solver == MIDPOINT:
return gr.update(value=64.0, minimum=2, maximum=128.0, step=2.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0)
else:
return gr.update(value=64.0, minimum=1, maximum=128.0, step=1.0), gr.update(interactive=False, value=1.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=True, value=30.0)
else:
if solver == MIDPOINT:
return gr.update(value=128, minimum=4.0, maximum=256.0, step=4.0), gr.update(interactive=True, value=0.0), gr.update(interactive=False, value=False), gr.update(interactive=False, value=0.0), gr.update(interactive=False, value=0.0)
else:
return gr.update(value=125, minimum=5.0, maximum=250.0, step=5.0), gr.update(interactive=True, value=0.0), gr.update(interactive=True, value=True), gr.update(interactive=True, value=0.2), gr.update(interactive=False, value=0.0)
def ui_local(launch_kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# MelodyFlow
This is your private demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft),
A fast text-guided music generation and editing model based on a single-stage flow matching DiT
presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"] (https://huggingface.co/papers/2407.03648)
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True)
melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone",
interactive=True, elem_id="melody-input", min_length=1)
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")],
label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True)
model_path = gr.Text(label="Model Path (custom models)")
with gr.Row():
solver = gr.Radio([EULER, MIDPOINT],
label="ODE Solver", value=MIDPOINT, interactive=True)
steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0,
step=2.0, value=128.0, interactive=True)
duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True)
with gr.Row():
target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0,
maximum=1.0, value=0.0, interactive=False)
regularize = gr.Checkbox(label="Regularize", value=False, interactive=False)
regularization_strength = gr.Slider(
label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False)
with gr.Column():
audio_outputs = [
gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)]
submit.click(fn=predict,
inputs=[model, text,
solver,
steps,
target_flowstep,
regularize,
regularization_strength,
duration,
melody,
model_path,],
outputs=[o for o in audio_outputs])
melody.change(toggle_melody, melody, [solver])
solver.change(toggle_solver, [solver, melody], [steps, target_flowstep,
regularize, regularization_strength, duration])
gr.Examples(
fn=predict,
examples=[
[
(MODEL_PREFIX + "melodyflow-t24-30secs"),
"80s electronic track with melodic synthesizers, catchy beat and groovy bass.",
MIDPOINT,
64,
1.0,
False,
0.0,
30.0,
None,
],
[
(MODEL_PREFIX + "melodyflow-t24-30secs"),
"A cheerful country song with acoustic guitars accompanied by a nice piano melody.",
EULER,
125,
0.0,
True,
0.2,
-1.0,
"./assets/bolero_ravel.mp3",
],
],
inputs=[model, text, solver, steps, target_flowstep,
regularize,
regularization_strength, duration, melody,],
outputs=[audio_outputs],
cache_examples=False,
)
gr.Markdown(
"""
### More details
The model will generate a short music extract based on the description you provided.
The model can generate or edit up to 30 seconds of audio in one pass.
The model was trained with description from a stock music catalog, descriptions that will work best
should include some level of details on the instruments present, along with some intended use case
(e.g. adding "perfect for a commercial" can somehow help).
You can optionally provide a reference audio from which the model will elaborate an edited version
based on the text description, using MelodyFlow's regularized latent inversion.
**WARNING:** Choosing long durations will take a longer time to generate.
Available models are:
1. facebook/melodyflow-t24-30secs (1B)
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md)
for more details.
"""
)
interface.queue().launch(**launch_kwargs)
def ui_hf(launch_kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# MelodyFlow
This is the demo for [MelodyFlow](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md),
a fast text-guided music generation and editing model based on a single-stage flow matching DiT
presented at: ["High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching"](https://huggingface.co/papers/2407.03648).
Use of this demo is subject to [Meta's AI Terms of Service](https://www.facebook.com/legal/ai-terms).
<br/>
<a href="https://huggingface.co/spaces/facebook/MelodyFlow?duplicate=true"
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
for longer sequences, more control and no queue.</p>
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True)
melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File or Microphone",
interactive=True, elem_id="melody-input", min_length=1)
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
model = gr.Radio([(MODEL_PREFIX + "melodyflow-t24-30secs")],
label="Model", value=(MODEL_PREFIX + "melodyflow-t24-30secs"), interactive=True)
with gr.Row():
solver = gr.Radio([EULER, MIDPOINT],
label="ODE Solver", value=MIDPOINT, interactive=True)
steps = gr.Slider(label="Inference steps", minimum=2.0, maximum=128.0,
step=2.0, value=128.0, interactive=True)
duration = gr.Slider(label="Duration", minimum=1.0, maximum=30.0, value=30.0, interactive=True)
with gr.Row():
target_flowstep = gr.Slider(label="Target Flow step", minimum=0.0,
maximum=1.0, value=0.0, interactive=False)
regularize = gr.Checkbox(label="Regularize", value=False, interactive=False)
regularization_strength = gr.Slider(
label="Regularization Strength", minimum=0.0, maximum=1.0, value=0.2, interactive=False)
with gr.Column():
audio_outputs = [
gr.Audio(label=f"Generated Audio - variation {i+1}", type='filepath', show_download_button=False, show_share_button=False) for i in range(N_REPEATS)]
submit.click(fn=predict,
inputs=[model, text,
solver,
steps,
target_flowstep,
regularize,
regularization_strength,
duration,
melody,],
outputs=[o for o in audio_outputs])
melody.change(toggle_melody, melody, [solver])
solver.change(toggle_solver, [solver, melody], [steps, target_flowstep,
regularize, regularization_strength, duration])
gr.Examples(
fn=predict,
examples=[
[
(MODEL_PREFIX + "melodyflow-t24-30secs"),
"80s electronic track with melodic synthesizers, catchy beat and groovy bass.",
MIDPOINT,
64,
1.0,
False,
0.0,
30.0,
None,
],
[
(MODEL_PREFIX + "melodyflow-t24-30secs"),
"A cheerful country song with acoustic guitars accompanied by a nice piano melody.",
EULER,
125,
0.0,
True,
0.2,
-1.0,
"./assets/bolero_ravel.mp3",
],
],
inputs=[model, text, solver, steps, target_flowstep,
regularize,
regularization_strength, duration, melody,],
outputs=[audio_outputs],
cache_examples=False,
)
gr.Markdown("""
### More details
The model will generate or edit up to 30 seconds of audio based on the description you provided.
The model was trained with description from a stock music catalog, descriptions that will work best
should include some level of details on the instruments present, along with some intended use case
(e.g. adding "perfect for a commercial" can somehow help).
You can optionally provide a reference audio from which the model will elaborate an edited version
based on the text description, using MelodyFlow's regularized latent inversion.
You can access more control (longer generation, more models etc.) by clicking
the <a href="https://huggingface.co/spaces/facebook/MelodyFlow?duplicate=true"
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
(you will then need a paid GPU from HuggingFace).
This gradio demo can also be run locally (best with GPU).
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MELODYFLOW.md)
for more details.
""")
interface.queue().launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs['server_name'] = args.listen
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
# Show the interface
if IS_HF_SPACE:
ui_hf(launch_kwargs)
else:
ui_local(launch_kwargs)