from transformers import AutoModel, AutoTokenizer import time import importlib from toolbox import update_ui, get_conf from multiprocessing import Process, Pipe ################################################################################# class GetGLMHandle(Process): def __init__(self): super().__init__(daemon=True) self.parent, self.child = Pipe() self.chatglm_model = None self.chatglm_tokenizer = None self.start() print('初始化') def ready(self): return self.chatglm_model is not None def run(self): while True: try: if self.chatglm_model is None: self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) device, = get_conf('LOCAL_MODEL_DEVICE') if device=='cpu': self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() else: self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() self.chatglm_model = self.chatglm_model.eval() break else: break except: pass while True: kwargs = self.child.recv() try: for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs): self.child.send(response) except: self.child.send('[Local Message] Call ChatGLM fail.') self.child.send('[Finish]') def stream_chat(self, **kwargs): self.parent.send(kwargs) while True: res = self.parent.recv() if res != '[Finish]': yield res else: break return global glm_handle glm_handle = None ################################################################################# def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): """ 多线程方法 函数的说明请见 request_llm/bridge_all.py """ global glm_handle if glm_handle is None: glm_handle = GetGLMHandle() observe_window[0] = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……" # chatglm 没有 sys_prompt 接口,因此把prompt加入 history history_feedin = [] for i in range(len(history)//2): history_feedin.append(["What can I do?", sys_prompt] ) history_feedin.append([history[2*i], history[2*i+1]] ) watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可 response = "" for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): observe_window[0] = response if len(observe_window) >= 2: if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。") return response def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): """ 单线程方法 函数的说明请见 request_llm/bridge_all.py """ chatbot.append((inputs, "")) global glm_handle if glm_handle is None: glm_handle = GetGLMHandle() chatbot[-1] = (inputs, "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……") yield from update_ui(chatbot=chatbot, history=[]) if additional_fn is not None: import core_functional importlib.reload(core_functional) # 热更新prompt core_functional = core_functional.get_core_functions() if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话) inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] history_feedin = [] for i in range(len(history)//2): history_feedin.append(["What can I do?", system_prompt] ) history_feedin.append([history[2*i], history[2*i+1]] ) for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): chatbot[-1] = (inputs, response) yield from update_ui(chatbot=chatbot, history=history)