# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nltk import word_tokenize import evaluate import datasets from statistics import mean _DESCRIPTION = """ Returns the average length (in terms of the number of words) of the input data. """ _KWARGS_DESCRIPTION = """ Args: `data`: a list of `str` for which the word length is calculated. `tokenizer` (`Callable`) : the approach used for tokenizing `data` (optional). The default tokenizer is `word_tokenize` from NLTK: https://www.nltk.org/api/nltk.tokenize.html This can be replaced by any function that takes a string as input and returns a list of tokens as output. Returns: `average_word_length` (`float`) : the average number of words in the input list of strings. Examples: >>> data = ["hello world"] >>> wordlength = evaluate.load("word_length", module_type="measurement") >>> results = wordlength.compute(data=data) >>> print(results) {'average_word_length': 2} """ # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class WordLength(evaluate.EvaluationModule): """This measurement returns the average number of words in the input string(s).""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.EvaluationModuleInfo( # This is the description that will appear on the modules page. module_type="measurement", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'data': datasets.Value('string'), }) ) def _download_and_prepare(self, dl_manager): import nltk nltk.download("punkt") def _compute(self, data, tokenizer=word_tokenize): """Returns the average word length of the input data""" lengths = [len(tokenizer(d)) for d in data] average_length = mean(lengths) return {"average_word_length": average_length}