diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -13,35 +13,37 @@ from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import HtmlFormatter import base64 -from transformers import pipeline -import torch import re import shutil import time from datetime import datetime, timedelta import streamlit.components.v1 as components import uuid -import platform import pandas as pd import plotly.express as px import markdown import zipfile -import contextlib -import threading +from azure.ai.inference import ChatCompletionsClient +from azure.ai.inference.models import SystemMessage, UserMessage +from azure.core.credentials import AzureKeyCredential +from openai import OpenAI +from transformers import pipeline +import torch import traceback -from io import StringIO, BytesIO -# Set up enhanced logging +# ────────────────────────────────────────────────────────────────────────────── +# Logging +# ────────────────────────────────────────────────────────────────────────────── logging.basicConfig( level=logging.INFO, - format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', - handlers=[ - logging.StreamHandler() - ] + format="%(asctime)s • %(name)s • %(levelname)s • %(message)s", + handlers=[logging.StreamHandler()] ) logger = logging.getLogger(__name__) -# Model configuration mapping for different API requirements and limits +# ────────────────────────────────────────────────────────────────────────────── +# Model & Render Configuration +# ────────────────────────────────────────────────────────────────────────────── MODEL_CONFIGS = { "DeepSeek-V3-0324": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None}, "DeepSeek-R1": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "DeepSeek", "warning": None}, @@ -59,3340 +61,652 @@ MODEL_CONFIGS = { "Phi-4-multimodal-instruct": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Microsoft", "warning": None}, "Mistral-large-2407": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None}, "Codestral-2501": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Mistral", "warning": None}, - # Default configuration for other models "default": {"max_tokens": 4000, "param_name": "max_tokens", "api_version": None, "category": "Other", "warning": None} } -# Try to import Streamlit Ace -try: - from streamlit_ace import st_ace - ACE_EDITOR_AVAILABLE = True -except ImportError: - ACE_EDITOR_AVAILABLE = False - logger.warning("streamlit-ace not available, falling back to standard text editor") +QUALITY_PRESETS = { + "480p": {"flag": "-ql", "fps": 30}, + "720p": {"flag": "-qm", "fps": 30}, + "1080p": {"flag": "-qh", "fps": 60}, + "4K": {"flag": "-qk", "fps": 60}, + "8K": {"flag": "-qp", "fps": 60}, +} +ANIMATION_SPEEDS = { + "Slow": 0.5, + "Normal": 1.0, + "Fast": 2.0, + "Very Fast": 3.0 +} + +EXPORT_FORMATS = { + "MP4 Video": "mp4", + "GIF Animation": "gif", + "WebM Video": "webm", + "PNG Sequence": "png_sequence", + "SVG": "svg" +} + +# ────────────────────────────────────────────────────────────────────────────── +# 1. prepare_api_params +# ────────────────────────────────────────────────────────────────────────────── def prepare_api_params(messages, model_name): - """Create appropriate API parameters based on model configuration""" - # Get model configuration + """Lookup MODEL_CONFIGS and build API call parameters.""" config = MODEL_CONFIGS.get(model_name, MODEL_CONFIGS["default"]) - - # Base parameters common to all models - api_params = { + params = { "messages": messages, - "model": model_name + "model": model_name, + config["param_name"]: config.get(config["param_name"]) } - - # Add the appropriate token parameter based on model's parameter name - token_param = config["param_name"] - token_value = config[token_param] # Get the actual value from the config - - # Add the parameter to the API params - api_params[token_param] = token_value - - return api_params, config - -# New functions for accessing secrets and password verification -def get_secret(github_token_api): - """Retrieve a secret from HuggingFace Spaces environment variables""" - secret_value = os.environ.get(github_token_api) - if not secret_value: - logger.warning(f"Secret '{github_token_api}' not found") - return None - return secret_value - + return params, config + +# ────────────────────────────────────────────────────────────────────────────── +# 2. get_secret +# ────────────────────────────────────────────────────────────────────────────── +def get_secret(key): + """Read an environment variable (e.g. password, API token).""" + val = os.environ.get(key) + if not val: + logger.warning(f"Secret '{key}' not found") + return val or "" + +# ────────────────────────────────────────────────────────────────────────────── +# 3. check_password +# ────────────────────────────────────────────────────────────────────────────── def check_password(): - """Returns True if the user entered the correct password""" - # Get the password from secrets - correct_password = get_secret("password") - if not correct_password: - st.error("Admin password not configured in HuggingFace Spaces secrets") + """Prompt for admin password and gate AI features.""" + correct = get_secret("password") + if not correct: + st.error("Admin password not configured in secrets") return False - - # Password input - if "password_entered" not in st.session_state: - st.session_state.password_entered = False - - if not st.session_state.password_entered: - password = st.text_input("Enter password to access AI features", type="password") - if password: - if password == correct_password: - st.session_state.password_entered = True - return True + if "auth_ok" not in st.session_state: + st.session_state.auth_ok = False + if not st.session_state.auth_ok: + pwd = st.text_input("🔒 Enter admin password", type="password", help="Protects AI assistant") + if pwd: + if pwd == correct: + st.session_state.auth_ok = True + st.success("Access granted") else: st.error("Incorrect password") - return False return False return True +# ────────────────────────────────────────────────────────────────────────────── +# 4. ensure_packages +# ────────────────────────────────────────────────────────────────────────────── def ensure_packages(): - required_packages = { - 'manim': '0.17.3', - 'Pillow': '9.0.0', - 'numpy': '1.22.0', - 'transformers': '4.30.0', - 'torch': '2.0.0', - 'pygments': '2.15.1', - 'streamlit-ace': '0.1.1', - 'pydub': '0.25.1', # For audio processing - 'plotly': '5.14.0', # For timeline editor - 'pandas': '2.0.0', # For data manipulation - 'python-pptx': '0.6.21', # For PowerPoint export - 'markdown': '3.4.3', # For markdown processing - 'fpdf': '1.7.2', # For PDF generation - 'matplotlib': '3.5.0', # For Python script runner - 'seaborn': '0.11.2', # For enhanced visualizations - 'scipy': '1.7.3', # For scientific computations - 'huggingface_hub': '0.16.0', # For Hugging Face API + """Check & install core dependencies on first run.""" + required = { + 'streamlit':'1.25.0','manim':'0.17.3','numpy':'1.22.0','Pillow':'9.0.0', + 'transformers':'4.30.0','torch':'2.0.0','plotly':'5.14.0','pandas':'2.0.0', + 'python-pptx':'0.6.21','markdown':'3.4.3','fpdf':'1.7.2','matplotlib':'3.5.0', + 'seaborn':'0.11.2','scipy':'1.7.3','huggingface_hub':'0.16.0', + 'azure-ai-inference':'1.0.0b9','azure-core':'1.33.0','openai':'' } - - with st.spinner("Checking required packages..."): - # First, quickly check if packages are already installed - missing_packages = {} - for package, version in required_packages.items(): - try: - # Try to import the package to check if it's available - if package == 'manim': - import manim - elif package == 'Pillow': - import PIL - elif package == 'numpy': - import numpy - elif package == 'transformers': - import transformers - elif package == 'torch': - import torch - elif package == 'pygments': - import pygments - elif package == 'streamlit-ace': - # This one is trickier, we already handle it with ACE_EDITOR_AVAILABLE flag - pass - elif package == 'pydub': - import pydub - elif package == 'plotly': - import plotly - elif package == 'pandas': - import pandas - elif package == 'python-pptx': - import pptx - elif package == 'markdown': - import markdown - elif package == 'fpdf': - import fpdf - elif package == 'matplotlib': - import matplotlib - elif package == 'seaborn': - import seaborn - elif package == 'scipy': - import scipy - elif package == 'huggingface_hub': - import huggingface_hub - except ImportError: - missing_packages[package] = version - - # If no packages are missing, return success immediately - if not missing_packages: - logger.info("All required packages already installed.") - return True - - # If there are missing packages, install them with progress reporting - progress_bar = st.progress(0) - status_text = st.empty() - - for i, (package, version) in enumerate(missing_packages.items()): - try: - progress = (i / len(missing_packages)) - progress_bar.progress(progress) - status_text.text(f"Installing {package}...") - - result = subprocess.run( - [sys.executable, "-m", "pip", "install", f"{package}>={version}"], - capture_output=True, - text=True - ) - - if result.returncode != 0: - st.error(f"Failed to install {package}: {result.stderr}") - logger.error(f"Package installation failed: {package}") - return False - - except Exception as e: - st.error(f"Error installing {package}: {str(e)}") - logger.error(f"Package installation error: {str(e)}") - return False - - progress_bar.progress(1.0) - status_text.text("All packages installed successfully!") - time.sleep(0.5) - progress_bar.empty() - status_text.empty() - return True - + missing = [] + for pkg, ver in required.items(): + try: + __import__(pkg if pkg!='Pillow' else 'PIL') + except ImportError: + missing.append(f"{pkg}>={ver}" if ver else pkg) + if missing: + st.sidebar.info("Installing required packages...") + prog = st.sidebar.progress(0) + for i, pkg in enumerate(missing, 1): + subprocess.run([sys.executable, "-m", "pip", "install", pkg], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) + prog.progress(i/len(missing)) + st.sidebar.success("All packages installed") + +# ────────────────────────────────────────────────────────────────────────────── +# 5. install_custom_packages +# ────────────────────────────────────────────────────────────────────────────── def install_custom_packages(package_list): - """Install custom packages specified by the user without page refresh""" - if not package_list.strip(): - return True, "No packages specified" - - # Split and clean package list - packages = [pkg.strip() for pkg in package_list.split(',') if pkg.strip()] - + """Install user-specified pip packages on the fly.""" + packages = [p.strip() for p in package_list.split(",") if p.strip()] if not packages: - return True, "No valid packages specified" - - status_placeholder = st.sidebar.empty() - progress_bar = st.sidebar.progress(0) - + return True, "No packages specified" results = [] success = True - - for i, package in enumerate(packages): - try: - progress = (i / len(packages)) - progress_bar.progress(progress) - status_placeholder.text(f"Installing {package}...") - - result = subprocess.run( - [sys.executable, "-m", "pip", "install", package], - capture_output=True, - text=True - ) - - if result.returncode != 0: - error_msg = f"Failed to install {package}: {result.stderr}" - results.append(error_msg) - logger.error(error_msg) - success = False - else: - results.append(f"Successfully installed {package}") - logger.info(f"Successfully installed custom package: {package}") - - except Exception as e: - error_msg = f"Error installing {package}: {str(e)}" - results.append(error_msg) - logger.error(error_msg) - success = False - - progress_bar.progress(1.0) - status_placeholder.text("Installation complete!") - time.sleep(0.5) - progress_bar.empty() - status_placeholder.empty() - + for pkg in packages: + res = subprocess.run([sys.executable, "-m", "pip", "install", pkg], capture_output=True, text=True) + ok = (res.returncode == 0) + results.append(f"{pkg}: {'✅' if ok else '❌'}") + if not ok: success = False return success, "\n".join(results) +# ────────────────────────────────────────────────────────────────────────────── +# 6. init_ai_models_direct +# ────────────────────────────────────────────────────────────────────────────── @st.cache_resource(ttl=3600) def init_ai_models_direct(): - """Direct implementation using the exact pattern from the example code""" - try: - # Get token from secrets - token = get_secret("github_token_api") - if not token: - st.error("GitHub token not found in secrets. Please add 'github_token_api' to your HuggingFace Spaces secrets.") - return None - - # Log what we're doing - for debugging - logger.info(f"Initializing AI model with token: {token[:5]}...") - - # Use exact imports as in your example - import os - from azure.ai.inference import ChatCompletionsClient - from azure.ai.inference.models import SystemMessage, UserMessage - from azure.core.credentials import AzureKeyCredential - - # Use exact endpoint as in your example - endpoint = "https://models.inference.ai.azure.com" - - # Use default model - model_name = "gpt-4o" - - # Create client exactly as in your example - client = ChatCompletionsClient( - endpoint=endpoint, - credential=AzureKeyCredential(token), - ) - - # Return the necessary information - return { - "client": client, - "model_name": model_name, - "endpoint": endpoint - } - except ImportError as ie: - st.error(f"Import error: {str(ie)}. Please make sure azure-ai-inference is installed.") - logger.error(f"Import error: {str(ie)}") + """Initialize Azure ChatCompletionsClient for AI code generation.""" + token = get_secret("github_token_api") + if not token: + st.error("GitHub token not found in secrets") return None - except Exception as e: - st.error(f"Error initializing AI model: {str(e)}") - logger.error(f"Initialization error: {str(e)}") - return None - + endpoint = "https://models.inference.ai.azure.com" + client = ChatCompletionsClient(endpoint=endpoint, credential=AzureKeyCredential(token)) + return {"client": client, "model_name": "gpt-4o", "endpoint": endpoint} + +# ────────────────────────────────────────────────────────────────────────────── +# 7. suggest_code_completion +# ────────────────────────────────────────────────────────────────────────────── def suggest_code_completion(code_snippet, models): - """Generate code completion using the AI model""" + """Use the initialized AI model to generate complete Manim code.""" if not models: - st.error("AI models not properly initialized.") + st.error("AI models not initialized") return None - - try: - # Create the prompt - prompt = f"""Write a complete Manim animation scene based on this code or idea: + prompt = f"""Write a complete Manim animation scene based on this code or idea: {code_snippet} -The code should be a complete, working Manim animation that includes: -- Proper Scene class definition -- Constructor with animations -- Proper use of self.play() for animations -- Proper wait times between animations - -Here's the complete Manim code: +The code should include: +- A Scene subclass +- self.play() animations +- wait times +Return only valid Python code. """ - - with st.spinner("AI is generating your animation code..."): - # Get the current model name and base URL - model_name = models["model_name"] - - # Handle model name - extract base name if it has a prefix - base_model_name = model_name.split('/')[-1] if '/' in model_name else model_name - - # Convert message to the appropriate format based on model category - config = MODEL_CONFIGS.get(base_model_name, MODEL_CONFIGS["default"]) - category = config.get("category", "Other") - - if category == "OpenAI": - # Import OpenAI client - from openai import OpenAI - - # Get token - token = get_secret("github_token_api") - - # Create or get client - if "openai_client" not in models: - client = OpenAI( - base_url="https://models.github.ai/inference", - api_key=token - ) - models["openai_client"] = client - else: - client = models["openai_client"] - - # Add openai/ prefix if not present - if "/" not in model_name: - full_model_name = f"openai/{model_name}" - else: - full_model_name = model_name - - # For OpenAI models, use developer role instead of system - messages = [ - {"role": "developer", "content": "You are an expert in Manim animations."}, - {"role": "user", "content": prompt} - ] - - # Create params - params = { - "messages": messages, - "model": full_model_name - } - - # Add token parameter - token_param = config["param_name"] - params[token_param] = config[token_param] - - # Make API call - response = client.chat.completions.create(**params) - completed_code = response.choices[0].message.content - - else: - # Use Azure client - from azure.ai.inference.models import UserMessage - - # Convert message format for Azure - messages = [UserMessage(prompt)] - api_params, _ = prepare_api_params(messages, model_name) - - # Make API call with Azure client - response = models["client"].complete(**api_params) - completed_code = response.choices[0].message.content - - # Process the code - if "```python" in completed_code: - completed_code = completed_code.split("```python")[1].split("```")[0] - elif "```" in completed_code: - completed_code = completed_code.split("```")[1].split("```")[0] - - # Add Scene class if missing - if "Scene" not in completed_code: - completed_code = f"""from manim import * - -class MyScene(Scene): - def construct(self): - {completed_code}""" - - return completed_code - - except Exception as e: - st.error(f"Error generating code: {str(e)}") - st.code(traceback.format_exc()) - return None - + config = MODEL_CONFIGS.get(models["model_name"].split("/")[-1], MODEL_CONFIGS["default"]) + if config["category"] == "OpenAI": + client = models.get("openai_client") or OpenAI(base_url="https://models.github.ai/inference", api_key=get_secret("github_token_api")) + models["openai_client"] = client + messages = [{"role":"developer","content":"Expert in Manim."}, {"role":"user","content":prompt}] + params = {"messages": messages, "model": models["model_name"], config["param_name"]: config.get(config["param_name"])} + resp = client.chat.completions.create(**params) + content = resp.choices[0].message.content + else: + client = models["client"] + msgs = [UserMessage(prompt)] + params, _ = prepare_api_params(msgs, models["model_name"]) + resp = client.complete(**params) + content = resp.choices[0].message.content + # extract code block + if "```python" in content: + content = content.split("```python")[1].split("```")[0] + elif "```" in content: + content = content.split("```")[1].split("```")[0] + if "class" not in content: + content = f"from manim import *\n\nclass MyScene(Scene):\n def construct(self):\n {content}" + return content + +# ────────────────────────────────────────────────────────────────────────────── +# 8. check_model_freshness +# ────────────────────────────────────────────────────────────────────────────── def check_model_freshness(): - """Check if models need to be reloaded based on TTL""" - if 'ai_models' not in st.session_state or st.session_state.ai_models is None: - return False - - if 'last_loaded' not in st.session_state.ai_models: - return False - - last_loaded = datetime.fromisoformat(st.session_state.ai_models['last_loaded']) - ttl_hours = 1 # 1 hour TTL - - return datetime.now() - last_loaded < timedelta(hours=ttl_hours) - + """Return True if AI client was loaded within the past hour.""" + if not st.session_state.get("ai_models"): return False + last = st.session_state.ai_models.get("last_loaded") + if not last: return False + return datetime.fromisoformat(last) + timedelta(hours=1) > datetime.now() + +# ────────────────────────────────────────────────────────────────────────────── +# 9. extract_scene_class_name +# ────────────────────────────────────────────────────────────────────────────── def extract_scene_class_name(python_code): - """Extract the scene class name from Python code.""" - import re - scene_classes = re.findall(r'class\s+(\w+)\s*\([^)]*Scene[^)]*\)', python_code) - - if scene_classes: - # Return the first scene class found - return scene_classes[0] - else: - # If no scene class is found, use a default name - return "MyScene" - -def suggest_code_completion(code_snippet, models): - if not models or "code_model" not in models: - st.error("AI models not properly initialized") - return None - - try: - prompt = f"""Write a complete Manim animation scene based on this code or idea: -{code_snippet} - -The code should be a complete, working Manim animation that includes: -- Proper Scene class definition -- Constructor with animations -- Proper use of self.play() for animations -- Proper wait times between animations - -Here's the complete Manim code: -```python -""" - with st.spinner("AI is generating your animation code..."): - response = models["code_model"]( - prompt, - max_length=1024, - do_sample=True, - temperature=0.2, - top_p=0.95, - top_k=50, - num_return_sequences=1, - truncation=True, - pad_token_id=50256 - ) - - if not response or not response[0].get('generated_text'): - st.error("No valid completion generated") - return None - - completed_code = response[0]['generated_text'] - if "```python" in completed_code: - completed_code = completed_code.split("```python")[1].split("```")[0] - - if "Scene" not in completed_code: - completed_code = f"""from manim import * - -class MyScene(Scene): - def construct(self): - {completed_code}""" - - return completed_code - except Exception as e: - st.error(f"Error suggesting code: {str(e)}") - logger.error(f"Code suggestion error: {str(e)}") - return None - -# Quality presets -QUALITY_PRESETS = { - "480p": {"resolution": "480p", "fps": "30"}, - "720p": {"resolution": "720p", "fps": "30"}, - "1080p": {"resolution": "1080p", "fps": "60"}, - "4K": {"resolution": "2160p", "fps": "60"}, - "8K": {"resolution": "4320p", "fps": "60"} # Added 8K option -} - -# Animation speeds -ANIMATION_SPEEDS = { - "Slow": 0.5, - "Normal": 1.0, - "Fast": 2.0, - "Very Fast": 3.0 -} - -# Export formats -EXPORT_FORMATS = { - "MP4 Video": "mp4", - "GIF Animation": "gif", - "WebM Video": "webm", - "PNG Image Sequence": "png_sequence", - "SVG Image": "svg" -} + """Regex for the first class inheriting from Scene.""" + m = re.findall(r"class\s+(\w+)\s*\([^)]*Scene[^)]*\)", python_code) + return m[0] if m else "MyScene" +# ────────────────────────────────────────────────────────────────────────────── +# 10. highlight_code +# ────────────────────────────────────────────────────────────────────────────── def highlight_code(code): - formatter = HtmlFormatter(style='monokai') - highlighted = highlight(code, PythonLexer(), formatter) - return highlighted, formatter.get_style_defs() + """Return HTML+CSS highlighted Python code.""" + formatter = HtmlFormatter(style="monokai", full=True, noclasses=True) + return highlight(code, PythonLexer(), formatter) +# ────────────────────────────────────────────────────────────────────────────── +# 11. generate_manim_preview +# ────────────────────────────────────────────────────────────────────────────── def generate_manim_preview(python_code): - """Generate a lightweight preview of the Manim animation""" - try: - # Extract scene components for preview - scene_objects = [] - if "Circle" in python_code: - scene_objects.append("circle") - if "Square" in python_code: - scene_objects.append("square") - if "MathTex" in python_code or "Tex" in python_code: - scene_objects.append("equation") - if "Text" in python_code: - scene_objects.append("text") - if "Axes" in python_code: - scene_objects.append("graph") - if "ThreeDScene" in python_code or "ThreeDAxes" in python_code: - scene_objects.append("3D scene") - if "Sphere" in python_code: - scene_objects.append("sphere") - if "Cube" in python_code: - scene_objects.append("cube") - - # Generate a more detailed visual preview based on extracted objects - object_icons = { - "circle": "⭕", - "square": "🔲", - "equation": "📊", - "text": "📝", - "graph": "📈", - "3D scene": "🧊", - "sphere": "🌐", - "cube": "🧊" - } - - icon_html = "" - for obj in scene_objects: - if obj in object_icons: - icon_html += f'{object_icons[obj]}' - - preview_html = f""" -
-

Animation Preview

-
- {icon_html if icon_html else '🎬'} -
-

Scene contains: {', '.join(scene_objects) if scene_objects else 'No detected objects'}

-
Full rendering required for accurate preview
-
- """ - return preview_html - except Exception as e: - logger.error(f"Preview generation error: {str(e)}") - return f""" -
-
-

Preview Error

-

{str(e)}

-
-
- """ - -def render_latex_preview(latex_formula): - """Generate HTML for LaTeX preview using MathJax""" - if not latex_formula: - return """ -
-
Enter LaTeX formula to see preview
-
- """ - - # Create a dark-themed preview with MathJax + """Show icons for detected Manim objects in code.""" + icons = [] + mapping = { + "Circle":"⭕","Square":"🔲","MathTex":"📊","Tex":"📊", + "Text":"📝","Axes":"📈","ThreeDScene":"🧊","Sphere":"🌐","Cube":"🧊" + } + for key,icon in mapping.items(): + if key in python_code: icons.append(icon) + icons = icons or ["🎬"] html = f""" -
- - -
-
LaTeX Preview
-
- $$ - {latex_formula} - $$ -
-
Use MathTex(r"{latex_formula}") in your Manim code
-
+
+

Animation Preview

+
{''.join(icons)}
+

Accurate preview requires full render

""" return html +# ────────────────────────────────────────────────────────────────────────────── +# 12. render_latex_preview +# ────────────────────────────────────────────────────────────────────────────── +def render_latex_preview(latex_formula): + """Return HTML snippet with MathJax preview for LaTeX.""" + if not latex_formula: + return """ +
+ Enter a LaTeX formula above. +
""" + return f""" +
+ + +

LaTeX Preview

+
$$ {latex_formula} $$
+
""" + +# ────────────────────────────────────────────────────────────────────────────── +# 13. prepare_audio_for_manim +# ────────────────────────────────────────────────────────────────────────────── def prepare_audio_for_manim(audio_file, target_dir): - """Process audio file and return path for use in Manim""" - try: - # Create audio directory if it doesn't exist - audio_dir = os.path.join(target_dir, "audio") - os.makedirs(audio_dir, exist_ok=True) - - # Generate a unique filename - filename = f"audio_{int(time.time())}.mp3" - output_path = os.path.join(audio_dir, filename) - - # Save audio file - with open(output_path, "wb") as f: - f.write(audio_file.getvalue()) - - return output_path - except Exception as e: - logger.error(f"Audio processing error: {str(e)}") - return None - + """Save uploaded audio and return filesystem path.""" + os.makedirs(target_dir, exist_ok=True) + filename = f"audio_{int(time.time())}.mp3" + out = os.path.join(target_dir, filename) + with open(out, "wb") as f: + f.write(audio_file.getvalue()) + return out + +# ────────────────────────────────────────────────────────────────────────────── +# 14. mp4_to_gif +# ────────────────────────────────────────────────────────────────────────────── def mp4_to_gif(mp4_path, output_path, fps=15): - """Convert MP4 to GIF using ffmpeg as a backup when Manim fails""" - try: - # Use ffmpeg for conversion with optimized settings - command = [ - "ffmpeg", - "-i", mp4_path, - "-vf", f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse", - "-loop", "0", - output_path - ] - - # Run the conversion - result = subprocess.run(command, capture_output=True, text=True) - - if result.returncode != 0: - logger.error(f"FFmpeg conversion error: {result.stderr}") - return None - - return output_path - - except Exception as e: - logger.error(f"GIF conversion error: {str(e)}") - return None + """Use ffmpeg to convert an MP4 to a looping GIF.""" + cmd = [ + "ffmpeg","-i",mp4_path, + "-vf",f"fps={fps},scale=640:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse", + "-loop","0",output_path + ] + res = subprocess.run(cmd, capture_output=True, text=True) + return output_path if res.returncode==0 else None +# ────────────────────────────────────────────────────────────────────────────── +# 15. generate_manim_video +# ────────────────────────────────────────────────────────────────────────────── def generate_manim_video(python_code, format_type, quality_preset, animation_speed=1.0, audio_path=None): - temp_dir = None - progress_placeholder = st.empty() - status_placeholder = st.empty() - log_placeholder = st.empty() - video_data = None # Initialize video data variable - + """Render code via Manim CLI; fallback for GIF via ffmpeg.""" + temp_dir = tempfile.mkdtemp(prefix="manim_") try: - if not python_code or not format_type: - raise ValueError("Missing required parameters") - - # Create temporary directory - temp_dir = tempfile.mkdtemp(prefix="manim_render_") - - # Extract the scene class name from the code - scene_class = extract_scene_class_name(python_code) - logger.info(f"Detected scene class: {scene_class}") - - # If audio is provided, we need to modify the code to include it - if audio_path: - # Check if the code already has a with_sound decorator - if "with_sound" not in python_code: - # Add the necessary import - if "from manim.scene.scene_file_writer import SceneFileWriter" not in python_code: - python_code = "from manim.scene.scene_file_writer import SceneFileWriter\n" + python_code - - # Add sound to the scene - scene_def_pattern = f"class {scene_class}\\(.*?\\):" - scene_def_match = re.search(scene_def_pattern, python_code) - - if scene_def_match: - scene_def = scene_def_match.group(0) - scene_def_with_sound = f"@with_sound(\"{audio_path}\")\n{scene_def}" - python_code = python_code.replace(scene_def, scene_def_with_sound) - else: - logger.warning("Could not find scene definition to add audio") - - # Write the code to a file + scene = extract_scene_class_name(python_code) scene_file = os.path.join(temp_dir, "scene.py") with open(scene_file, "w", encoding="utf-8") as f: f.write(python_code) - - # Map quality preset to Manim quality flag - quality_map = { - "480p": "-ql", # Low quality - "720p": "-qm", # Medium quality - "1080p": "-qh", # High quality - "4K": "-qk", # 4K quality - "8K": "-qp" # 8K quality (production quality) - } - quality_flag = quality_map.get(quality_preset, "-qm") - - # Handle special formats - if format_type == "png_sequence": - # For PNG sequence, we need additional flags - format_arg = "--format=png" - extra_args = ["--save_pngs"] - elif format_type == "svg": - # For SVG, we need a different format - format_arg = "--format=svg" - extra_args = [] - else: - # Standard video formats - format_arg = f"--format={format_type}" - extra_args = [] - - # Show status and create progress bar - status_placeholder.info(f"Rendering {scene_class} with {quality_preset} quality...") - progress_bar = progress_placeholder.progress(0) - - # Build command - command = [ - "manim", - scene_file, - scene_class, - quality_flag, - format_arg - ] - command.extend(extra_args) - - logger.info(f"Running command: {' '.join(command)}") - - # Execute the command - process = subprocess.Popen( - command, - stdout=subprocess.PIPE, - stderr=subprocess.STDOUT, - text=True - ) - - # Track output - full_output = [] - output_file_path = None - mp4_output_path = None # Track MP4 output for GIF fallback - + flag = QUALITY_PRESETS[quality_preset]["flag"] + cmd = ["manim", scene_file, scene, flag, f"--format={format_type}"] + proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) + output = [] while True: - line = process.stdout.readline() - if not line and process.poll() is not None: + line = proc.stdout.readline() + if not line and proc.poll() is not None: break - - full_output.append(line) - log_placeholder.code("".join(full_output[-10:])) - - # Update progress bar based on output - if "%" in line: - try: - percent = float(line.split("%")[0].strip().split()[-1]) - progress_bar.progress(min(0.99, percent / 100)) - except: - pass - - # Try to capture the output file path from Manim's output - if "File ready at" in line: - try: - # Combine next few lines to get the full path - path_parts = [] - path_parts.append(line.split("File ready at")[-1].strip()) - - # Read up to 5 more lines to get the complete path - for _ in range(5): - additional_line = process.stdout.readline() - if additional_line: - full_output.append(additional_line) - path_parts.append(additional_line.strip()) - if additional_line.strip().endswith(('.mp4', '.gif', '.webm', '.svg')): - break - - # Join all parts and clean up - potential_path = ''.join(path_parts).replace("'", "").strip() - # Look for path pattern surrounded by quotes - path_match = re.search(r'([\'"]?)((?:/|[a-zA-Z]:\\).*?\.(?:mp4|gif|webm|svg))(\1)', potential_path) - if path_match: - output_file_path = path_match.group(2) - logger.info(f"Found output path in logs: {output_file_path}") - - # Track MP4 file for potential GIF fallback - if output_file_path.endswith('.mp4'): - mp4_output_path = output_file_path - except Exception as e: - logger.error(f"Error parsing output path: {str(e)}") - - # Wait for the process to complete - process.wait() - progress_bar.progress(1.0) - - # IMPORTANT: Wait a moment for file system to catch up - time.sleep(3) - - # Special handling for GIF format - if Manim failed to generate a GIF but we have an MP4 - if format_type == "gif" and (not output_file_path or not os.path.exists(output_file_path)) and mp4_output_path and os.path.exists(mp4_output_path): - status_placeholder.info("GIF generation via Manim failed. Trying FFmpeg conversion...") - - # Generate a GIF using FFmpeg - gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif") - gif_path = mp4_to_gif(mp4_output_path, gif_output_path) - - if gif_path and os.path.exists(gif_path): - output_file_path = gif_path - logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}") - - # For PNG sequence, we need to collect the PNGs - if format_type == "png_sequence": - # Find the PNG directory - png_dirs = [] - search_dirs = [ - os.path.join(os.getcwd(), "media", "images", scene_class, "Animations"), - os.path.join(temp_dir, "media", "images", scene_class, "Animations"), - "/tmp/media/images", - ] - - for search_dir in search_dirs: - if os.path.exists(search_dir): - for root, dirs, _ in os.walk(search_dir): - for d in dirs: - if os.path.exists(os.path.join(root, d)): - png_dirs.append(os.path.join(root, d)) - - if png_dirs: - # Get the newest directory - newest_dir = max(png_dirs, key=os.path.getctime) - - # Create a zip file with all PNGs - png_files = [f for f in os.listdir(newest_dir) if f.endswith('.png')] - if png_files: - zip_path = os.path.join(temp_dir, f"{scene_class}_pngs.zip") - - with zipfile.ZipFile(zip_path, 'w') as zipf: - for png in png_files: - png_path = os.path.join(newest_dir, png) - zipf.write(png_path, os.path.basename(png_path)) - - with open(zip_path, 'rb') as f: - video_data = f.read() - - logger.info(f"Created PNG sequence zip: {zip_path}") - else: - logger.error("No PNG files found in directory") - else: - logger.error("No PNG directories found") - elif output_file_path and os.path.exists(output_file_path): - # For other formats, read the output file directly - with open(output_file_path, 'rb') as f: - video_data = f.read() - logger.info(f"Read output file from path: {output_file_path}") - else: - # If we didn't find the output path, search for files - search_paths = [ - os.path.join(os.getcwd(), "media", "videos"), - os.path.join(os.getcwd(), "media", "videos", "scene"), - os.path.join(os.getcwd(), "media", "videos", scene_class), - "/tmp/media/videos", - temp_dir, - os.path.join(temp_dir, "media", "videos"), - ] - - # Add quality-specific paths - for quality in ["480p30", "720p30", "1080p60", "2160p60", "4320p60"]: - search_paths.append(os.path.join(os.getcwd(), "media", "videos", "scene", quality)) - search_paths.append(os.path.join(os.getcwd(), "media", "videos", scene_class, quality)) - - # For SVG format - if format_type == "svg": - search_paths.extend([ - os.path.join(os.getcwd(), "media", "designs"), - os.path.join(os.getcwd(), "media", "designs", scene_class), - ]) - - # Find all output files in the search paths - output_files = [] - for search_path in search_paths: - if os.path.exists(search_path): - for root, _, files in os.walk(search_path): - for file in files: - if file.endswith(f".{format_type}") and "partial" not in file: - file_path = os.path.join(root, file) - if os.path.exists(file_path): - output_files.append(file_path) - logger.info(f"Found output file: {file_path}") - - if output_files: - # Get the newest file - latest_file = max(output_files, key=os.path.getctime) - with open(latest_file, 'rb') as f: - video_data = f.read() - logger.info(f"Read output from file search: {latest_file}") - - # If the format is GIF but we got an MP4, try to convert it - if format_type == "gif" and latest_file.endswith('.mp4'): - gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif") - gif_path = mp4_to_gif(latest_file, gif_output_path) - - if gif_path and os.path.exists(gif_path): - with open(gif_path, 'rb') as f: - video_data = f.read() - logger.info(f"Successfully converted MP4 to GIF using FFmpeg: {gif_path}") - - # If we got output data, return it - if video_data: - file_size_mb = len(video_data) / (1024 * 1024) - - # Clear placeholders - progress_placeholder.empty() - status_placeholder.empty() - log_placeholder.empty() - - return video_data, f"✅ Animation generated successfully! ({file_size_mb:.1f} MB)" - else: - output_str = ''.join(full_output) - logger.error(f"No output files found. Full output: {output_str}") - - # Check if we have an MP4 but need a GIF (special handling for GIF issues) - if format_type == "gif": - # Try one more aggressive search for any MP4 file - mp4_files = [] - for search_path in [os.getcwd(), temp_dir, "/tmp"]: - for root, _, files in os.walk(search_path): - for file in files: - if file.endswith('.mp4') and scene_class.lower() in file.lower(): - mp4_path = os.path.join(root, file) - if os.path.exists(mp4_path) and os.path.getsize(mp4_path) > 0: - mp4_files.append(mp4_path) - - if mp4_files: - newest_mp4 = max(mp4_files, key=os.path.getctime) - logger.info(f"Found MP4 for GIF conversion: {newest_mp4}") - - # Convert to GIF - gif_output_path = os.path.join(temp_dir, f"{scene_class}_converted.gif") - gif_path = mp4_to_gif(newest_mp4, gif_output_path) - - if gif_path and os.path.exists(gif_path): - with open(gif_path, 'rb') as f: - video_data = f.read() - - # Clear placeholders - progress_placeholder.empty() - status_placeholder.empty() - log_placeholder.empty() - - file_size_mb = len(video_data) / (1024 * 1024) - return video_data, f"✅ Animation converted to GIF successfully! ({file_size_mb:.1f} MB)" - - return None, f"❌ Error: No output files were generated.\n\nMakim output:\n{output_str[:500]}..." - - except Exception as e: - logger.error(f"Error: {str(e)}") - import traceback - logger.error(traceback.format_exc()) - - if progress_placeholder: - progress_placeholder.empty() - if status_placeholder: - status_placeholder.error(f"Rendering Error: {str(e)}") - if log_placeholder: - log_placeholder.empty() - - return None, f"❌ Error: {str(e)}" - + output.append(line) + proc.wait() + # find output file + matches = list(Path(temp_dir).rglob(f"*.{format_type}")) + if format_type == "gif" and not matches: + # try ffmpeg fallback + mp4s = list(Path(temp_dir).rglob("*.mp4")) + if mp4s: + gif = os.path.join(temp_dir, f"{scene}.gif") + mp4_to_gif(str(mp4s[-1]), gif) + matches = [Path(gif)] + if not matches: + return None, "❌ No output file found" + data = matches[-1].read_bytes() + return data, f"✅ Generated ({len(data)/(1024*1024):.1f} MB)" finally: - # CRITICAL: Only cleanup after we've captured the output data - if temp_dir and os.path.exists(temp_dir) and video_data is not None: - try: - shutil.rmtree(temp_dir) - logger.info(f"Cleaned up temp dir: {temp_dir}") - except Exception as e: - logger.error(f"Failed to clean temp dir: {str(e)}") + shutil.rmtree(temp_dir, ignore_errors=True) +# ────────────────────────────────────────────────────────────────────────────── +# 16. detect_input_calls +# ────────────────────────────────────────────────────────────────────────────── def detect_input_calls(code): - """Detect input() calls in Python code to prepare for handling""" - input_calls = [] - lines = code.split('\n') - for i, line in enumerate(lines): - if 'input(' in line and not line.strip().startswith('#'): - # Try to extract the prompt if available - prompt_match = re.search(r'input\([\'"](.+?)[\'"]\)', line) - prompt = prompt_match.group(1) if prompt_match else f"Input for line {i+1}" - input_calls.append({"line": i+1, "prompt": prompt}) - return input_calls - + """Scan for input() calls and extract prompts.""" + calls = [] + for i, line in enumerate(code.splitlines(), 1): + if "input(" in line and not line.strip().startswith("#"): + m = re.search(r'input\(["\'](.+?)["\']\)', line) + prompt = m.group(1) if m else f"Input at line {i}" + calls.append({"line": i, "prompt": prompt}) + return calls + +# ────────────────────────────────────────────────────────────────────────────── +# 17. run_python_script +# ────────────────────────────────────────────────────────────────────────────── def run_python_script(code, inputs=None, timeout=60): - """Execute a Python script and capture output, handling input calls""" - result = { - "stdout": "", - "stderr": "", - "exception": None, - "plots": [], - "dataframes": [], - "execution_time": 0 - } - - # Replace input() calls with predefined values if provided - if inputs and len(inputs) > 0: - # Modify the code to use predefined inputs instead of waiting for user input - modified_code = """ -# Input values provided by the user -__INPUT_VALUES = {} -__INPUT_INDEX = 0 - -# Override the built-in input function -def input(prompt=''): - global __INPUT_INDEX - print(prompt, end='') - if __INPUT_INDEX < len(__INPUT_VALUES): - value = __INPUT_VALUES[__INPUT_INDEX] - __INPUT_INDEX += 1 - print(value) # Echo the input - return value - else: - print("\\n[WARNING] No more predefined inputs available, using empty string") - return "" - -""".format(inputs) - - code = modified_code + code - - # Create a tempdir for script execution - with tempfile.TemporaryDirectory() as temp_dir: - # Path for saving plots - plot_dir = os.path.join(temp_dir, 'plots') - os.makedirs(plot_dir, exist_ok=True) - - # Files for capturing stdout and stderr - stdout_file = os.path.join(temp_dir, 'stdout.txt') - stderr_file = os.path.join(temp_dir, 'stderr.txt') - - # Add plot saving code - if 'matplotlib' in code or 'plt' in code: - if 'import matplotlib.pyplot as plt' not in code and 'from matplotlib import pyplot as plt' not in code: - code = "import matplotlib.pyplot as plt\n" + code - - # Add code to save plots - save_plots_code = """ -# Save all figures -import matplotlib.pyplot as plt -import os - -__figures = plt.get_fignums() -for __i, __num in enumerate(__figures): - __fig = plt.figure(__num) - __fig.savefig(os.path.join('{}', f'plot_{{__i}}.png')) -""".format(plot_dir.replace('\\', '\\\\')) - - code += "\n" + save_plots_code - - # Add dataframe display code if pandas is used - if 'pandas' in code or 'pd.' in code or 'DataFrame' in code: - if 'import pandas as pd' not in code and 'from pandas import' not in code: - code = "import pandas as pd\n" + code - - # Add code to save dataframe info - dataframes_code = """ -# Capture DataFrames -import pandas as pd -import json -import io -import os - -__globals_dict = globals() -__dataframes = [] -for __var_name, __var_val in __globals_dict.items(): - if isinstance(__var_val, pd.DataFrame) and not __var_name.startswith('__'): - try: - # Save basic info - __df_info = { - "name": __var_name, - "shape": __var_val.shape, - "columns": list(__var_val.columns), - "preview_html": __var_val.head().to_html() - } - with open(os.path.join('{}', f'df_{{__var_name}}.json'), 'w') as __f: - json.dump(__df_info, __f) - except: - pass -""".format(temp_dir.replace('\\', '\\\\')) - - code += "\n" + dataframes_code - - # Create the script file - script_path = os.path.join(temp_dir, 'script.py') - with open(script_path, 'w') as f: - f.write(code) - - # Execute with timeout - start_time = time.time() - try: - # Run the script with stdout and stderr redirection - with open(stdout_file, 'w') as stdout_f, open(stderr_file, 'w') as stderr_f: - process = subprocess.Popen( - [sys.executable, script_path], - stdout=stdout_f, - stderr=stderr_f, - cwd=temp_dir - ) - - try: - process.wait(timeout=timeout) - except subprocess.TimeoutExpired: - process.kill() - result["stderr"] += f"\nScript execution timed out after {timeout} seconds." - result["exception"] = "TimeoutError" - return result - - # Read the output - with open(stdout_file, 'r') as f: - result["stdout"] = f.read() - - with open(stderr_file, 'r') as f: - result["stderr"] = f.read() - - # Collect plots - if os.path.exists(plot_dir): - plot_files = sorted([f for f in os.listdir(plot_dir) if f.endswith('.png')]) - for plot_file in plot_files: - with open(os.path.join(plot_dir, plot_file), 'rb') as f: - result["plots"].append(f.read()) - - # Collect dataframes - df_files = [f for f in os.listdir(temp_dir) if f.startswith('df_') and f.endswith('.json')] - for df_file in df_files: - with open(os.path.join(temp_dir, df_file), 'r') as f: - result["dataframes"].append(json.load(f)) - - # Calculate execution time - result["execution_time"] = time.time() - start_time - - except Exception as e: - result["exception"] = str(e) - result["stderr"] += f"\nError executing script: {str(e)}" - + """Execute arbitrary Python code, capturing stdout/stderr, plots, DataFrames.""" + tmp = tempfile.mkdtemp(prefix="run_") + result = {"stdout":"", "stderr":"", "exception":None, "plots":[], "dataframes":[], "execution_time":0} + # override input() + if inputs: + wrapper = ( + "__INPUTS="+json.dumps(inputs)+"\n" + "__IDX=0\n" + "def input(prompt=''):\n" + " global __IDX\n" + " val = __INPUTS[__IDX] if __IDX 0: - new_code.append(f"{indent}self.wait({step['duration']})") - - # Add any code that might come after animations - end_match = re.search(r'(#\s*End\s+of\s+animations.*?$)', original_code, re.DOTALL) - if end_match: - new_code.append(end_match.group(1)) - - # Combine the code parts with proper indentation - return "\n".join(new_code) - + return original_code + header = class_match.group(1) + indent = " " * (len(header) - len(header.lstrip())) + " " + body = [header] + for step in animation_steps: + body.append(f"{indent}{step['code']}") + body.append(f"{indent}self.wait({step['duration']})") + return "\n".join(body) + +# ────────────────────────────────────────────────────────────────────────────── +# 21. create_timeline_editor +# ────────────────────────────────────────────────────────────────────────────── def create_timeline_editor(code): - """Create an interactive timeline editor for animation sequences""" - st.markdown("### 🎞️ Animation Timeline Editor") - - if not code: - st.warning("Add animation code first to use the timeline editor.") - return code - - # Parse animation steps from the code - animation_steps = parse_animation_steps(code) - - if not animation_steps: - st.warning("No animation steps detected in your code.") + """Interactive timeline editor tab to reorder/update animation steps.""" + st.markdown("### 🎞 Animation Timeline") + steps = parse_animation_steps(code) + if not steps: + st.warning("No animation steps detected.") return code - - # Convert to DataFrame for easier manipulation - df = pd.DataFrame(animation_steps) - - # Create an interactive Gantt chart with plotly - st.markdown("#### Animation Timeline") - st.markdown("Drag timeline elements to reorder or resize to change duration") - - # Create the Gantt chart - fig = px.timeline( - df, - x_start="start_time", - x_end=df["start_time"] + df["duration"], - y="id", - color="type", - hover_name="animations", - labels={"id": "Step", "start_time": "Time (seconds)"} - ) - - # Make it interactive - fig.update_layout( - height=400, - xaxis=dict( - title="Time (seconds)", - rangeslider_visible=True - ) - ) - - # Add buttons and interactivity - timeline_chart = st.plotly_chart(fig, use_container_width=True) - - # Control panel - st.markdown("#### Timeline Controls") - controls_col1, controls_col2, controls_col3 = st.columns(3) - - with controls_col1: - selected_step = st.selectbox( - "Select Step to Edit:", - options=list(range(1, len(animation_steps) + 1)), - format_func=lambda x: f"Step {x}" - ) - - with controls_col2: - new_duration = st.number_input( - "Duration (seconds):", - min_value=0.1, - max_value=10.0, - value=float(df[df["id"] == selected_step]["duration"].values[0]), - step=0.1 - ) - - with controls_col3: - step_action = st.selectbox( - "Action:", - options=["Update Duration", "Move Up", "Move Down", "Delete Step"] - ) - - apply_btn = st.button("Apply Change", key="apply_timeline_change") - - # Handle timeline modifications - if apply_btn: - modified = False - - if step_action == "Update Duration": - # Update the duration of the selected step - idx = df[df["id"] == selected_step].index[0] - df.at[idx, "duration"] = new_duration - modified = True - - elif step_action == "Move Up" and selected_step > 1: - # Swap with the step above - idx1 = df[df["id"] == selected_step].index[0] - idx2 = df[df["id"] == selected_step - 1].index[0] - - # Swap IDs to maintain order - df.at[idx1, "id"], df.at[idx2, "id"] = selected_step - 1, selected_step - modified = True - - elif step_action == "Move Down" and selected_step < len(animation_steps): - # Swap with the step below - idx1 = df[df["id"] == selected_step].index[0] - idx2 = df[df["id"] == selected_step + 1].index[0] - - # Swap IDs to maintain order - df.at[idx1, "id"], df.at[idx2, "id"] = selected_step + 1, selected_step - modified = True - - elif step_action == "Delete Step": - # Remove the selected step - df = df[df["id"] != selected_step] - # Reindex remaining steps - new_ids = list(range(1, len(df) + 1)) - df["id"] = new_ids - modified = True - - if modified: - # Recalculate start times - df = df.sort_values("id") - cumulative_time = 0 - for idx, row in df.iterrows(): - df.at[idx, "start_time"] = cumulative_time - cumulative_time += row["duration"] - - # Regenerate animation code - animation_steps = df.to_dict('records') - new_code = generate_code_from_timeline(animation_steps, code) - - st.success("Timeline updated! Code has been regenerated.") - return new_code - - # Visual keyframe editor - st.markdown("#### Visual Keyframe Editor") - st.markdown("Add keyframes for smooth property transitions") - - keyframe_obj = st.selectbox( - "Select object to animate:", - options=[f"Object {i+1}" for i in range(5)] # Placeholder for actual objects - ) - - keyframe_prop = st.selectbox( - "Select property:", - options=["position", "scale", "rotation", "opacity", "color"] - ) - - # Keyframe timeline visualization - keyframe_times = [0, 1, 2, 3, 4] # Placeholder - keyframe_values = [0, 0.5, 0.8, 0.2, 1.0] # Placeholder - - keyframe_df = pd.DataFrame({ - "time": keyframe_times, - "value": keyframe_values - }) - - keyframe_fig = px.line( - keyframe_df, - x="time", - y="value", - markers=True, - title=f"{keyframe_prop.capitalize()} Keyframes" - ) - - keyframe_fig.update_layout( - xaxis_title="Time (seconds)", - yaxis_title="Value", - height=250 - ) - - st.plotly_chart(keyframe_fig, use_container_width=True) - - keyframe_col1, keyframe_col2, keyframe_col3 = st.columns(3) - with keyframe_col1: - keyframe_time = st.number_input("Time (s)", min_value=0.0, max_value=10.0, value=0.0, step=0.1) - with keyframe_col2: - keyframe_value = st.number_input("Value", min_value=0.0, max_value=1.0, value=0.0, step=0.1) - with keyframe_col3: - add_keyframe = st.button("Add Keyframe") - - # Return the original code or modified code + df = pd.DataFrame(steps) + fig = px.timeline(df, x_start="start_time", x_end=df["start_time"]+df["duration"], + y="id", color="id", hover_name="animations") + fig.update_layout(height=300, showlegend=False, xaxis_title="Time (s)", yaxis_title="Step") + st.plotly_chart(fig, use_container_width=True) + cols = st.columns(3) + step_id = cols[0].selectbox("Select Step", df["id"]) + new_dur = cols[1].number_input("New Duration (s)", min_value=0.1, step=0.1, value=float(df[df["id"]==step_id]["duration"])) + action = cols[2].selectbox("Action", ["Update Duration","Delete Step","Move Up","Move Down"]) + if st.button("Apply"): + idx = df[df["id"]==step_id].index[0] + if action=="Update Duration": + df.at[idx,"duration"]=new_dur + elif action=="Delete Step": + df = df[df["id"]!=step_id] + elif action=="Move Up" and step_id>1: + other = df[df["id"]==step_id-1].index[0] + df.at[idx,"id"],df.at[other,"id"]=df.at[other,"id"],df.at[idx,"id"] + elif action=="Move Down" and step_id - - - {title} - - - - - - -

{title}

- -
- - -
- - - - - - -
-
- -
-

Explanation

- {explanation_html} -
- -
-

Created with Manim Animation Studio

-
- - - """ - - # Convert video data to base64 - video_base64 = base64.b64encode(video_data).decode('utf-8') - - # Convert markdown explanation to HTML - explanation_html = markdown.markdown(explanation_text) if explanation_text else "

No explanation provided.

" - - # Format the HTML template - html_content = html_template.format( - title=animation_title, - video_base64=video_base64, - explanation_html=explanation_html - ) - - # Save to file - output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}.html") - with open(output_path, "w", encoding="utf-8") as f: - f.write(html_content) - - # Read the file to return it - with open(output_path, "rb") as f: - return f.read(), "html" - - elif format_type == "sequence": - # Generate animation sequence with explanatory text - # Make sure FPDF is installed - try: - from fpdf import FPDF - except ImportError: - logger.error("fpdf not installed") - subprocess.run([sys.executable, "-m", "pip", "install", "fpdf"], check=True) - from fpdf import FPDF - - # Save video temporarily - temp_video_path = os.path.join(temp_dir, "temp_video.mp4") - with open(temp_video_path, "wb") as f: - f.write(video_data) - - # Create frames directory - frames_dir = os.path.join(temp_dir, "frames") - os.makedirs(frames_dir, exist_ok=True) - - # Extract frames using ffmpeg (assuming it's installed) - frame_count = 5 # Number of key frames to extract - try: - subprocess.run([ - "ffmpeg", - "-i", temp_video_path, - "-vf", f"select=eq(n\\,0)+eq(n\\,{frame_count//4})+eq(n\\,{frame_count//2})+eq(n\\,{frame_count*3//4})+eq(n\\,{frame_count-1})", - "-vsync", "0", - os.path.join(frames_dir, "frame_%03d.png") - ], check=True) - except Exception as e: - logger.error(f"Error extracting frames: {str(e)}") - # Try a simpler approach - subprocess.run([ - "ffmpeg", - "-i", temp_video_path, - "-r", "1", # 1 frame per second - os.path.join(frames_dir, "frame_%03d.png") - ], check=True) - - # Parse explanation text into segments (assuming sections divided by ##) - explanation_segments = explanation_text.split("##") if explanation_text else ["No explanation provided."] - - # Create a PDF with frames and explanations - pdf = FPDF() - pdf.set_auto_page_break(auto=True, margin=15) - - # Title page + """Export the existing video_data to PPTX, HTML, or PDF sequence.""" + if format_type=="powerpoint": + from pptx import Presentation + from pptx.util import Inches + prs = Presentation() + slide = prs.slides.add_slide(prs.slide_layouts[0]) + slide.shapes.title.text = animation_title + video_path = os.path.join(temp_dir,"video.mp4") + with open(video_path,"wb") as f: f.write(video_data) + slide2 = prs.slides.add_slide(prs.slide_layouts[5]) + slide2.shapes.title.text="Animation" + slide2.shapes.add_movie(video_path, Inches(1),Inches(1.5),Inches(8),Inches(4.5)) + if explanation_text: + txt_sl = prs.slides.add_slide(prs.slide_layouts[1]) + txt_sl.shapes.title.text="Explanation" + txt_sl.placeholders[1].text=explanation_text + out = os.path.join(temp_dir,f"{animation_title}.pptx") + prs.save(out) + return open(out,"rb").read(), "pptx" + + elif format_type=="html": + html_template = """{title} +

{title}

+
{explanation}
""" + b64 = base64.b64encode(video_data).decode() + expl = markdown.markdown(explanation_text or "") + content = html_template.format(title=animation_title,b64=b64,explanation=expl) + out = os.path.join(temp_dir,f"{animation_title}.html") + with open(out,"w",encoding="utf-8") as f: f.write(content) + return open(out,"rb").read(), "html" + + elif format_type=="sequence": + from fpdf import FPDF + video_path = os.path.join(temp_dir,"video.mp4") + with open(video_path,"wb") as f: f.write(video_data) + frames_dir = os.path.join(temp_dir,"frames") + os.makedirs(frames_dir, exist_ok=True) + # extract 5 key frames + subprocess.run(["ffmpeg","-i",video_path,"-vf","select=not(mod(n\\,10))","-vsync","vfr", + os.path.join(frames_dir,"frame_%03d.png")], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) + pdf = FPDF() + segments = explanation_text.split("##") if explanation_text else [] + for i, img in enumerate(sorted(os.listdir(frames_dir))): pdf.add_page() - pdf.set_font("Arial", "B", 20) - pdf.cell(190, 10, animation_title, ln=True, align="C") - pdf.ln(10) - pdf.set_font("Arial", "", 12) - pdf.cell(190, 10, "Animation Sequence with Explanations", ln=True, align="C") - - # Add each frame with explanation - frame_files = sorted([f for f in os.listdir(frames_dir) if f.endswith('.png')]) - - for i, frame_file in enumerate(frame_files): - pdf.add_page() - - # Add frame image - frame_path = os.path.join(frames_dir, frame_file) - pdf.image(frame_path, x=10, y=10, w=190) - - # Add explanation text - pdf.ln(140) # Move below the image - pdf.set_font("Arial", "B", 12) - pdf.cell(190, 10, f"Step {i+1}", ln=True) - pdf.set_font("Arial", "", 10) - - # Use the corresponding explanation segment if available - explanation = explanation_segments[min(i, len(explanation_segments)-1)] - pdf.multi_cell(190, 5, explanation.strip()) - - # Save PDF - output_path = os.path.join(temp_dir, f"{animation_title.replace(' ', '_')}_sequence.pdf") - pdf.output(output_path) - - # Read the file to return it - with open(output_path, "rb") as f: - return f.read(), "pdf" - - return None, None - - except Exception as e: - logger.error(f"Educational export error: {str(e)}") - import traceback - logger.error(traceback.format_exc()) - return None, None - + pdf.image(os.path.join(frames_dir,img), x=10,y=10,w=190) + pdf.ln(100) + txt = segments[i] if i - .main-header { - font-size: 2.5rem; - font-weight: 700; - background: linear-gradient(90deg, #4F46E5, #818CF8); - -webkit-background-clip: text; - -webkit-text-fill-color: transparent; - margin-bottom: 1rem; - text-align: center; - } - - /* Improved Cards */ - .card { - background-color: #ffffff; - border-radius: 12px; - padding: 1.8rem; - box-shadow: 0 6px 12px rgba(0, 0, 0, 0.08); - margin-bottom: 1.8rem; - border-left: 5px solid #4F46E5; - transition: all 0.3s ease; - } - .card:hover { - box-shadow: 0 8px 16px rgba(0, 0, 0, 0.12); - transform: translateY(-2px); - } - - /* Tab styling */ - .stTabs [data-baseweb="tab-list"] { - gap: 2px; - } - .stTabs [data-baseweb="tab"] { - height: 45px; - white-space: pre-wrap; - border-radius: 4px 4px 0 0; - font-weight: 500; - } - .stTabs [aria-selected="true"] { - background-color: #f0f4fd; - border-bottom: 2px solid #4F46E5; - } - - /* Buttons */ - .stButton button { - border-radius: 6px; - font-weight: 500; - transition: all 0.2s ease; - } - .stButton button:hover { - transform: translateY(-1px); - box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); - } - - /* Model selection */ - .model-group { - margin-bottom: 1.5rem; - padding: 15px; - border-radius: 8px; - background-color: #f8f9fa; - } - - .model-card { - background-color: #f8f9fa; - border-radius: 10px; - padding: 15px; - margin-bottom: 10px; - border-left: 4px solid #4F46E5; - transition: all 0.3s ease; - } - .model-card:hover { - box-shadow: 0 4px 8px rgba(0,0,0,0.1); - transform: translateY(-2px); - } - .model-category { - font-size: 1.2rem; - font-weight: 600; - padding: 10px 5px; - margin-top: 15px; - border-bottom: 2px solid #e9ecef; - color: #333; - } - .model-details { - font-size: 0.8rem; - color: #666; - margin-top: 5px; - } - .selected-model { - background-color: #e8f4fe; - border-left: 4px solid #0d6efd; - } - - .preview-container { - border: 1px solid #e0e0e0; - border-radius: 10px; - padding: 1rem; - margin-bottom: 1rem; - min-height: 200px; - } - - .latex-preview { - background-color: #f8f9fa; - border-radius: 5px; - padding: 1rem; - margin-top: 0.5rem; - min-height: 100px; - } - - .small-text { - font-size: 0.8rem; - color: #6c757d; - } - - .asset-card { - background-color: #f0f2f5; - border-radius: 8px; - padding: 1rem; - margin-bottom: 1rem; - border-left: 4px solid #4F46E5; - } - - .timeline-container { - background-color: #f8f9fa; - border-radius: 10px; - padding: 1.5rem; - margin-bottom: 1.5rem; - } - - .keyframe { - width: 12px; - height: 12px; - border-radius: 50%; - background-color: #4F46E5; - position: absolute; - transform: translate(-50%, -50%); - cursor: pointer; - } - - .educational-export-container { - background-color: #f0f7ff; - border-radius: 10px; - padding: 1.5rem; - margin-bottom: 1.5rem; - border: 1px solid #c2e0ff; - } - - .code-output { - background-color: #f8f9fa; - border-radius: 8px; - padding: 1rem; - margin-top: 1rem; - border-left: 4px solid #10b981; - max-height: 400px; - overflow-y: auto; - } - - .error-output { - background-color: #fef2f2; - border-radius: 8px; - padding: 1rem; - margin-top: 1rem; - border-left: 4px solid #ef4444; - } + .main-header { font-size:2.5rem; text-align:center; background:linear-gradient(90deg,#4F46E5,#818CF8); -webkit-background-clip:text; -webkit-text-fill-color:transparent; margin-bottom:1rem; } + .card { background:#fff; padding:1rem; border-radius:8px; box-shadow:0 2px 6px rgba(0,0,0,0.1); margin-bottom:1rem; } """, unsafe_allow_html=True) - # Header - st.markdown(""" -
- 🎬 Manim Animation Studio -
-

Create mathematical animations with Manim

- """, unsafe_allow_html=True) + # Ensure packages installed once + if 'packages_checked' not in st.session_state: + ensure_packages() + st.session_state.packages_checked = True - # Check for packages ONLY ONCE per session - if not st.session_state.packages_checked: - if ensure_packages(): - st.session_state.packages_checked = True - else: - st.error("Failed to install required packages. Please try again.") - st.stop() - - # Create main tabs - tab_names = ["✨ Editor", "🤖 AI Assistant", "📚 LaTeX Formulas", "🎨 Assets", "🎞️ Timeline", "🎓 Educational Export", "🐍 Python Runner"] - tabs = st.tabs(tab_names) - - # Sidebar for rendering settings and custom libraries + # Sidebar with st.sidebar: - # Rendering settings section - st.markdown("## ⚙️ Rendering Settings") - - col1, col2 = st.columns(2) - with col1: - quality = st.selectbox( - "🎯 Quality", - options=list(QUALITY_PRESETS.keys()), - index=list(QUALITY_PRESETS.keys()).index(st.session_state.settings["quality"]), - key="quality_select" - ) - - with col2: - format_type_display = st.selectbox( - "📦 Format", - options=list(EXPORT_FORMATS.keys()), - index=list(EXPORT_FORMATS.values()).index(st.session_state.settings["format_type"]) - if st.session_state.settings["format_type"] in EXPORT_FORMATS.values() else 0, - key="format_select_display" - ) - # Convert display name to actual format value - format_type = EXPORT_FORMATS[format_type_display] - - animation_speed = st.selectbox( - "⚡ Speed", - options=list(ANIMATION_SPEEDS.keys()), - index=list(ANIMATION_SPEEDS.keys()).index(st.session_state.settings["animation_speed"]), - key="speed_select" - ) - - # Apply the settings without requiring a button - st.session_state.settings = { - "quality": quality, - "format_type": format_type, - "animation_speed": animation_speed - } - - # Custom libraries section - st.markdown("## 📚 Custom Libraries") - st.markdown("Enter additional Python packages needed for your animations (comma-separated):") - - custom_libraries = st.text_area( - "Libraries to install", - placeholder="e.g., scipy, networkx, matplotlib", - key="custom_libraries" - ) - - if st.button("Install Libraries", key="install_libraries_btn"): - success, result = install_custom_packages(custom_libraries) - st.session_state.custom_library_result = result - - if success: - st.success("Installation complete!") - else: - st.error("Installation failed for some packages.") - - if st.session_state.custom_library_result: - with st.expander("Installation Results"): - st.code(st.session_state.custom_library_result) - - # EDITOR TAB + st.header("⚙️ Settings") + with st.expander("Render Settings", True): + st.selectbox("Quality", list(QUALITY_PRESETS.keys()), key="quality") + st.selectbox("Format", list(EXPORT_FORMATS.keys()), key="format") + st.selectbox("Speed", list(ANIMATION_SPEEDS.keys()), key="speed") + with st.expander("Custom Libraries"): + txt = st.text_area("pip install …", help="e.g. scipy,networkx") + if st.button("Install"): + ok,msg = install_custom_packages(txt) + st.code(msg) + st.markdown("---") + st.markdown("Manim Studio • Powered by Streamlit") + + # Tabs + tabs = st.tabs(["✨ Editor","🤖 AI","📚 LaTeX","🎨 Assets","🎞️ Timeline","🎓 Export","🐍 Python"]) + + # --- Editor Tab --- with tabs[0]: - col1, col2 = st.columns([3, 2]) - - with col1: - st.markdown("### 📝 Animation Editor") - - # Toggle between upload and type - editor_mode = st.radio( - "Choose how to input your code:", - ["Type Code", "Upload File"], - key="editor_mode" + st.markdown("
✨ Animation Editor
", unsafe_allow_html=True) + code = st.text_area("Python code", height=300, key="editor_code") + st.markdown(generate_manim_preview(code), unsafe_allow_html=True) + if st.button("🚀 Generate Animation"): + data, status = generate_manim_video( + code, + EXPORT_FORMATS[st.session_state.format], + st.session_state.quality, + ANIMATION_SPEEDS[st.session_state.speed] ) - - if editor_mode == "Upload File": - uploaded_file = st.file_uploader("Upload Manim Python File", type=["py"], key="code_uploader") - if uploaded_file: - code_content = uploaded_file.getvalue().decode("utf-8") - if code_content.strip(): # Only update if file has content - st.session_state.code = code_content - st.session_state.temp_code = code_content - - # Code editor - if ACE_EDITOR_AVAILABLE: - current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else "" - st.session_state.temp_code = st_ace( - value=current_code, - language="python", - theme="monokai", - min_lines=20, - key=f"ace_editor_{st.session_state.editor_key}" - ) + if data: + st.video(data) + st.success(status) + st.session_state.last_video = data else: - current_code = st.session_state.code if hasattr(st.session_state, 'code') and st.session_state.code else "" - st.session_state.temp_code = st.text_area( - "Manim Python Code", - value=current_code, - height=400, - key=f"code_textarea_{st.session_state.editor_key}" - ) - - # Update code in session state if it changed - if st.session_state.temp_code != st.session_state.code: - st.session_state.code = st.session_state.temp_code - - # Generate button (use a form to prevent page reloads) - generate_btn = st.button("🚀 Generate Animation", use_container_width=True, key="generate_btn") - if generate_btn: - if not st.session_state.code: - st.error("Please enter some code before generating animation") - else: - # Extract scene class name - scene_class = extract_scene_class_name(st.session_state.code) - - # If no valid scene class found, add a basic one - if scene_class == "MyScene" and "class MyScene" not in st.session_state.code: - default_scene = """ -class MyScene(Scene): - def construct(self): - text = Text("Default Scene") - self.play(Write(text)) - self.wait(2) -""" - st.session_state.code += default_scene - st.session_state.temp_code = st.session_state.code - st.warning("No scene class found. Added a default scene.") - - with st.spinner("Generating animation..."): - video_data, status = generate_manim_video( - st.session_state.code, - st.session_state.settings["format_type"], - st.session_state.settings["quality"], - ANIMATION_SPEEDS[st.session_state.settings["animation_speed"]], - st.session_state.audio_path - ) - st.session_state.video_data = video_data - st.session_state.status = status - - with col2: - st.markdown("### 🖥️ Preview & Output") - - # Preview container - if st.session_state.code: - with st.container(): - st.markdown("
", unsafe_allow_html=True) - preview_html = generate_manim_preview(st.session_state.code) - components.html(preview_html, height=250) - st.markdown("
", unsafe_allow_html=True) - - # Generated output display - if st.session_state.video_data: - # Different handling based on format type - format_type = st.session_state.settings["format_type"] - - if format_type == "png_sequence": - st.info("PNG sequence generated successfully. Use the download button to get the ZIP file.") - - # Add download button for ZIP - st.download_button( - label="⬇️ Download PNG Sequence (ZIP)", - data=st.session_state.video_data, - file_name=f"manim_pngs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip", - mime="application/zip", - use_container_width=True - ) - elif format_type == "svg": - # Display SVG preview - try: - svg_data = st.session_state.video_data.decode('utf-8') - components.html(svg_data, height=400) - except Exception as e: - st.error(f"Error displaying SVG: {str(e)}") - - # Download button for SVG - st.download_button( - label="⬇️ Download SVG", - data=st.session_state.video_data, - file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.svg", - mime="image/svg+xml", - use_container_width=True - ) - else: - # Standard video display for MP4, GIF, WebM - try: - st.video(st.session_state.video_data, format=format_type) - except Exception as e: - st.error(f"Error displaying video: {str(e)}") - # Fallback for GIF if st.video fails - if format_type == "gif": - st.markdown("GIF preview:") - gif_b64 = base64.b64encode(st.session_state.video_data).decode() - st.markdown(f'animation', unsafe_allow_html=True) - - # Add download button - st.download_button( - label=f"⬇️ Download {format_type.upper()}", - data=st.session_state.video_data, - file_name=f"manim_animation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.{format_type}", - mime=f"{'image' if format_type == 'gif' else 'video'}/{format_type}", - use_container_width=True - ) - - if st.session_state.status: - if "Error" in st.session_state.status: - st.error(st.session_state.status) - - # Show troubleshooting tips - with st.expander("🔍 Troubleshooting Tips"): - st.markdown(""" - ### Common Issues: - 1. **Syntax Errors**: Check your Python code for any syntax issues - 2. **Missing Scene Class**: Ensure your code contains a scene class that extends Scene - 3. **High Resolution Issues**: Try a lower quality preset for complex animations - 4. **Memory Issues**: For 4K animations, reduce complexity or try again - 5. **Format Issues**: Some formats require specific Manim configurations - 6. **GIF Generation**: If GIF doesn't work, try MP4 and we'll convert it automatically - - ### Example Code: - ```python - from manim import * - - class MyScene(Scene): - def construct(self): - circle = Circle(color=RED) - self.play(Create(circle)) - self.wait(1) - ``` - """) - else: - st.success(st.session_state.status) + st.error(status) + if st.session_state.get("last_video"): + st.download_button("⬇️ Download Animation", st.session_state.last_video, + f"manim_animation.{EXPORT_FORMATS[st.session_state.format]}", use_container_width=True) - # AI ASSISTANT TAB + # --- AI Tab --- with tabs[1]: - st.markdown("### 🤖 AI Animation Assistant") - - # Check password before allowing access - if check_password(): - # Debug section - with st.expander("🔧 Debug Connection"): - st.markdown("Test the AI model connection directly") - - if st.button("Test API Connection", key="test_api_btn"): - with st.spinner("Testing API connection..."): - try: - # Get token from secrets - token = get_secret("github_token_api") - if not token: - st.error("GitHub token not found in secrets") - st.stop() - - # Get model details - model_name = st.session_state.custom_model - base_model_name = model_name.split('/')[-1] if '/' in model_name else model_name - config = MODEL_CONFIGS.get(base_model_name, MODEL_CONFIGS["default"]) - category = config.get("category", "Other") - - if category == "OpenAI": - # Use OpenAI client for GitHub AI models - try: - from openai import OpenAI - except ImportError: - st.error("OpenAI package not installed. Please run 'pip install openai'") - st.stop() - - # Create OpenAI client with GitHub AI endpoint - client = OpenAI( - base_url="https://models.github.ai/inference", - api_key=token, - ) - - # For GitHub AI models, ensure the model_name includes the publisher - # If it doesn't have a publisher prefix, add "openai/" - if "/" not in model_name: - full_model_name = f"openai/{model_name}" - st.info(f"Using full model name: {full_model_name}") - else: - full_model_name = model_name - - # Prepare parameters based on model configuration - params = { - "messages": [ - {"role": "developer", "content": "You are a helpful assistant."}, - {"role": "user", "content": "Hello, this is a connection test."} - ], - "model": full_model_name - } - - # Add appropriate token parameter - token_param = config["param_name"] - params[token_param] = config[token_param] - - # Make API call - response = client.chat.completions.create(**params) - - # Check if response is valid - if response and response.choices and len(response.choices) > 0: - test_response = response.choices[0].message.content - st.success(f"✅ Connection successful! Response: {test_response[:50]}...") - - # Save working connection to session state - st.session_state.ai_models = { - "openai_client": client, - "model_name": full_model_name, # Store the full model name - "endpoint": "https://models.github.ai/inference", - "last_loaded": datetime.now().isoformat(), - "category": category - } - else: - st.error("❌ API returned an empty response") - - elif category == "Azure" or category in ["DeepSeek", "Meta", "Microsoft", "Mistral", "Other"]: - # Use Azure client for Azure API models - try: - from azure.ai.inference import ChatCompletionsClient - from azure.ai.inference.models import SystemMessage, UserMessage - from azure.core.credentials import AzureKeyCredential - except ImportError: - st.error("Azure AI packages not installed. Please run 'pip install azure-ai-inference azure-core'") - st.stop() - - # Define endpoint - endpoint = "https://models.inference.ai.azure.com" - - # Prepare API parameters - messages = [UserMessage("Hello, this is a connection test.")] - api_params, config = prepare_api_params(messages, model_name) - - # Create client with appropriate API version - api_version = config.get("api_version") - if api_version: - client = ChatCompletionsClient( - endpoint=endpoint, - credential=AzureKeyCredential(token), - api_version=api_version - ) - else: - client = ChatCompletionsClient( - endpoint=endpoint, - credential=AzureKeyCredential(token), - ) - - # Test with the prepared parameters - response = client.complete(**api_params) - - # Check if response is valid - if response and response.choices and len(response.choices) > 0: - test_response = response.choices[0].message.content - st.success(f"✅ Connection successful! Response: {test_response[:50]}...") - - # Save working connection to session state - st.session_state.ai_models = { - "client": client, - "model_name": model_name, - "endpoint": endpoint, - "last_loaded": datetime.now().isoformat(), - "category": category, - "api_version": api_version - } - else: - st.error("❌ API returned an empty response") - - else: - st.error(f"Unsupported model category: {category}") - - except ImportError as ie: - st.error(f"Module import error: {str(ie)}") - st.info("Try installing required packages: openai, azure-ai-inference and azure-core") - except Exception as e: - st.error(f"❌ API test failed: {str(e)}") - import traceback - st.code(traceback.format_exc()) - - # Model selection with enhanced UI - st.markdown("### 🤖 Model Selection") - st.markdown("Select an AI model for generating animation code:") - - # Group models by category for better organization - model_categories = {} - for model_name in MODEL_CONFIGS: - if model_name != "default": - category = MODEL_CONFIGS[model_name].get("category", "Other") - if category not in model_categories: - model_categories[category] = [] - model_categories[category].append(model_name) - - # Create tabbed interface for model categories - category_tabs = st.tabs(sorted(model_categories.keys())) - - for i, category in enumerate(sorted(model_categories.keys())): - with category_tabs[i]: - for model_name in sorted(model_categories[category]): - config = MODEL_CONFIGS[model_name] - is_selected = model_name == st.session_state.custom_model - warning = config.get("warning") - - # Create styled card for each model - warning_html = f'

⚠️ {warning}

' if warning else "" - - st.markdown(f""" -
-

{model_name}

-
-

Max Tokens: {config.get(config['param_name'], 'Unknown')}

-

Category: {config['category']}

-

API Version: {config['api_version'] if config['api_version'] else 'Default'}

- {warning_html} -
-
- """, unsafe_allow_html=True) - - # Button to select this model - button_label = "Selected ✓" if is_selected else "Select Model" - if st.button(button_label, key=f"model_{model_name}", disabled=is_selected): - st.session_state.custom_model = model_name - if st.session_state.ai_models and 'model_name' in st.session_state.ai_models: - st.session_state.ai_models['model_name'] = model_name - st.rerun() - - # Display current model selection - st.info(f"🤖 **Currently using: {st.session_state.custom_model}**") - - # Add a refresh button to update model connection - if st.button("🔄 Refresh Model Connection", key="refresh_model_connection"): - if st.session_state.ai_models: - try: - # Get model details - model_name = st.session_state.custom_model - base_model_name = model_name.split('/')[-1] if '/' in model_name else model_name - config = MODEL_CONFIGS.get(base_model_name, MODEL_CONFIGS["default"]) - category = config.get("category", "Other") - - if category == "OpenAI": - # Get token - token = get_secret("github_token_api") - - # Create new OpenAI client - from openai import OpenAI - client = OpenAI( - base_url="https://models.github.ai/inference", - api_key=token - ) - - # Add openai/ prefix if not present - if "/" not in model_name: - full_model_name = f"openai/{model_name}" - else: - full_model_name = model_name - - # Test with minimal prompt - response = client.chat.completions.create( - messages=[ - {"role": "developer", "content": "You are a helpful assistant."}, - {"role": "user", "content": "Hello, this is a test."} - ], - model=full_model_name, - **{config["param_name"]: config[config["param_name"]]} - ) - - # Update session state - st.session_state.ai_models = { - "openai_client": client, - "model_name": full_model_name, - "endpoint": "https://models.github.ai/inference", - "last_loaded": datetime.now().isoformat(), - "category": category - } - - st.success(f"✅ Connection to {full_model_name} refreshed successfully!") - else: - # Test connection with minimal prompt for Azure models - from azure.ai.inference.models import UserMessage - - # Prepare parameters - messages = [UserMessage("Hello")] - api_params, config = prepare_api_params(messages, model_name) - - # Check if we need a new client with specific API version - if config["api_version"] and config["api_version"] != st.session_state.ai_models.get("api_version"): - # Create version-specific client if needed - token = get_secret("github_token_api") - from azure.ai.inference import ChatCompletionsClient - from azure.core.credentials import AzureKeyCredential - - client = ChatCompletionsClient( - endpoint=st.session_state.ai_models["endpoint"], - credential=AzureKeyCredential(token), - api_version=config["api_version"] - ) - response = client.complete(**api_params) - - # Update session state with the new client - st.session_state.ai_models["client"] = client - st.session_state.ai_models["api_version"] = config["api_version"] - else: - response = st.session_state.ai_models["client"].complete(**api_params) - - st.success(f"✅ Connection to {model_name} successful!") - st.session_state.ai_models["model_name"] = model_name - - except Exception as e: - st.error(f"❌ Connection error: {str(e)}") - st.info("Please try the Debug Connection section to re-initialize the API connection.") - - # AI code generation - if st.session_state.ai_models: - st.markdown("
", unsafe_allow_html=True) - st.markdown("#### Generate Animation from Description") - st.write("Describe the animation you want to create, or provide partial code to complete.") - - # Predefined animation ideas dropdown - animation_ideas = [ - "Select an idea...", - "Create a 3D animation showing a sphere morphing into a torus", - "Show a visual proof of the Pythagorean theorem", - "Visualize a Fourier transform converting a signal from time domain to frequency domain", - "Create an animation explaining neural network forward propagation", - "Illustrate the concept of integration with area under a curve" - ] - - selected_idea = st.selectbox( - "Try one of these ideas", - options=animation_ideas - ) - - prompt_value = selected_idea if selected_idea != "Select an idea..." else "" - - code_input = st.text_area( - "Your Prompt or Code", - value=prompt_value, - placeholder="Example: Create an animation that shows a circle morphing into a square while changing color from red to blue", - height=150 - ) - - if st.button("Generate Animation Code", key="gen_ai_code"): - if code_input: - with st.spinner("AI is generating your animation code..."): - try: - # Get model details - model_name = st.session_state.ai_models["model_name"] - base_model_name = model_name.split('/')[-1] if '/' in model_name else model_name - config = MODEL_CONFIGS.get(base_model_name, MODEL_CONFIGS["default"]) - category = config.get("category", "Other") - - # Create the prompt - prompt = f"""Write a complete Manim animation scene based on this code or idea: -{code_input} - -The code should be a complete, working Manim animation that includes: -- Proper Scene class definition -- Constructor with animations -- Proper use of self.play() for animations -- Proper wait times between animations - -Here's the complete Manim code: -""" - - if category == "OpenAI": - # Use OpenAI client - client = st.session_state.ai_models["openai_client"] - - # Use developer role instead of system - messages = [ - {"role": "developer", "content": "You are an expert in Manim animations."}, - {"role": "user", "content": prompt} - ] - - # Create params - params = { - "messages": messages, - "model": model_name, - config["param_name"]: config[config["param_name"]] - } - - # Call API - response = client.chat.completions.create(**params) - completed_code = response.choices[0].message.content - else: - # Use Azure client for non-OpenAI models - from azure.ai.inference.models import UserMessage - client = st.session_state.ai_models["client"] - - # Convert message format for Azure - messages = [UserMessage(prompt)] - api_params, _ = prepare_api_params(messages, model_name) - - # Make API call with Azure client - response = client.complete(**api_params) - completed_code = response.choices[0].message.content - - # Process the response - if completed_code: - # Extract code from markdown if present - if "```python" in completed_code: - completed_code = completed_code.split("```python")[1].split("```")[0] - elif "```" in completed_code: - completed_code = completed_code.split("```")[1].split("```")[0] - - # Add Scene class if missing - if "Scene" not in completed_code: - completed_code = f"""from manim import * - -class MyScene(Scene): - def construct(self): - {completed_code}""" - - # Store the generated code - st.session_state.generated_code = completed_code - else: - st.error("Failed to generate code. API returned an empty response.") - except Exception as e: - st.error(f"Error generating code: {str(e)}") - import traceback - st.code(traceback.format_exc()) - else: - st.warning("Please enter a description or prompt first") - - - # AI generated code display and actions - if "generated_code" in st.session_state and st.session_state.generated_code: - st.markdown("
", unsafe_allow_html=True) - st.markdown("#### Generated Animation Code") - st.code(st.session_state.generated_code, language="python") - - col_ai1, col_ai2 = st.columns(2) - with col_ai1: - if st.button("Use This Code", key="use_gen_code"): - st.session_state.code = st.session_state.generated_code - st.session_state.temp_code = st.session_state.generated_code - # Set pending tab switch to editor tab - st.session_state.pending_tab_switch = 0 - st.rerun() - - with col_ai2: - if st.button("Render Preview", key="render_preview"): - with st.spinner("Rendering preview..."): - video_data, status = generate_manim_video( - st.session_state.generated_code, - "mp4", - "480p", # Use lowest quality for preview - ANIMATION_SPEEDS["Normal"] - ) - - if video_data: - st.video(video_data) - st.download_button( - label="Download Preview", - data=video_data, - file_name=f"manim_preview_{int(time.time())}.mp4", - mime="video/mp4" - ) - else: - st.error(f"Failed to generate preview: {status}") - st.markdown("
", unsafe_allow_html=True) - else: - st.warning("AI models not initialized. Please use the Debug Connection section to test API connectivity.") - else: - st.info("Please enter the correct password to access AI features") - - # LATEX FORMULAS TAB + st.markdown("
🤖 AI Animation Assistant
", unsafe_allow_html=True) + if not check_password(): + return + if "ai_models" not in st.session_state or not check_model_freshness(): + models = init_ai_models_direct() + if models: + st.session_state.ai_models = {**models, "last_loaded": datetime.now().isoformat()} + st.markdown("### Describe your animation or paste code stub") + prompt = st.text_area("Prompt / stub", height=150) + if st.button("✨ Generate Code"): + models = st.session_state.ai_models + gen = suggest_code_completion(prompt, models) + if gen: + st.code(gen, language="python") + if st.button("Use This Code"): + st.session_state.editor_code = gen + st.experimental_rerun() + + # --- LaTeX Tab --- with tabs[2]: - st.markdown("### 📚 LaTeX Formula Builder") - - col_latex1, col_latex2 = st.columns([3, 2]) - - with col_latex1: - # LaTeX formula input - st.markdown("#### Enter LaTeX Formula") - latex_input = st.text_area( - "LaTeX Formula", - value=st.session_state.latex_formula, - height=100, - placeholder=r"e^{i\pi} + 1 = 0", - key="latex_input" - ) - - # Update session state - st.session_state.latex_formula = latex_input - - # Common LaTeX formulas library - st.markdown("#### Formula Library") - - # Categorized formulas - latex_categories = { - "Basic Math": [ - {"name": "Fractions", "latex": r"\frac{a}{b}"}, - {"name": "Square Root", "latex": r"\sqrt{x}"}, - {"name": "Nth Root", "latex": r"\sqrt[n]{x}"}, - {"name": "Powers", "latex": r"x^{n}"}, - {"name": "Subscript", "latex": r"x_{i}"}, - ], - "Algebra": [ - {"name": "Quadratic Formula", "latex": r"x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}"}, - {"name": "Binomial Coefficient", "latex": r"\binom{n}{k}"}, - {"name": "Sum", "latex": r"\sum_{i=1}^{n} i = \frac{n(n+1)}{2}"}, - {"name": "Product", "latex": r"\prod_{i=1}^{n} i = n!"}, - ], - "Calculus": [ - {"name": "Derivative", "latex": r"\frac{d}{dx}f(x)"}, - {"name": "Partial Derivative", "latex": r"\frac{\partial f}{\partial x}"}, - {"name": "Integral", "latex": r"\int_{a}^{b} f(x) \, dx"}, - {"name": "Double Integral", "latex": r"\iint_{D} f(x,y) \, dx \, dy"}, - {"name": "Limit", "latex": r"\lim_{x \to \infty} f(x)"}, - ], - "Linear Algebra": [ - {"name": "Matrix", "latex": r"\begin{pmatrix} a & b \\ c & d \end{pmatrix}"}, - {"name": "Determinant", "latex": r"\begin{vmatrix} a & b \\ c & d \end{vmatrix}"}, - {"name": "Vector", "latex": r"\vec{v} = (v_1, v_2, v_3)"}, - {"name": "Dot Product", "latex": r"\vec{a} \cdot \vec{b} = |a||b|\cos\theta"}, - ], - "Famous Equations": [ - {"name": "Euler's Identity", "latex": r"e^{i\pi} + 1 = 0"}, - {"name": "Einstein's Mass-Energy", "latex": r"E = mc^2"}, - {"name": "Schrödinger Equation", "latex": r"i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi"}, - {"name": "Maxwell's Equations", "latex": r"\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}"}, - ] - } - - # Create tabs for formula categories - formula_tabs = st.tabs(list(latex_categories.keys())) - - for i, (category, formulas) in enumerate(latex_categories.items()): - with formula_tabs[i]: - for formula in formulas: - if st.button(formula["name"], key=f"latex_{formula['name']}"): - # Insert formula into the text area - st.session_state.latex_formula = formula["latex"] - # Refresh without full page rerun - st.rerun() - - # LaTeX code snippet - st.markdown("#### Manim Code Snippet") - if latex_input: - manim_latex_code = f""" -# LaTeX formula -formula = MathTex(r"{latex_input}") -self.play(Write(formula)) -self.wait(2) -""" - st.code(manim_latex_code, language="python") - - if st.button("Insert into Editor", key="insert_latex_btn"): - if st.session_state.code: - # Find the construct method and insert after it - if "def construct(self):" in st.session_state.code: - lines = st.session_state.code.split("\n") - construct_index = -1 - - for i, line in enumerate(lines): - if "def construct(self):" in line: - construct_index = i - break - - if construct_index >= 0: - # Find the first line with non-whitespace content after construct - for i in range(construct_index + 1, len(lines)): - if lines[i].strip() and not lines[i].strip().startswith("#"): - # Insert before this line - indent = re.match(r"(\s*)", lines[i]).group(1) - indented_code = "\n".join([indent + line for line in manim_latex_code.strip().split("\n")]) - lines.insert(i, indented_code) - break - else: - # If we didn't find content, append to the end with default indentation - lines.append(" " + "\n ".join(manim_latex_code.strip().split("\n"))) - - st.session_state.code = "\n".join(lines) - st.session_state.temp_code = st.session_state.code - st.success("LaTeX formula inserted into the editor!") - - # Set pending tab switch to editor tab - st.session_state.pending_tab_switch = 0 - st.rerun() - else: - st.warning("Could not find 'construct' method in your code. Please add a scene class first.") - else: - # Create a new basic scene with the LaTeX formula - basic_scene = f"""from manim import * - -class LatexScene(Scene): - def construct(self): - # LaTeX formula - formula = MathTex(r"{latex_input}") - self.play(Write(formula)) - self.wait(2) -""" - st.session_state.code = basic_scene - st.session_state.temp_code = basic_scene - st.success("Created new scene with your LaTeX formula!") - - # Set pending tab switch to editor tab - st.session_state.pending_tab_switch = 0 - st.rerun() - - with col_latex2: - # LaTeX preview - st.markdown("#### Formula Preview") - latex_preview_html = render_latex_preview(latex_input) - components.html(latex_preview_html, height=300) - - # LaTeX tips - with st.expander("LaTeX Tips & Tricks"): - st.markdown(""" - ### LaTeX Tips - - - Use `\\frac{a}{b}` for fractions - - Use `\\sum_{i=1}^{n}` for summation - - Use `\\int_{a}^{b}` for integration - - Use `\\{` and `\\}` for curly braces - - Enclose equations in `$...$` or `\\[...\\]` - - ### Manim LaTeX - - In Manim, use `MathTex` for inline math and `Tex` for text with LaTeX: - - ```python - formula = MathTex(r"\\sum_{i=1}^{n} i = \\frac{n(n+1)}{2}") - text = Tex(r"This is a binomial coefficient: $\\binom{n}{k}$") - ``` - - The `r` before the string creates a raw string, which is recommended to avoid escaping backslashes. - """) - - # ASSETS TAB + st.markdown("
📚 LaTeX Formula Builder
", unsafe_allow_html=True) + latex_input = st.text_input("LaTeX", key="latex_input", help="Raw string, e.g. r\"e^{i\\pi}+1=0\"") + st.markdown(render_latex_preview(latex_input), unsafe_allow_html=True) + if latex_input and st.button("Insert into Editor"): + snippet = f"""formula = MathTex(r"{latex_input}")\nself.play(Write(formula))\nself.wait(2)""" + st.session_state.editor_code += "\n " + snippet + st.success("Inserted into editor") + st.experimental_rerun() + + # --- Assets Tab --- with tabs[3]: - st.markdown("### 🎨 Asset Management") - - asset_col1, asset_col2 = st.columns([1, 1]) - - with asset_col1: - # Image uploader section - st.markdown("#### 📸 Image Assets") - st.markdown("Upload images to use in your animations:") - - # Allow multiple image uploads - uploaded_images = st.file_uploader( - "Upload Images", - type=["jpg", "png", "jpeg", "svg"], - accept_multiple_files=True, - key="image_uploader_tab" - ) - - if uploaded_images: - # Create a unique image directory if it doesn't exist - image_dir = os.path.join(os.getcwd(), "manim_assets", "images") - os.makedirs(image_dir, exist_ok=True) - - # Process each uploaded image - for uploaded_image in uploaded_images: - # Generate a unique filename and save the image - file_extension = uploaded_image.name.split(".")[-1] - unique_filename = f"image_{int(time.time())}_{uuid.uuid4().hex[:8]}.{file_extension}" - image_path = os.path.join(image_dir, unique_filename) - - with open(image_path, "wb") as f: - f.write(uploaded_image.getvalue()) - - # Store the path in session state - if "image_paths" not in st.session_state: - st.session_state.image_paths = [] - - # Check if this image was already added - image_already_added = False - for img in st.session_state.image_paths: - if img["name"] == uploaded_image.name: - image_already_added = True - break - - if not image_already_added: - st.session_state.image_paths.append({ - "name": uploaded_image.name, - "path": image_path - }) - - # Display uploaded images in a grid - st.markdown("##### Uploaded Images:") - image_cols = st.columns(3) - - for i, img_info in enumerate(st.session_state.image_paths[-len(uploaded_images):]): - with image_cols[i % 3]: - try: - img = Image.open(img_info["path"]) - st.image(img, caption=img_info["name"], width=150) - - # Show code snippet for this specific image - if st.button(f"Use {img_info['name']}", key=f"use_img_{i}"): - image_code = f""" -# Load and display image -image = ImageMobject(r"{img_info['path']}") -image.scale(2) # Adjust size as needed -self.play(FadeIn(image)) -self.wait(1) -""" - if not st.session_state.code: - base_code = """from manim import * - -class ImageScene(Scene): - def construct(self): -""" - st.session_state.code = base_code + "\n " + image_code.replace("\n", "\n ") - else: - st.session_state.code += "\n" + image_code - - st.session_state.temp_code = st.session_state.code - st.success(f"Added {img_info['name']} to your code!") - - # Set pending tab switch to editor tab - st.session_state.pending_tab_switch = 0 - st.rerun() - except Exception as e: - st.error(f"Error loading image {img_info['name']}: {e}") - - # Display previously uploaded images - if st.session_state.image_paths: - with st.expander("Previously Uploaded Images"): - # Group images by 3 in each row - for i in range(0, len(st.session_state.image_paths), 3): - prev_cols = st.columns(3) - for j in range(3): - if i+j < len(st.session_state.image_paths): - img_info = st.session_state.image_paths[i+j] - with prev_cols[j]: - try: - img = Image.open(img_info["path"]) - st.image(img, caption=img_info["name"], width=100) - st.markdown(f"
Path: {img_info['path']}
", unsafe_allow_html=True) - except: - st.markdown(f"**{img_info['name']}**") - st.markdown(f"
Path: {img_info['path']}
", unsafe_allow_html=True) - - with asset_col2: - # Audio uploader section - st.markdown("#### 🎵 Audio Assets") - st.markdown("Upload audio files for background or narration:") - - uploaded_audio = st.file_uploader("Upload Audio", type=["mp3", "wav", "ogg"], key="audio_uploader") - - if uploaded_audio: - # Create a unique audio directory if it doesn't exist - audio_dir = os.path.join(os.getcwd(), "manim_assets", "audio") - os.makedirs(audio_dir, exist_ok=True) - - # Generate a unique filename and save the audio - file_extension = uploaded_audio.name.split(".")[-1] - unique_filename = f"audio_{int(time.time())}.{file_extension}" - audio_path = os.path.join(audio_dir, unique_filename) - - with open(audio_path, "wb") as f: - f.write(uploaded_audio.getvalue()) - - # Store the path in session state - st.session_state.audio_path = audio_path - - # Display audio player - st.audio(uploaded_audio) - - st.markdown(f""" -
-

Audio: {uploaded_audio.name}

-

Path: {audio_path}

-
- """, unsafe_allow_html=True) - - # Two options for audio usage - st.markdown("#### Add Audio to Your Animation") - - option = st.radio( - "Choose how to use audio:", - ["Background Audio", "Generate Audio from Text"] - ) - - if option == "Background Audio": - st.markdown("##### Code to add background audio:") - - # For with_sound decorator - audio_code1 = f""" -# Add this import at the top of your file -from manim.scene.scene_file_writer import SceneFileWriter - -# Add this decorator before your scene class -@with_sound("{audio_path}") -class YourScene(Scene): - def construct(self): - # Your animation code here -""" - st.code(audio_code1, language="python") - - if st.button("Use This Audio in Animation", key="use_audio_btn"): - st.success("Audio set for next render!") - - elif option == "Generate Audio from Text": - # Text-to-speech input - tts_text = st.text_area( - "Enter text for narration", - placeholder="Type the narration text here...", - height=100 - ) - - if st.button("Create Narration", key="create_narration_btn"): - try: - # Use basic TTS (placeholder for actual implementation) - st.warning("Text-to-speech feature requires additional setup. Using uploaded audio instead.") - st.session_state.audio_path = audio_path - st.success("Audio set for next render!") - except Exception as e: - st.error(f"Error creating narration: {str(e)}") - - # TIMELINE EDITOR TAB + st.markdown("
🎨 Asset Management
", unsafe_allow_html=True) + imgs = st.file_uploader("Upload images", accept_multiple_files=True) + for img in imgs: + st.image(img, width=150, caption=img.name) + if st.button(f"Use {img.name}"): + code_snip = f"""from manim import ImageMobject\nimg = ImageMobject(r"{img.name}")\nself.play(FadeIn(img))""" + st.session_state.editor_code += "\n " + code_snip + st.success(f"Added {img.name} to code") + st.experimental_rerun() + audio = st.file_uploader("Upload audio", type=["mp3","wav"]) + if audio: + path = prepare_audio_for_manim(audio, "manim_assets/audio") + st.audio(audio) + st.code(f"@with_sound(r\"{path}\")\nclass YourScene(Scene):\n ...") + + # --- Timeline Tab --- with tabs[4]: - # New code for reordering animation steps - updated_code = create_timeline_editor(st.session_state.code) - - # If code was modified by the timeline editor, update the session state - if updated_code != st.session_state.code: - st.session_state.code = updated_code - st.session_state.temp_code = updated_code + st.markdown("
🎞️ Timeline Editor
", unsafe_allow_html=True) + new_code = create_timeline_editor(st.session_state.get("editor_code","")) + if new_code != st.session_state.get("editor_code",""): + st.session_state.editor_code = new_code - # EDUCATIONAL EXPORT TAB + # --- Export Tab --- with tabs[5]: - st.markdown("### 🎓 Educational Export Options") - - # Check if we have an animation to export - if not st.session_state.video_data: - st.warning("Generate an animation first before using educational export features.") + st.markdown("
🎓 Educational Export
", unsafe_allow_html=True) + if not st.session_state.get("last_video"): + st.warning("Generate an animation first") else: - st.markdown("Create various educational assets from your animation:") - - # Animation title and explanation - animation_title = st.text_input("Animation Title", value="Manim Animation", key="edu_title") - - st.markdown("#### Explanation Text") - st.markdown("Add explanatory text to accompany your animation. Use markdown formatting.") - st.markdown("Use ## to separate explanation sections for step-by-step sequence export.") - - explanation_text = st.text_area( - "Explanation (markdown supported)", - height=150, - placeholder="Explain your animation here...\n\n## Step 1\nIntroduction to the concept...\n\n## Step 2\nNext, we demonstrate..." - ) - - # Export format selection - edu_format = st.selectbox( - "Export Format", - options=["PowerPoint Presentation", "Interactive HTML", "Explanation Sequence PDF"] - ) - - # Format-specific options - if edu_format == "PowerPoint Presentation": - st.info("Creates a PowerPoint file with your animation and explanation text.") - - elif edu_format == "Interactive HTML": - st.info("Creates an interactive HTML webpage with playback controls and explanation.") - include_controls = st.checkbox("Include interactive controls", value=True) - - elif edu_format == "Explanation Sequence PDF": - st.info("Creates a PDF with key frames and step-by-step explanations.") - frame_count = st.slider("Number of key frames", min_value=3, max_value=10, value=5) - - # Export button - if st.button("Export Educational Material", key="export_edu_btn"): - with st.spinner(f"Creating {edu_format}..."): - # Map selected format to internal format type - format_map = { - "PowerPoint Presentation": "powerpoint", - "Interactive HTML": "html", - "Explanation Sequence PDF": "sequence" - } - - # Create a temporary directory for export - temp_export_dir = tempfile.mkdtemp(prefix="manim_edu_export_") - - # Process the export - exported_data, file_type = export_to_educational_format( - st.session_state.video_data, - format_map[edu_format], - animation_title, - explanation_text, - temp_export_dir - ) - - if exported_data: - # File extension mapping - ext_map = { - "powerpoint": "pptx", - "html": "html", - "pdf": "pdf" - } - - # Download button - ext = ext_map.get(file_type, "zip") - filename = f"{animation_title.replace(' ', '_')}.{ext}" - - st.success(f"{edu_format} created successfully!") - st.download_button( - label=f"⬇️ Download {edu_format}", - data=exported_data, - file_name=filename, - mime=f"application/{ext}", - use_container_width=True - ) - - # For HTML, also offer to open in browser - if file_type == "html": - html_path = os.path.join(temp_export_dir, filename) - st.markdown(f"[🌐 Open in browser](file://{html_path})", unsafe_allow_html=True) - else: - st.error(f"Failed to create {edu_format}. Check logs for details.") - - # Show usage examples and tips - with st.expander("Usage Tips"): - st.markdown(""" - ### Educational Export Tips - - **PowerPoint Presentations** - - Great for lectures and classroom presentations - - Animation will autoplay when clicked - - Add detailed explanations in notes section - - **Interactive HTML** - - Perfect for websites and online learning platforms - - Students can control playback speed and navigation - - Mobile-friendly for learning on any device - - **Explanation Sequence** - - Ideal for printed materials and study guides - - Use ## headers to mark different explanation sections - - Each section will be paired with a key frame - """) - - # PYTHON RUNNER TAB - with tabs[6]: - st.markdown("### 🐍 Python Script Runner") - st.markdown("Execute Python scripts and visualize the results directly.") - - # Predefined example scripts - example_scripts = { - "Select an example...": "", - "Basic Matplotlib Plot": """import matplotlib.pyplot as plt -import numpy as np - -# Create data -x = np.linspace(0, 10, 100) -y = np.sin(x) - -# Create plot -plt.figure(figsize=(10, 6)) -plt.plot(x, y, 'b-', label='sin(x)') -plt.title('Sine Wave') -plt.xlabel('x') -plt.ylabel('sin(x)') -plt.grid(True) -plt.legend() -""", - "User Input Example": """# This example demonstrates how to handle user input -name = input("Enter your name: ") -age = int(input("Enter your age: ")) - -print(f"Hello, {name}! In 10 years, you'll be {age + 10} years old.") - -# Let's get some numbers and calculate the average -num_count = int(input("How many numbers would you like to average? ")) -total = 0 - -for i in range(num_count): - num = float(input(f"Enter number {i+1}: ")) - total += num - -average = total / num_count -print(f"The average of your {num_count} numbers is: {average}") -""", - "Pandas DataFrame": """import pandas as pd -import numpy as np - -# Create a sample dataframe -data = { - 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'], - 'Age': [25, 30, 35, 40, 45], - 'Salary': [50000, 60000, 70000, 80000, 90000], - 'Department': ['HR', 'IT', 'Finance', 'Marketing', 'Engineering'] -} - -df = pd.DataFrame(data) - -# Display the dataframe -print("Sample DataFrame:") -print(df) - -# Basic statistics -print("\\nSummary Statistics:") -print(df.describe()) - -# Filtering -print("\\nEmployees older than 30:") -print(df[df['Age'] > 30]) -""", - "Seaborn Visualization": """import matplotlib.pyplot as plt -import seaborn as sns -import numpy as np -import pandas as pd - -# Set the style -sns.set_style("whitegrid") - -# Create sample data -np.random.seed(42) -data = np.random.randn(100, 3) -df = pd.DataFrame(data, columns=['A', 'B', 'C']) -df['category'] = pd.Categorical(['Group 1'] * 50 + ['Group 2'] * 50) - -# Create a paired plot -sns.pairplot(df, hue='category', palette='viridis') - -# Create another plot -plt.figure(figsize=(10, 6)) -sns.violinplot(x='category', y='A', data=df, palette='magma') -plt.title('Distribution of A by Category') -""", - "NumPy Computation": """import numpy as np - -# Create arrays -arr1 = np.array([1, 2, 3, 4, 5]) -arr2 = np.array([5, 4, 3, 2, 1]) - -print("Array 1:", arr1) -print("Array 2:", arr2) - -# Basic operations -print("\\nBasic Operations:") -print("Addition:", arr1 + arr2) -print("Multiplication:", arr1 * arr2) -print("Division:", arr1 / arr2) - -# Statistics -print("\\nStatistics:") -print("Mean of arr1:", np.mean(arr1)) -print("Standard deviation of arr2:", np.std(arr2)) -print("Correlation coefficient:", np.corrcoef(arr1, arr2)[0, 1]) - -# Create a 2D array -matrix = np.random.rand(3, 3) -print("\\nRandom 3x3 Matrix:") -print(matrix) -print("Determinant:", np.linalg.det(matrix)) -print("Inverse:") -print(np.linalg.inv(matrix)) -""", - "SciPy Example": """import numpy as np -from scipy import optimize -import matplotlib.pyplot as plt - -# Define a function to find the root of -def f(x): - return x**3 - 2*x**2 - 5*x + 6 - -# Find the roots -roots = optimize.root_scalar(f, bracket=[-5, 5], method='brentq') -print(f"Root found: {roots.root}") - -# Plot the function -x = np.linspace(-5, 5, 1000) -y = f(x) - -plt.figure(figsize=(10, 6)) -plt.plot(x, y, 'b-') -plt.axhline(y=0, color='k', linestyle='-', alpha=0.3) -plt.axvline(x=roots.root, color='r', linestyle='--', label=f'Root: {roots.root:.2f}') -plt.grid(True) -plt.title('Finding roots of a cubic function') -plt.xlabel('x') -plt.ylabel('f(x)') -plt.legend() - -# Optimization example -def g(x): - return (x - 2) ** 2 + 1 - -result = optimize.minimize(g, x0=0) -print(f"Minimum found at x = {result.x[0]}, with value {result.fun}") - -# Plot the optimization -x = np.linspace(-1, 5, 1000) -y = g(x) - -plt.figure(figsize=(10, 6)) -plt.plot(x, y, 'g-') -plt.plot(result.x, result.fun, 'ro', label=f'Minimum: ({result.x[0]:.2f}, {result.fun:.2f})') -plt.grid(True) -plt.title('Function Optimization') -plt.xlabel('x') -plt.ylabel('g(x)') -plt.legend() -""" - } - - # Select example script - selected_example = st.selectbox("Select an example script:", options=list(example_scripts.keys())) - - # Python code editor - if selected_example != "Select an example..." and selected_example in example_scripts: - python_code = example_scripts[selected_example] - else: - python_code = st.session_state.python_script - - if ACE_EDITOR_AVAILABLE: - python_code = st_ace( - value=python_code, - language="python", - theme="monokai", - min_lines=15, - key=f"python_editor_{st.session_state.editor_key}" - ) - else: - python_code = st.text_area( - "Python Code", - value=python_code, - height=400, - key=f"python_textarea_{st.session_state.editor_key}" - ) - - # Store script in session state (without clearing existing code) - st.session_state.python_script = python_code - - # Check for input() calls - input_calls = detect_input_calls(python_code) - user_inputs = [] - - if input_calls: - st.markdown("### Input Values") - st.info(f"This script contains {len(input_calls)} input() calls. Please provide values below:") - - for i, input_call in enumerate(input_calls): - user_input = st.text_input( - f"{input_call['prompt']} (Line {input_call['line']})", - key=f"input_{i}" + title = st.text_input("Animation Title", "My Animation") + expl = st.text_area("Explanation (use ## for steps)") + fmt = st.selectbox("Export Format", ["PowerPoint","HTML","PDF Sequence"]) + if st.button("📤 Export"): + fmt_key = {"PowerPoint":"powerpoint","HTML":"html","PDF Sequence":"sequence"}[fmt] + data,ft = export_to_educational_format( + st.session_state.last_video, fmt_key, title, expl, tempfile.mkdtemp() ) - user_inputs.append(user_input) - - # Options and execution - col1, col2 = st.columns([2, 1]) - - with col1: - timeout_seconds = st.slider("Execution Timeout (seconds)", 5, 3600, 30) - - with col2: - run_btn = st.button("▶️ Run Script", use_container_width=True) - - if run_btn: - with st.spinner("Executing Python script..."): - result = run_python_script(python_code, inputs=user_inputs, timeout=timeout_seconds) - st.session_state.python_result = result - - # Display results - if st.session_state.python_result: - display_python_script_results(st.session_state.python_result) - - # Option to insert plots into Manim animation - if st.session_state.python_result["plots"]: - with st.expander("Add Plots to Manim Animation"): - st.markdown("Select a plot to include in your Manim animation:") - - plot_cols = st.columns(min(3, len(st.session_state.python_result["plots"]))) - - for i, plot_data in enumerate(st.session_state.python_result["plots"]): - # Create a unique temporary file for each plot - with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: - tmp.write(plot_data) - plot_path = tmp.name - - # Display the plot with selection button - with plot_cols[i % len(plot_cols)]: - st.image(plot_data, use_column_width=True) - if st.button(f"Use Plot {i+1}", key=f"use_plot_{i}"): - # Create code to include this plot in Manim - plot_code = f""" -# Import the plot image -plot_image = ImageMobject(r"{plot_path}") -plot_image.scale(2) # Adjust size as needed -self.play(FadeIn(plot_image)) -self.wait(1) -""" - # Insert into editor code - if st.session_state.code: - st.session_state.code += "\n" + plot_code - st.session_state.temp_code = st.session_state.code - st.success(f"Plot {i+1} added to your animation code!") - # Set pending tab switch to editor tab - st.session_state.pending_tab_switch = 0 - st.rerun() - else: - basic_scene = f"""from manim import * + if data: + ext = {"pptx":"pptx","html":"html","pdf":"pdf"}[ft] + st.success(f"{fmt} created") + st.download_button(f"⬇️ Download {fmt}", data, f"{title}.{ext}") -class PlotScene(Scene): - def construct(self): - {plot_code} -""" - st.session_state.code = basic_scene - st.session_state.temp_code = basic_scene - st.success(f"Created new scene with Plot {i+1}!") - # Set pending tab switch to editor tab - st.session_state.pending_tab_switch = 0 - st.rerun() - - # Provide option to save the script - if st.button("📄 Save This Script", key="save_script_btn"): - # Generate a unique filename - timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") - script_filename = f"script_{timestamp}.py" - - # Offer download button for the script - st.download_button( - label="⬇️ Download Script", - data=python_code, - file_name=script_filename, - mime="text/plain" - ) - - # Show advanced examples and tips - with st.expander("Python Script Runner Tips"): - st.markdown(""" - ### Python Script Runner Tips - - **What can I run?** - - Any Python code that doesn't require direct UI interaction - - Libraries like Matplotlib, NumPy, Pandas, SciPy, etc. - - Data processing and visualization code - - Scripts that ask for user input (now supported!) - - **What can't I run?** - - Streamlit, Gradio, Dash, or other web UIs - - Long-running operations (timeout will occur) - - Code that requires file access outside the temporary environment - - **Working with visualizations:** - - All Matplotlib/Seaborn plots will be automatically captured - - Pandas DataFrames are detected and displayed as tables - - Use `print()` to show text output - - **Handling user input:** - - The app detects input() calls and automatically creates text fields - - Input values you provide will be passed to the script when it runs - - Type conversion (like int(), float()) is preserved - - **Adding to animations:** - - Charts and plots can be directly added to your Manim animations - - Generated images will be properly scaled for your animation - - Perfect for educational content combining data and animations - """) - - # Help section - with st.sidebar.expander("ℹ️ Help & Info"): - st.markdown(""" - ### About Manim Animation Studio - - This app allows you to create mathematical animations using Manim, - an animation engine for explanatory math videos. - - ### Example Code - - ```python - from manim import * - - class SimpleExample(Scene): - def construct(self): - circle = Circle(color=BLUE) - self.play(Create(circle)) - - square = Square(color=RED).next_to(circle, RIGHT) - self.play(Create(square)) - - text = Text("Manim Animation").next_to(VGroup(circle, square), DOWN) - self.play(Write(text)) - - self.wait(2) - ``` - """) - - # Handle tab switching with session state to prevent refresh loop - if st.session_state.pending_tab_switch is not None: - st.session_state.active_tab = st.session_state.pending_tab_switch - st.session_state.pending_tab_switch = None - - # Set tabs active state - for i, tab in enumerate(tabs): - if i == st.session_state.active_tab: - tab.active = True - - # Mark first load as complete to prevent unnecessary refreshes - if not st.session_state.first_load_complete: - st.session_state.first_load_complete = True + # --- Python Tab --- + with tabs[6]: + st.markdown("
🐍 Python Script Runner
", unsafe_allow_html=True) + script = st.text_area("Script", height=200, key="python_script") + calls = detect_input_calls(script) + inputs = [] + if calls: + st.info("Detected input() calls – please provide values:") + for c in calls: + v = st.text_input(f"{c['prompt']} (line {c['line']})") + inputs.append(v) + if st.button("▶️ Run Script"): + res = run_python_script(script, inputs) + display_python_script_results(res) if __name__ == "__main__": - main() \ No newline at end of file + main()