import torch import gradio as gr from random import randint from pathlib import Path from super_image import ImageLoader, EdsrModel, MsrnModel, MdsrModel, AwsrnModel, A2nModel, CarnModel, PanModel, \ HanModel, DrlnModel, RcanModel title = "super-image" description = "State of the Art Image Super-Resolution Models." article = "

Github Repo" \ "| Documentation " \ "| Models

" def inference(img, scale_str, model_name): _id = randint(1, 1000) output_dir = Path('./tmp/') output_dir.mkdir(parents=True, exist_ok=True) output_file = output_dir / ('output_image' + str(_id) + '.jpg') scale = int(scale_str.replace('x', '')) if model_name == 'EDSR': model = EdsrModel.from_pretrained('eugenesiow/edsr', scale=scale) elif model_name == 'MSRN': model = MsrnModel.from_pretrained('eugenesiow/msrn', scale=scale) elif model_name == 'MDSR': model = MdsrModel.from_pretrained('eugenesiow/mdsr', scale=scale) elif model_name == 'AWSRN-BAM': model = AwsrnModel.from_pretrained('eugenesiow/awsrn-bam', scale=scale) elif model_name == 'A2N': model = A2nModel.from_pretrained('eugenesiow/a2n', scale=scale) elif model_name == 'CARN': model = CarnModel.from_pretrained('eugenesiow/carn', scale=scale) elif model_name == 'PAN': model = PanModel.from_pretrained('eugenesiow/pan', scale=scale) elif model_name == 'HAN': model = HanModel.from_pretrained('eugenesiow/han', scale=scale) elif model_name == 'DRLN': model = DrlnModel.from_pretrained('eugenesiow/drln', scale=scale) elif model_name == 'RCAN': model = RcanModel.from_pretrained('eugenesiow/rcan', scale=scale) else: model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=scale) inputs = ImageLoader.load_image(img) preds = model(inputs) output_file_str = str(output_file.resolve()) ImageLoader.save_image(preds, output_file_str) return output_file_str torch.hub.download_url_to_file('http://people.rennes.inria.fr/Aline.Roumy/results/images_SR_BMVC12/input_groundtruth/baby_mini_d3_gaussian.bmp', 'baby.bmp') torch.hub.download_url_to_file('http://people.rennes.inria.fr/Aline.Roumy/results/images_SR_BMVC12/input_groundtruth/woman_mini_d3_gaussian.bmp', 'woman.bmp') gr.Interface( inference, [ gr.inputs.Image(type="pil", label="Input"), gr.inputs.Radio(["x2", "x3", "x4"], label='scale'), gr.inputs.Dropdown(choices=['EDSR-base', 'EDSR', 'MSRN', 'MDSR', 'AWSRN-BAM', 'A2N', 'CARN', 'PAN', 'HAN', 'DRLN', 'RCAN'], label='Model') ], gr.outputs.Image(type="file", label="Output"), title=title, description=description, article=article, examples=[ ['baby.bmp', 'x2', 'EDSR-base'], ['woman.bmp', 'x3', 'MSRN'] ], enable_queue=True ).launch(debug=True)