import gradio as gr import cv2 import torch import numpy as np from torchvision import transforms title = "Remove Bg" description = "Automatically remove the image background from a profile photo." article = "
Github Repo" def make_transparent_foreground(pic, mask): # split the image into channels b, g, r = cv2.split(np.array(pic).astype('uint8')) # add an alpha channel with and fill all with transparent pixels (max 255) a = np.ones(mask.shape, dtype='uint8') * 255 # merge the alpha channel back alpha_im = cv2.merge([b, g, r, a], 4) # create a transparent background bg = np.zeros(alpha_im.shape) # setup the new mask new_mask = np.stack([mask, mask, mask, mask], axis=2) # copy only the foreground color pixels from the original image where mask is set foreground = np.where(new_mask, alpha_im, bg).astype(np.uint8) return foreground def remove_background(input_image): preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch)['out'][0] output_predictions = output.argmax(0) # create a binary (black and white) mask of the profile foreground mask = output_predictions.byte().cpu().numpy() background = np.zeros(mask.shape) bin_mask = np.where(mask, 255, background).astype(np.uint8) foreground = make_transparent_foreground(input_image, bin_mask) return foreground, bin_mask def inference(img): foreground, _ = remove_background(img) return foreground torch.hub.download_url_to_file('https://pbs.twimg.com/profile_images/691700243809718272/z7XZUARB_400x400.jpg', 'demis.jpg') torch.hub.download_url_to_file('https://hai.stanford.edu/sites/default/files/styles/person_medium/public/2020-03/hai_1512feifei.png?itok=INFuLABp', 'lifeifei.png') model = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', pretrained=True) model.eval() gr.Interface( inference, gr.inputs.Image(type="pil", label="Input"), gr.outputs.Image(type="pil", label="Output"), title=title, description=description, article=article, examples=[['demis.jpg'], ['lifeifei.png']], enable_queue=True ).launch(debug=False)