""" literal2idiomatic ver: d-1-2 """ import os from idiomify.paths import ROOT_DIR from idiomify.fetchers import fetch_pie, fetch_config from idiomify.preprocess import upsample, cleanse, stratified_split import wandb def main(): # here, we use all of them, while splitting them into train & test pie_df = fetch_pie() config = fetch_config()['literal2idiomatic'] train_df, test_df = pie_df.pipe(cleanse)\ .pipe(upsample, seed=config['seed'])\ .pipe(stratified_split, ratio=config['train_ratio'], seed=config['seed']) # why don't you just "select" the columns? yeah, stop using csv library. just select them. train_df = train_df[["Idiom", "Literal_Sent", "Idiomatic_Sent"]] test_df = test_df[["Idiom", "Literal_Sent", "Idiomatic_Sent"]] dfs = (train_df, test_df) with wandb.init(entity="eubinecto", project="idiomify") as run: # the paths to write datasets in train_path = ROOT_DIR / "train.tsv" test_path = ROOT_DIR / "test.tsv" paths = (train_path, test_path) artifact = wandb.Artifact(name="literal2idiomatic", type="dataset", description=config['description'], metadata=config) for tsv_path, df in zip(paths, dfs): df.to_csv(tsv_path, sep="\t") artifact.add_file(tsv_path) # then, we just log them here. run.log_artifact(artifact, aliases=["latest", config['ver']]) # don't forget to remove them for tsv_path in paths: os.remove(tsv_path) if __name__ == '__main__': main()