""" we deploy the pipeline via streamlit. """ import re import streamlit as st from idiomify.fetchers import fetch_config, fetch_idiomifier, fetch_idioms, fetch_tokenizer from idiomify.pipeline import Pipeline @st.cache(allow_output_mutation=True) def fetch_resources() -> tuple: config = fetch_config()['idiomifier'] model = fetch_idiomifier(config['ver']) tokenizer = fetch_tokenizer(config['tokenizer_ver']) idioms = fetch_idioms(config['idioms_ver']) return config, model, tokenizer, idioms def main(): # fetch a pre-trained model config, model, tokenizer, idioms = fetch_resources() model.eval() pipeline = Pipeline(model, tokenizer) st.title("Idiomify Demo") text = st.text_area("Type sentences here", value="Just remember that there will always be a hope even when things look hopeless") with st.sidebar: st.subheader("Supported idioms") idioms = [row["Idiom"] for _, row in idioms.iterrows()] st.write(" / ".join(idioms)) if st.button(label="Idiomify"): with st.spinner("Please wait..."): sents = [sent for sent in text.split(".") if sent] preds = pipeline(sents, max_length=200) # highlight the rule & honorifics that were applied preds = [re.sub(r"|", "`", pred) for pred in preds] st.markdown(". ".join(preds)) if __name__ == '__main__': main()