from transformers import BartTokenizer, BartForConditionalGeneration
def main():
tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
bart = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
num_added_tokens = tokenizer.add_special_tokens({
"additional_special_tokens": ["", ""], # beginning and end of an idiom
})
print(num_added_tokens)
print(tokenizer.additional_special_tokens) # more special tokens are added here
# and then you should resize the embedding table of your model
print(bart.model.shared.weight.shape) # before
bart.resize_token_embeddings(len(tokenizer))
print(bart.model.shared.weight.shape) # after
if __name__ == '__main__':
main()
"""
2
['', '']
torch.Size([50265, 768])
torch.Size([50267, 768]) # you can see that 2 more embedding vectors have been added here.
later, you may want to save the tokenizer after you add the idiom special tokens.
"""