import gradio as gr from transformers import pipeline from huggingface_hub import get_hf_file_metadata, hf_hub_url, hub_hub_download print(get_hf_file_metadata(hf_hub_url("eu-test/gpt2", "README.md"))) print(get_hf_file_metadata(hf_hub_url("eu-test/gpt2", "model.safetensors"))) hf_hub_download(repo_id="eu-test/gpt2", filename="64-8bits.tflite") generator = pipeline('text-generation', model='eu-test/gpt2') def generate(text): result = generator(text, max_length=30, num_return_sequences=1) return result[0]["generated_text"] examples = [ ["The Moon's orbit around Earth has"], ["The smooth Borealis basin in the Northern Hemisphere covers 40%"], ] demo = gr.Interface( fn=generate, inputs=gr.inputs.Textbox(lines=5, label="Input Text"), outputs=gr.outputs.Textbox(label="Generated Text"), examples=examples ) demo.launch()