""" deploy-as-bot\gradio_chatbot.py A system, method for deploying to Gradio. Gradio is a basic "deploy" interface which allows for other users to test your model from a web URL. It also enables some basic functionality like user flagging for weird responses. Note that the URL is displayed once the script is run. Set the working directory to */deploy-as-bot in terminal before running. """ import os import sys from os.path import dirname sys.path.append(dirname(dirname(os.path.abspath(__file__)))) import gradio as gr import logging import argparse import time import warnings from pathlib import Path from cleantext import clean from transformers import pipeline from datetime import datetime from ai_single_response import query_gpt_model #from gradio.networking import get_state, set_state from flask import Flask, request, session, jsonify, abort, send_file, render_template, redirect import nltk nltk.download('stopwords') warnings.filterwarnings(action="ignore", message=".*gradient_checkpointing*") logging.basicConfig() cwd = Path.cwd() my_cwd = str(cwd.resolve()) # string so it can be passed to os.path() objects def gramformer_correct(corrector, qphrase: str): """ gramformer_correct - correct a string using a text2textgen pipeline model from transformers Args: corrector (transformers.pipeline): [transformers pipeline object, already created w/ relevant model] qphrase (str): [text to be corrected] Returns: [str]: [corrected text] """ try: corrected = corrector( clean(qphrase), return_text=True, clean_up_tokenization_spaces=True ) return corrected[0]["generated_text"] except: print("NOTE - failed to correct with gramformer") return clean(qphrase) def ask_gpt(message: str, sender: str = ""): """ ask_gpt - queries the relevant model with a prompt message and (optional) speaker name Args: message (str): prompt message to respond to sender (str, optional): speaker aka who said the message. Defaults to "". Returns: [str]: [model response as a string] """ st = time.time() prompt = clean(message) # clean user input prompt = prompt.strip() # get rid of any extra whitespace if len(prompt) > 200: prompt = prompt[-200:] # truncate sender = clean(sender.strip()) if len(sender) > 2: try: prompt_speaker = clean(sender) except: # there was some issue getting that info, whatever prompt_speaker = None else: prompt_speaker = None resp = query_gpt_model( folder_path=model_loc, prompt_msg=prompt, speaker=prompt_speaker, kparam=150, temp=0.75, top_p=0.65, # optimize this with hyperparam search ) bot_resp = gramformer_correct(corrector, qphrase=resp["out_text"]) rt = round(time.time() - st, 2) print(f"took {rt} sec to respond") return bot_resp def chat(first_and_last_name, message): """ chat - helper function that makes the whole gradio thing work. Args: first_and_last_name (str or None): [speaker of the prompt, if provided] message (str): [description] Returns: [str]: [returns an html string to display] """ history = [] response = ask_gpt(message, sender=first_and_last_name) history.append((f"{first_and_last_name}: " + message, " GPT-Model: " + response)) #+ " [end] ")) #html = "
" #for user_msg, resp_msg in history: # html += f"
{user_msg}
" # html += f"
{resp_msg}
" #html += "
" return history def get_parser(): """ get_parser - a helper function for the argparse module Returns: [argparse.ArgumentParser]: [the argparser relevant for this script] """ parser = argparse.ArgumentParser( description="submit a message and have a 774M parameter GPT model respond" ) parser.add_argument( "--model", required=False, type=str, # "gp2_DDandPeterTexts_774M_73Ksteps", - from GPT-Peter default="GPT2_trivNatQAdailydia_774M_175Ksteps", help="folder - with respect to git directory of your repo that has the model files in it (pytorch.bin + " "config.json). No models? Run the script download_models.py", ) parser.add_argument( "--gram-model", required=False, type=str, default="pszemraj/t5-v1_1-base-ft-jflAUG", help="text2text generation model ID from huggingface for the model to correct grammar", ) return parser if __name__ == "__main__": args = get_parser().parse_args() default_model = str(args.model) model_loc = cwd.parent / default_model model_loc = str(model_loc.resolve()) gram_model = args.gram_model print(f"using model stored here: \n {model_loc} \n") corrector = pipeline("text2text-generation", model=gram_model, device=-1) print("Finished loading the gramformer model - ", datetime.now()) iface = gr.Interface( chat, inputs=["text", "text"], outputs="html", title="Real-Impact English Chat Demo 英语聊天演示", description="A basic interface with a neural network model trained on general Q&A and conversation. Treat it like a friend! 带有模型的基本界面,进行了一般问答和对话训练。 请像朋友一样与他对话! \n first and last name 姓名 \n message 信息 \n Clear 清除 \nSubmit 确认 \n Screenshot 截屏", article="**Important Notes & About: 重要说明 & 关于我们**\n" "1. the model can take up to 200 seconds to respond sometimes, patience is a virtue. 该模型有时可能需要长达 60 秒的响应时间,请耐心等待。\n" "2. entering a username is completely optional. 姓名输入是可选的。\n " "3. the model was trained on several different datasets. Anything it says should be fact-checked before being regarded as a true statement. 该模型在几个不同的数据集上训练而成,它所说的任何内容都应该经过事实核查,然后才能被视为真实陈述。\n ", css=""" .chatbox {display:flex;flex-direction:column} .user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} .user_msg {background-color:cornflowerblue;color:white;align-self:start} .resp_msg {background-color:lightgray;align-self:self-end} """, allow_screenshot=True, allow_flagging=False, flagging_dir="gradio_data", flagging_options=[ "great response", "doesn't make sense", "bad/offensive response", ], enable_queue=True, # allows for dealing with multiple users simultaneously #theme="darkhuggingface", #server_name="0.0.0.0", ) iface.launch(share=True)