import os import requests import io from PIL import Image from langchain import PromptTemplate, LLMChain from PIL import Image, ImageDraw, ImageFont, ImageFilter from langchain.llms import OpenAI import openai from g4f import Provider, Model from langchain_g4f import G4FLLM def set_openai_api_key(api_key): openai.api_key = api_key os.environ["OPENAI_API_KEY"] = openai.api_key template = template = """Write a very short and unsettling {number_of_pages}-sentence horror story with images that will give you chills. Your answer should be structured like this with and tags. first sentence of the horror story describe a matching eerie or spooky image for first sentence here without including names so that prompt can be used to generate an image using an ML model. second sentence of the horror story describe a matching eerie or spooky image for second sentence here without including names so that prompt can be used to generate an image using an ML model. for all {number_of_pages} sentences. ============= Answer:""" prompt = PromptTemplate(template=template, input_variables=["number_of_pages"]) def query(payload): API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney" #API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/all-526-animated" headers = {"Authorization": "Bearer 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"} response = requests.post(API_URL, headers=headers, json=payload) return response.content def query_alt(payload): API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/anything-v5" headers = {"Authorization": "Bearer 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"} response = requests.post(API_URL, headers=headers, json=payload) return response.content def generate_horror_plot(number_of_pages, selected_style, provider, selected_provider=None): if provider == "OpenAI": llm = OpenAI(temperature=0) elif provider == "G4F": if selected_provider == "Ails": llm = G4FLLM( model=Model.gpt_35_turbo, provider=Provider.Ails, ) elif selected_provider == "You": llm = G4FLLM( model=Model.gpt_35_turbo, provider=Provider.You, ) elif selected_provider == "GetGpt": llm = G4FLLM( model=Model.gpt_35_turbo, provider=Provider.GetGpt, ) elif selected_provider == "DeepAi": llm = G4FLLM( model=Model.gpt_35_turbo, provider=Provider.DeepAi, ) elif selected_provider == "Forefront": llm = G4FLLM( model=Model.gpt_35_turbo, provider=Provider.Forefront, ) elif selected_provider == "Aichat": llm = G4FLLM( model=Model.gpt_35_turbo, provider=Provider.Aichat, ) elif selected_provider == "Bard": llm = G4FLLM( model=Model.gpt_35_turbo, provider=Provider.Bard, ) # Add other providers here else: raise ValueError("Invalid G4F provider selected.") else: raise ValueError("Invalid provider selected.") llm_chain = LLMChain(prompt=prompt, llm=llm) response = llm_chain.run(number_of_pages=number_of_pages) pages = response.split("") plot_result = [] additional_texts = { "Style 1": " chilling horror illustration, dark and mysterious, haunting shadows, eerie atmosphere, spooky vector art, 8k, artist unknown", "Style 2": " horror story illustration, monochromatic, deep shadows, creepy background, unsettling, digital art, artist unknown", "Style 3": " horror art, dark and creepy, foggy night, ghostly presence, terrifying, trending on artstation, artist unknown" } for i, page in enumerate(pages[1:]): text, img_text = page.split("", 1) selected_additional_text = additional_texts.get(selected_style, "") new_img_text = img_text.strip() + " " + selected_additional_text text = text.replace("", "") new_img_text = new_img_text.replace("", "") plot_result.append((i + 1, "" + text.strip() + "", "" + new_img_text + "")) return plot_result def generate_horror_storybook(plot_result): storybook = [] for page_number, text, image_text in plot_result: image_bytes = query({"inputs": image_text}) image = Image.open(io.BytesIO(image_bytes)) blurred_image = image.filter(ImageFilter.GaussianBlur(8)) draw = ImageDraw.Draw(blurred_image) font_size = 30 font = ImageFont.truetype("Birada!.ttf", font_size) first_letter_font_size = 60 first_letter_font = ImageFont.truetype("Birada!.ttf", first_letter_font_size) text_x, text_y = 50, 50 max_width = blurred_image.width - text_x * 2 text = text.replace("", "").replace("", "") wrapped_text = "" words = text.split() for i, word in enumerate(words): if i == 0: first_letter_width = draw.textsize(word[0], font=first_letter_font)[0] draw.text((text_x, text_y), word[0], fill="white", font=first_letter_font, stroke_width=2, stroke_fill="black") text_x += first_letter_width + 10 wrapped_text += word[1:] + " " elif draw.textsize(wrapped_text + word, font=font)[0] < max_width: wrapped_text += word + " " else: draw.text((text_x, text_y), wrapped_text.strip(), fill="white", font=font, stroke_width=2, stroke_fill="black") text_y += font.getsize(wrapped_text)[1] + 10 wrapped_text = word + " " draw.text((text_x, text_y), wrapped_text.strip(), fill="white", font=font, stroke_width=2, stroke_fill="black") combined_image = Image.new('RGB', (image.width * 2, image.height)) combined_image.paste(blurred_image, (0, 0)) combined_image.paste(image, (image.width, 0)) storybook.append((page_number, combined_image)) return storybook def generate_book_cover(title, author, image_text): book_cover = [] image_bytes = query({"inputs": image_text}) image = Image.open(io.BytesIO(image_bytes)) cover_image = Image.new('RGB', (image.width * 2, image.height), color='white') cover_image.paste(image, (0, 0)) draw = ImageDraw.Draw(cover_image) font_size = 50 title_font = ImageFont.truetype("DeliusSwashCaps-Regular.ttf", font_size) author_font = ImageFont.truetype("DeliusSwashCaps-Regular.ttf", 30) title_x, title_y = image.width + 50, 50 author_x, author_y = image.width + 50, title_y + 100 draw.text((title_x, title_y), title, fill="black", font=title_font) draw.text((author_x, author_y), "By " + author, fill="black", font=author_font) book_cover.append(cover_image) return book_cover