# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import json import os import sys import time from pathlib import Path from typing import List, Literal, Optional, Tuple, TypedDict import torch import torch.nn.functional as F from fairscale.nn.model_parallel.initialize import ( get_model_parallel_rank, initialize_model_parallel, model_parallel_is_initialized, ) from superposed.llama.model import ModelArgs, Transformer from superposed.llama.tokenizer import Tokenizer from superposed.llama.utils import * Role = Literal["system", "user", "assistant"] class Message(TypedDict): role: Role content: str class CompletionPrediction(TypedDict, total=False): generation: str tokens: List[str] # not required logprobs: List[float] # not required class ChatPrediction(TypedDict, total=False): generation: Message tokens: List[str] # not required logprobs: List[float] # not required Dialog = List[Message] B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<>\n", "\n<>\n\n" SPECIAL_TAGS = [B_INST, E_INST, "<>", "<>"] UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt." class Llama: @staticmethod def build( ckpt_dir: str, tokenizer_path: str, max_seq_len: int, max_batch_size: int, device: None, model_parallel_size: Optional[int] = None, seed: int = 1, ) -> "Llama": """ Build a Llama instance by initializing and loading a pre-trained model. Args: ckpt_dir (str): Path to the directory containing checkpoint files. tokenizer_path (str): Path to the tokenizer file. max_seq_len (int): Maximum sequence length for input text. max_batch_size (int): Maximum batch size for inference. mixed (bool): Whether to mix embeddings or not model_parallel_size (Optional[int], optional): Number of model parallel processes. If not provided, it's determined from the environment. Defaults to None. Returns: Llama: An instance of the Llama class with the loaded model and tokenizer. Raises: AssertionError: If there are no checkpoint files in the specified directory, or if the model parallel size does not match the number of checkpoint files. Note: This method initializes the distributed process group, sets the device to CUDA, and loads the pre-trained model and tokenizer. """ if not torch.distributed.is_initialized(): torch.distributed.init_process_group("nccl") if not model_parallel_is_initialized(): if model_parallel_size is None: model_parallel_size = int(os.environ.get("WORLD_SIZE", 1)) initialize_model_parallel(model_parallel_size) local_rank = int(os.environ.get("LOCAL_RANK", 0)) print(local_rank) # torch.cuda.set_device(local_rank) if device == None: torch.cuda.set_device(local_rank) device = f"cuda:{local_rank}" # seed must be the same in all processes torch.manual_seed(seed) if local_rank > 0: sys.stdout = open(os.devnull, "w") start_time = time.time() checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}" assert model_parallel_size == len( checkpoints ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}" ckpt_path = checkpoints[get_model_parallel_rank()] checkpoint = torch.load(ckpt_path, map_location="cpu") with open(Path(ckpt_dir) / "params.json", "r") as f: params = json.loads(f.read()) model_args: ModelArgs = ModelArgs( max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params, ) tokenizer = Tokenizer(model_path=tokenizer_path) model_args.vocab_size = tokenizer.n_words torch.set_default_tensor_type(torch.cuda.HalfTensor) model = Transformer(model_args) model.load_state_dict(checkpoint, strict=False) print(f"Loaded in {time.time() - start_time:.2f} seconds") return Llama(model, tokenizer, device) def __init__(self, model: Transformer, tokenizer: Tokenizer, device): self.model = model.to(device).eval() self.tokenizer = tokenizer self.device = device @torch.inference_mode() def generate( self, prompt_tokens: List[List[int]], max_gen_len: int, temperature: float = 0.6, top_p: float = 0.9, logprobs: bool = True, grade: bool = False ) -> Tuple[List[List[int]], Optional[List[List[float]]]]: """ Generate text sequences based on provided prompts using the language generation model. Args: prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers. max_gen_len (int): Maximum length of the generated text sequence. temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False. Returns: Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities. Note: This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness. If logprobs is True, token log probabilities are computed for each generated token. """ params = self.model.params bsz = len(prompt_tokens) assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) min_prompt_len = min(len(t) for t in prompt_tokens) max_prompt_len = max(len(t) for t in prompt_tokens) # assert min_prompt_len == max_prompt_len prompt_len = min_prompt_len assert max_prompt_len <= params.max_seq_len total_len = min(params.max_seq_len, max_gen_len + max_prompt_len) pad_id = self.tokenizer.pad_id tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device=self.device) for k, t in enumerate(prompt_tokens): tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device=self.device) if logprobs: token_logprobs = torch.zeros_like(tokens, dtype=torch.float) prev_pos = 0 eos_reached = torch.tensor([False] * bsz, device=self.device) input_text_mask = tokens != pad_id if grade: pad_mask = tokens == pad_id tokens = torch.where(tokens == pad_id, 0, tokens) logits = self.model.forward(tokens, prev_pos, False) tokens[pad_mask] = pad_id token_logprobs = -F.cross_entropy( input=logits[:, :-1, :].transpose(1, 2), target=tokens[:, 1:], reduction="none", ignore_index=pad_id, ) #if pad_id in tokens: # print(pad_id) # print(tokens) # print(token_logprobs) return token_logprobs for cur_pos in range(min_prompt_len, total_len): logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos, False) if temperature > 0: probs = torch.softmax(logits[:, -1] / temperature, dim=-1) next_token = sample_top_p(probs, top_p) else: next_token = torch.argmax(logits[:, -1], dim=-1) next_token = next_token.reshape(-1) # only replace token if prompt has already been generated next_token = torch.where( input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token ) tokens[:, cur_pos] = next_token if logprobs: token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens[:, prev_pos + 1 : cur_pos + 1], reduction="none", ignore_index=pad_id, ) eos_reached |= (~input_text_mask[:, cur_pos]) & ( next_token == self.tokenizer.eos_id ) prev_pos = cur_pos if all(eos_reached): break # seq_len = torch.sum(tokens != pad_id, dim=1) # return tokens, torch.exp(-1 * torch.sum(logprobs, dim=1) / (seq_len - prompt_len)), torch.exp(-1 * torch.sum(custom_logprobs, dim=1) / ) if logprobs: token_logprobs = token_logprobs.tolist() out_ppl = [] for i, toks in enumerate(tokens.tolist()): if logprobs: probs = token_logprobs[i][prompt_len : len(prompt_tokens[i]) + max_gen_len] # cut to eos tok if any if self.tokenizer.eos_id in toks: eos_idx = toks.index(self.tokenizer.eos_id) probs = probs[:eos_idx] if logprobs else None out_ppl.append(torch.exp(-1 * torch.sum(torch.tensor(probs)) / len(probs))) return tokens, torch.tensor(out_ppl) if logprobs else None def sample_top_p(probs, p, s=1): """ Perform top-p (nucleus) sampling on a probability distribution. Args: probs (torch.Tensor): Probability distribution tensor. p (float): Probability threshold for top-p sampling. Returns: torch.Tensor: Sampled token indices. Note: Top-p sampling selects the smallest set of tokens whose cumulative probability mass exceeds the threshold p. The distribution is renormalized based on the selected tokens. """ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs_sort, num_samples=s) next_token = torch.gather(probs_idx, -1, next_token) return next_token