import torch import torch.nn as nn from torch.nn import Module, Sequential, Conv2d, BatchNorm2d, PReLU, Dropout, Flatten, Linear, BatchNorm1d, MaxPool2d, AdaptiveAvgPool2d, ReLU, Sigmoid from collections import namedtuple from pytorch_msssim import ms_ssim import lpips import clip from torchvision import transforms class LPIPS(nn.Module): def __init__(self, net='alex', device='cuda'): super(LPIPS, self).__init__() self.lpips = lpips.LPIPS(net='alex').to(device) def forward(self, x, y): return 1- self.lpips(x, y).squeeze() class MS_SSIM(nn.Module): def __init__(self, avg=False): super(MS_SSIM, self).__init__() self.ssim = ms_ssim self.avg = avg def forward(self, x, y): ## normalize images to [0, 1] x = (x+1)/2 y = (y+1)/2 return self.ssim(x.unsqueeze(0), y.unsqueeze(0), data_range=1, size_average=self.avg) class IdScore(nn.Module): # def __init__(self, opts): def __init__(self, device='cuda'): super(IdScore, self).__init__() # print('Loading ResNet ArcFace') self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6).to(device) self.facenet.load_state_dict(torch.load('./pretrained_models/model_ir_se50.pth', map_location=torch.device(device))) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval() self.cosine_sim = nn.CosineSimilarity(dim=1) def extract_feats(self, x): x = self.face_pool(x) x_feats = self.facenet(x) return x_feats def forward(self, y, x): x = x.unsqueeze(0) y = y.unsqueeze(0) x_feats = self.extract_feats(x) y_feats = self.extract_feats(y) # Otherwise use the feature from there y_feats = y_feats.detach() # diff_views = y_feats[0].dot(x_feats[0]) cosine_sim = self.cosine_sim(y_feats, x_feats) return cosine_sim class ClipHair(nn.Module): def __init__(self, device='cuda'): super(ClipHair, self).__init__() self.model, self.preprocessing = clip.load("ViT-B/32", device=device) self.cosine_sim = nn.CosineSimilarity(dim=1) self.device = device # self.model, self.preprocessing = model, preprocessing def extract_feats(self, x): x = transforms.ToPILImage()(x.squeeze()) x = self.preprocessing(x).unsqueeze(0).to(self.device) x = self.model.encode_image(x) return x def forward(self, y, x): x = x.unsqueeze(0) y = y.unsqueeze(0) x_feats = self.extract_feats(x) y_feats = self.extract_feats(y) y_feats = y_feats.detach() cosine_sim = self.cosine_sim(x_feats, y_feats) # diff_views = y_feats[0].dot(x_feats[0])/ (y_feats[0].norm() * x_feats[0].norm()) return cosine_sim class bottleneck_IR_SE(Module): def __init__(self, in_channel, depth, stride): super(bottleneck_IR_SE, self).__init__() if in_channel == depth: self.shortcut_layer = MaxPool2d(1, stride) else: self.shortcut_layer = Sequential( Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth) ) self.res_layer = Sequential( BatchNorm2d(in_channel), Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth), SEModule(depth, 16) ) def forward(self, x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return res + shortcut class Backbone(Module): def __init__(self, input_size, num_layers, drop_ratio=0.4, affine=True): super(Backbone, self).__init__() assert input_size in [112, 224], "input_size should be 112 or 224" assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152" blocks = get_blocks(num_layers) self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64)) if input_size == 112: self.output_layer = Sequential(BatchNorm2d(512), Dropout(drop_ratio), Flatten(), Linear(512 * 7 * 7, 512), BatchNorm1d(512, affine=affine)) else: self.output_layer = Sequential(BatchNorm2d(512), Dropout(drop_ratio), Flatten(), Linear(512 * 14 * 14, 512), BatchNorm1d(512, affine=affine)) modules = [] for block in blocks: for bottleneck in block: modules.append(bottleneck_IR_SE(bottleneck.in_channel, bottleneck.depth, bottleneck.stride)) self.body = Sequential(*modules) def forward(self, x): x = self.input_layer(x) x = self.body(x) x = self.output_layer(x) return l2_norm(x) def get_blocks(num_layers): if num_layers == 50: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=4), get_block(in_channel=128, depth=256, num_units=14), get_block(in_channel=256, depth=512, num_units=3) ] elif num_layers == 100: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=13), get_block(in_channel=128, depth=256, num_units=30), get_block(in_channel=256, depth=512, num_units=3) ] elif num_layers == 152: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=8), get_block(in_channel=128, depth=256, num_units=36), get_block(in_channel=256, depth=512, num_units=3) ] else: raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers)) return blocks class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])): """ A named tuple describing a ResNet block. """ def get_block(in_channel, depth, num_units, stride=2): return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)] def l2_norm(input, axis=1): norm = torch.norm(input, 2, axis, True) output = torch.div(input, norm) return output class SEModule(Module): def __init__(self, channels, reduction): super(SEModule, self).__init__() self.avg_pool = AdaptiveAvgPool2d(1) self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False) self.relu = ReLU(inplace=True) self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False) self.sigmoid = Sigmoid() def forward(self, x): module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return module_input * x