from huggingface_hub import InferenceClient import gradio as gr options =["mistralai/Mixtral-8x7B-Instruct-v0.1" ] def format_prompt(message, history): prompt = "Your name is Nurse Nkiru , your role is to give patients diagnosis based on their inputs , the diagnosis given to them should be short and concise , also you generally give further health advise after the diagnosis" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) model = gr.Dropdown(choices = options) client = InferenceClient(model) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), title="Choose your hero🦸", concurrency_limit=20, theme = gr.themes.Default(primary_hue= gr.themes.colors.blue, secondary_hue=gr.themes.colors.red) ).launch(show_api=False)