import streamlit as st import llama_cpp @st.cache_resource def load_model(model_path): return llama_cpp.Llama(model_path=model_path) st.title("CyberSecurity Assistant") model_path = "./llama-3-3b-cybersecurity-quantized.gguf" temperature = st.sidebar.slider('Temperature', 0.0,2.0,0.2, step=0.1) if model_path: try: llm = load_model(model_path) st.sidebar.success('Model loaded Successfully') except Exception as e: st.sidebar.error(f'Error loading the model: {e}') llm = None else: st.warning("Model path not found") # SYSTEM PROMPT # GLOBAL VARIABLE INSTRUCTION instruction= 'You are a Cybersecurity AI Assistant, will be glad to answer your questions related to Cybersecurity, particularly LLM Security.' if llm: user_input = st.text_input("Your message", "") user_input= f'{instruction} \n\nUser: {user_input}\nAI' if user_input: with st.spinner("Generating response..."): try: response = llm(user_input, temperature=temperature, max_tokens=256) st.write(f"**Cybersecurity Assistant:** {response['choices'][0]['text'].strip()}") except Exception as e: st.error(f"Error in Generation: {e}")