import datasets from transformers import pipeline from transformers.pipelines.pt_utils import KeyDataset from tqdm.auto import tqdm pipe = pipe = pipeline("token-classification", model="erdometo/xlm-roberta-base-finetuned-TQuad2") dataset = datasets.load_dataset("superb", name="asr", split="test") for out in tqdm(pipe(KeyDataset(dataset, "file"))): print(out) import gradio as gr from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer, AutoModelForTokenClassification # Load your custom model and tokenizer qa_model_name = "erdometo/xlm-roberta-base-finetuned-TQuad2" token_classification_model_name = "FacebookAI/xlm-roberta-large-finetuned-conll03-german" qa_model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name) qa_tokenizer = AutoTokenizer.from_pretrained(qa_model_name) token_classification_model = AutoModelForTokenClassification.from_pretrained(token_classification_model_name) token_classification_tokenizer = AutoTokenizer.from_pretrained(token_classification_model_name) # Define a function for inference based on pipeline type def predict(pipeline_type, question, context): if pipeline_type == "question-answering": qa_pipeline = pipeline("question-answering", model=qa_model, tokenizer=qa_tokenizer) result = qa_pipeline(question=question, context=context) response = [(result['answer'], result['score'])] return response elif pipeline_type == "token-classification": token_classification_pipeline = pipeline("token-classification", model=token_classification_model, tokenizer=token_classification_tokenizer) result = token_classification_pipeline(context) highlighted_text = {"text": context, "entities": result} return gr.HighlightedText(highlighted_text) # Create a Gradio Interface with dropdown and two text inputs iface = gr.Interface( fn=predict, inputs=[ gr.Dropdown(choices=["question-answering", "token-classification"], label="Choose Pipeline"), "text", "text" ], outputs=gr.Highlight() ) # Launch the interface iface.launch()