# +++ import os import uuid import joblib import json # IMPORTANT: I already installed the package "gradio" in my current Virtual Environment (VEnvDSDIL_gpu_Py3.12) as: pip install -q gradio_client # Do NOT install "gradio_client" package again in Anaconda otherwise it will mess up the package. import gradio as gr import pandas as pd # must install the package "huggingface_hub" first in the current python Virtual Environment, with pip, not with conda, as follows # pip install huggingface_hub # i.e., in the command line interface within the activated Virtual Environment: # (VEnvDSDIL_gpu_Py3.12) epalvarez@DSDILmStation01:~ $ pip install huggingface_hub from huggingface_hub import CommitScheduler from pathlib import Path log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent # Scheduler will log every 2 API calls: # scheduler = CommitScheduler( # repo_id="machine-failure-logs", # repo_type="dataset", # folder_path=log_folder, # path_in_repo="data", # every=2 # ) machine_failure_predictor = joblib.load('model_mf.joblib') air_temperature_input = gr.Number(label='Air temperature [K]') process_temperature_input = gr.Number(label='Process temperature [K]') rotational_speed_input = gr.Number(label='Rotational speed [rpm]') torque_input = gr.Number(label='Torque [Nm]') tool_wear_input = gr.Number(label='Tool wear [min]') type_input = gr.Dropdown( ['L', 'M', 'H'], label='Type' ) model_output = gr.Label(label="Machine failure") def predict_machine_failure(air_temperature, process_temperature, rotational_speed, torque, tool_wear, type): sample = { 'Air temperature [K]': air_temperature, 'Process temperature [K]': process_temperature, 'Rotational speed [rpm]': rotational_speed, 'Torque [Nm]': torque, 'Tool wear [min]': tool_wear, 'Type': type } data_point = pd.DataFrame([sample]) prediction = machine_failure_predictor.predict(data_point).tolist() # Each time we get a prediction we will determine if we should log it to a hugging_face dataset according to the schedule definition outside this function # with scheduler.lock: # with log_file.open("a") as f: # f.write(json.dumps( # { # 'Air temperature [K]': air_temperature, # 'Process temperature [K]': process_temperature, # 'Rotational speed [rpm]': rotational_speed, # 'Torque [Nm]': torque, # 'Tool wear [min]': tool_wear, # 'Type': type, # 'prediction': prediction[0] # } # )) # f.write("\n") return prediction[0] demo = gr.Interface( fn=predict_machine_failure, inputs=[air_temperature_input, process_temperature_input, rotational_speed_input, torque_input, tool_wear_input, type_input], outputs=model_output, title="Machine Failure Predictor", description="This API allows you to predict the machine failure status of an equipment", allow_flagging="auto", concurrency_limit=8 ) demo.queue() demo.launch(share=False)