from warnings import filterwarnings filterwarnings('ignore') import os import uuid import joblib import json import gradio as gr import pandas as pd from huggingface_hub import CommitScheduler from pathlib import Path # print('*** Running train.py ***') # import subprocess # # Run the training script # subprocess.run(["python", "train.py"]) # print('*** done! ***') # Configure the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent repo_id = "eric-green-insurance-charge-predictor-logs" # Create a commit scheduler scheduler = CommitScheduler( repo_id=repo_id, repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 ) # Load the saved model insurance_charge_predictor = joblib.load('model.joblib') # Define the input features #numeric_features = ['age', 'bmi', 'children'] #categorical_features = ['sex', 'smoker', 'region'] age_input = gr.Number(label="Age") bmi_input = gr.Number(label="BMI") children_input = gr.Number(label="Children") # sex: ['female' 'male'] # smoker: ['yes' 'no'] # region: ['southwest' 'southeast' 'northwest' 'northeast'] sex_input = gr.Dropdown(['female','male'],label='Sex') smoker_input = gr.Dropdown(['yes','no'],label='Smoker') region_input = gr.Dropdown(['southwest', 'southeast', 'northwest', 'northeast'],label='Region') model_output = gr.Label(label="charges") # Define the predict function which will take features, convert to dataframe and make predictions using the saved model # the functions runs when 'Submit' is clicked or when a API request is made def predict_insurance_charges(age, bmi, children, sex, smoker, region): #Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region'], dtype='object') sample = { 'age': age, 'sex': sex, 'bmi': bmi, 'children': children, 'smoker': smoker, 'region': region } data_point = pd.DataFrame([sample]) prediction = insurance_charge_predictor.predict(data_point).tolist() with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'age': age, 'sex': sex, 'bmi': bmi, 'children': children, 'smoker': smoker, 'region': region, 'prediction': prediction[0] } )) f.write("\n") return prediction[0] gr_interface = gr.Interface( fn=predict_insurance_charges, inputs=[age_input, bmi_input, children_input, sex_input, smoker_input, region_input], outputs=model_output, title="HealthyLife Insurance Charge Prediction", description="This API allows you to predict insurance charges based on the input features.", allow_flagging="auto", concurrency_limit=8 ) gr_interface.queue() gr_interface.launch(share=False)