import os import re import functools from functools import partial import requests import pandas as pd import plotly.express as px import torch import gradio as gr from transformers import pipeline, Wav2Vec2ProcessorWithLM from pyannote.audio import Pipeline import whisperx from utils import split, create_fig, color_map, thresholds from utils import speech_to_text as stt os.environ["TOKENIZERS_PARALLELISM"] = "false" device = 0 if torch.cuda.is_available() else -1 # Audio components whisper_device = "cuda" if torch.cuda.is_available() else "cpu" whisper = whisperx.load_model("tiny.en", whisper_device) alignment_model, metadata = whisperx.load_align_model(language_code="en", device=whisper_device) speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1", use_auth_token=os.environ['ENO_TOKEN']) # Text components emotion_pipeline = pipeline( "text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", device=device, ) summarization_pipeline = pipeline( "summarization", model="knkarthick/MEETING_SUMMARY", device=device ) EXAMPLES = [["Customer_Support_Call.wav"]] speech_to_text = partial( stt, speaker_segmentation=speaker_segmentation, whisper=whisper, alignment_model=alignment_model, metadata=metadata, whisper_device=whisper_device ) def summarize(diarized, check, summarization_pipeline): """ diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting. The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)] check is a list of speaker ids whose speech will get summarized """ if len(check) == 0: return "" text = "" for d in diarized: if len(check) == 2 and d[1] is not None: text += f"\n{d[1]}: {d[0]}" elif d[1] in check: text += f"\n{d[0]}" # inner function cached because outer function cannot be cached @functools.lru_cache(maxsize=128) def call_summarize_api(text): return summarization_pipeline(text)[0]["summary_text"] return call_summarize_api(text) def sentiment(diarized, emotion_pipeline): """ diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting. The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)] This function gets the customer's sentiment and returns a list for highlighted text. """ customer_sentiments = [] sentences = split(speaker_speech) for i in range(0, len(diarized), 2): speaker_speech, speaker_id = diarized[i] times, _ = diarized[i + 1] start_time, end_time = times[5:].split("-") start_time, end_time = float(start_time), float(end_time) interval_size = (end_time - start_time) / len(sentences) sentences = split_into_sentences(speaker_speech) if "Customer" in speaker_id: outputs = emotion_pipeline(sentences) for idx, (o, t) in enumerate(zip(outputs, sentences)): sent = "neutral" if o["score"] > thresholds[o["label"]]: customer_sentiments.append( (t + f"({round(idx*interval_size+start_time,1)} s)", o["label"]) ) if o["label"] in {"joy", "love", "surprise"}: sent = "positive" elif o["label"] in {"sadness", "anger", "fear"}: sent = "negative" return customer_sentiments with gr.Blocks() as demo: with gr.Row(): with gr.Column(): audio = gr.Audio(label="Audio file", type="filepath") btn = gr.Button("Transcribe and Diarize") gr.Markdown("**Call Transcript:**") diarized = gr.HighlightedText(label="Call Transcript") gr.Markdown("Choose speaker to summarize:") check = gr.CheckboxGroup( choices=["Customer", "Support"], show_label=False, type="value" ) summary = gr.Textbox(lines=4) sentiment_btn = gr.Button("Get Customer Sentiment") analyzed = gr.HighlightedText(color_map=color_map) with gr.Column(): gr.Markdown("## Example Files") gr.Examples( examples=EXAMPLES, inputs=[audio], outputs=[diarized], fn=speech_to_text, cache_examples=True ) # when example button is clicked, convert audio file to text and diarize btn.click( fn=speech_to_text, inputs=audio, outputs=diarized, ) # when summarize checkboxes are changed, create summary check.change(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized, check], outputs=summary) # when sentiment button clicked, display highlighted text and plot sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed]) demo.launch(debug=1)