import gradio as gr import os from langchain import OpenAI, ConversationChain from langchain.prompts import PromptTemplate from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.chains.conversation.memory import ConversationEntityMemory from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE from langchain import LLMChain memory = ConversationBufferMemory(memory_key="chat_history") persist_directory="db" llm=OpenAI(model_name = "text-davinci-003", temperature=0) vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding) model_name = "hkunlp/instructor-large" embed_instruction = "Represent the text from the BMW website for retrieval" query_instruction = "Query the most relevant text from the BMW website" embeddings = HuggingFaceInstructEmbeddings(model_name=model_name, embed_instruction=embed_instruction, query_instruction=query_instruction) chain = RetrievalQAWithSourcesChain.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever(), memory=memory) def chat(message, site,history): history = history or [] response = "" try: response = chain.run(input=message) history.append((message, response)) return history, history with gr.Blocks() as demo: gr.Markdown("