Spaces:
Sleeping
Sleeping
| """ | |
| Adapted from https://github.com/huggingface/diffusers/blob/v0.30.3/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py. | |
| """ | |
| import math | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
| from diffusers.utils import BaseOutput, logging | |
| from torch.distributions import LogisticNormal | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # TODO: may move to training_utils.py | |
| def compute_density_for_timestep_sampling( | |
| weighting_scheme: str, | |
| batch_size: int, | |
| logit_mean: float = 0.0, | |
| logit_std: float = 1.0, | |
| mode_scale: float = None, | |
| ): | |
| if weighting_scheme == "logit_normal": | |
| # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$). | |
| u = torch.normal( | |
| mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu" | |
| ) | |
| u = torch.nn.functional.sigmoid(u) | |
| elif weighting_scheme == "logit_normal_dist": | |
| u = ( | |
| LogisticNormal(loc=logit_mean, scale=logit_std) | |
| .sample((batch_size,))[:, 0] | |
| .to("cpu") | |
| ) | |
| elif weighting_scheme == "mode": | |
| u = torch.rand(size=(batch_size,), device="cpu") | |
| u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u) | |
| else: | |
| u = torch.rand(size=(batch_size,), device="cpu") | |
| return u | |
| def compute_loss_weighting(weighting_scheme: str, sigmas=None): | |
| """ | |
| Computes loss weighting scheme for SD3 training. | |
| Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528. | |
| SD3 paper reference: https://arxiv.org/abs/2403.03206v1. | |
| """ | |
| if weighting_scheme == "sigma_sqrt": | |
| weighting = (sigmas**-2.0).float() | |
| elif weighting_scheme == "cosmap": | |
| bot = 1 - 2 * sigmas + 2 * sigmas**2 | |
| weighting = 2 / (math.pi * bot) | |
| else: | |
| weighting = torch.ones_like(sigmas) | |
| return weighting | |
| class RectifiedFlowSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| The rectified flow scheduler is a scheduler that is used to propagate the diffusion process in the rectified flow. | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| timestep_spacing (`str`, defaults to `"linspace"`): | |
| The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
| shift (`float`, defaults to 1.0): | |
| The shift value for the timestep schedule. | |
| """ | |
| _compatibles = [] | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| shift: float = 1.0, | |
| use_dynamic_shifting: bool = False, | |
| ): | |
| # pre-compute timesteps and sigmas; no use in fact | |
| # NOTE that shape diffusion sample timesteps randomly or in a distribution, | |
| # instead of sampling from the pre-defined linspace | |
| timesteps = np.array( | |
| [ | |
| (1.0 - i / num_train_timesteps) * num_train_timesteps | |
| for i in range(num_train_timesteps) | |
| ] | |
| ) | |
| timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) | |
| sigmas = timesteps / num_train_timesteps | |
| if not use_dynamic_shifting: | |
| # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution | |
| sigmas = self.time_shift(sigmas) | |
| self.timesteps = sigmas * num_train_timesteps | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| def step_index(self): | |
| """ | |
| The index counter for current timestep. It will increase 1 after each scheduler step. | |
| """ | |
| return self._step_index | |
| def begin_index(self): | |
| """ | |
| The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
| """ | |
| return self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
| def set_begin_index(self, begin_index: int = 0): | |
| """ | |
| Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
| Args: | |
| begin_index (`int`): | |
| The begin index for the scheduler. | |
| """ | |
| self._begin_index = begin_index | |
| def _sigma_to_t(self, sigma): | |
| return sigma * self.config.num_train_timesteps | |
| def _t_to_sigma(self, timestep): | |
| return timestep / self.config.num_train_timesteps | |
| def time_shift_dynamic(self, mu: float, sigma: float, t: torch.Tensor): | |
| return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
| def time_shift(self, t: torch.Tensor): | |
| return self.config.shift * t / (1 + (self.config.shift - 1) * t) | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int = None, | |
| device: Union[str, torch.device] = None, | |
| sigmas: Optional[List[float]] = None, | |
| mu: Optional[float] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| if self.config.use_dynamic_shifting and mu is None: | |
| raise ValueError( | |
| " you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`" | |
| ) | |
| if sigmas is None: | |
| self.num_inference_steps = num_inference_steps | |
| timesteps = np.array( | |
| [ | |
| (1.0 - i / num_inference_steps) * self.config.num_train_timesteps | |
| for i in range(num_inference_steps) | |
| ] | |
| ) # different from the original code in SD3 | |
| sigmas = timesteps / self.config.num_train_timesteps | |
| if self.config.use_dynamic_shifting: | |
| sigmas = self.time_shift_dynamic(mu, 1.0, sigmas) | |
| else: | |
| sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) | |
| sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) | |
| timesteps = sigmas * self.config.num_train_timesteps | |
| self.timesteps = timesteps.to(device=device) | |
| self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
| self._step_index = None | |
| self._begin_index = None | |
| def index_for_timestep(self, timestep, schedule_timesteps=None): | |
| if schedule_timesteps is None: | |
| schedule_timesteps = self.timesteps | |
| indices = (schedule_timesteps == timestep).nonzero() | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| pos = 1 if len(indices) > 1 else 0 | |
| return indices[pos].item() | |
| def _init_step_index(self, timestep): | |
| if self.begin_index is None: | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| self._step_index = self.index_for_timestep(timestep) | |
| else: | |
| self._step_index = self._begin_index | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: Union[float, torch.FloatTensor], | |
| sample: torch.FloatTensor, | |
| s_churn: float = 0.0, | |
| s_tmin: float = 0.0, | |
| s_tmax: float = float("inf"), | |
| s_noise: float = 1.0, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| ) -> Union[RectifiedFlowSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| s_churn (`float`): | |
| s_tmin (`float`): | |
| s_tmax (`float`): | |
| s_noise (`float`, defaults to 1.0): | |
| Scaling factor for noise added to the sample. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or | |
| tuple. | |
| Returns: | |
| [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is | |
| returned, otherwise a tuple is returned where the first element is the sample tensor. | |
| """ | |
| if ( | |
| isinstance(timestep, int) | |
| or isinstance(timestep, torch.IntTensor) | |
| or isinstance(timestep, torch.LongTensor) | |
| ): | |
| raise ValueError( | |
| ( | |
| "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
| " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" | |
| " one of the `scheduler.timesteps` as a timestep." | |
| ), | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| # Upcast to avoid precision issues when computing prev_sample | |
| sample = sample.to(torch.float32) | |
| sigma = self.sigmas[self.step_index] | |
| sigma_next = self.sigmas[self.step_index + 1] | |
| # Here different directions are used for the flow matching | |
| prev_sample = sample + (sigma - sigma_next) * model_output | |
| # Cast sample back to model compatible dtype | |
| prev_sample = prev_sample.to(model_output.dtype) | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return RectifiedFlowSchedulerOutput(prev_sample=prev_sample) | |
| def scale_noise( | |
| self, | |
| original_samples: torch.Tensor, | |
| noise: torch.Tensor, | |
| timesteps: torch.IntTensor, | |
| ) -> torch.Tensor: | |
| """ | |
| Forward function for the noise scaling in the flow matching. | |
| """ | |
| sigmas = self._t_to_sigma(timesteps.to(dtype=torch.float32)) | |
| while len(sigmas.shape) < len(original_samples.shape): | |
| sigmas = sigmas.unsqueeze(-1) | |
| return (1.0 - sigmas) * original_samples + sigmas * noise | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |