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1. Introduction 

My application is used for filling in the “blank”. The user can write a paragraph or a 

sentence about anything. Then, they can replace at most one word per sentence with 

“[MASK]”. Then, the user can choose a model to fill in the “blank”. After clicking 

submit, each “[MASK]” in the input will be replaced with a word that the model thinks is 

likely to fit there. The app will automatically highlight the word that the model added in, 

so that the user can easily see what “[MASK]” was replaced with. 

Example: “My name is Emma.” -> “My name is [MASK]”.  

The chosen model will replace [MASK] with a word that it thinks is likely to go there. 

 

2. Usage 

Steps to run the demo: 

1. Type a paragraph and replace one word in each sentence with “[MASK]” 

2. Choose a model to replace each [MASK] with a word 

3. Click submit and view the output on the right side of the screen 

Alternatively, the user can select one of the examples included with the application. 

When an example is clicked on, it automatically runs the application with the model and 

input contained in the example. 

 

  

https://huggingface.co/spaces/emma7897/CSI_4180_Final_Project


Example Inputs and Outputs: 



 

 

  



3. Documentation 

Information on the models used: 

• “google-bert/bert-base-cased”  

o Training procedure: “BERT is a transformers model pretrained on a large 

corpus of English data in a self-supervised fashion. This means it was 

pretrained on the raw texts only, with no humans labelling them in any 

way (which is why it can use lots of publicly available data) with an 

automatic process to generate inputs and labels from those texts.” 

(Hugging Face model card). Information on the masking process during 

training: “15% of the tokens are masked. In 80% of the cases, the masked 

tokens are replaced by [MASK]. In 10% of the cases, the masked tokens 

are replaced by a random token (different) from the one they replace. In 

the 10% remaining cases, the masked tokens are left as is.” (Hugging Face 

model card). 

o Training data: The training datasets used were BookCorpus, a dataset 

consisting of 11,038 unpublished books and English Wikipedia (excluding 

lists, tables and headers). 

o Compute requirements: “4 cloud TPUs in Pod configuration (16 TPU 

chips total) for one million steps with a batch size of 256. The sequence 

length was limited to 128 tokens for 90% of the steps and 512 for the 

remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, 

β1=0.9 and β2=0.999, a weight decay of 0.01, learning rate warmup for 

10,000 steps and linear decay of the learning rate after.” (Hugging Face 

model card). 

o Bias: This model has gender bias which will also affect all fine-tuned 

versions of this model. 

o Limitations: “You can use the raw model for either masked language 

modeling or next sentence prediction, but it's mostly intended to be fine-

tuned on a downstream task.” (Hugging Face model card). It is not meant 

to be used on other tasks such as text generation. 

 



• “distilbert/distilbert-base-cased” 

o Training procedure: “It was pretrained on the raw texts only, with no 

humans labelling them in any way (which is why it can use lots of publicly 

available data) with an automatic process to generate inputs and labels 

from those texts using the BERT base model.” (Hugging Face model 

card). The masking procedure is the same as google-bert/bert-base-cased. 

o Training data: The same as google-bert/bert-base-cased. 

o Compute requirements: The model was trained on 8 16 GB V100 for 90 

hours. 

o Bias: This model has racial and gender bias which will also affect all fine-

tuned versions of this model. 

o Limitations: The same as google-bert/bert-base-cased. 

 

• FacebookAI/roberta-base 

o Training procedure: It was trained in a self-supervised fashion with the 

masked language modeling objective. Also, it used the same masking 

procedure as google-bert/bert-base-cased. During the training procedure, 

the model learns an inner representation of the English language which is 

helpful for downstream tasks. (Hugging Face model card). 

o Training data: In addition to the same training data that was used for 

training the model, google-bert/bert-base-cased, three other datasets were 

also used. The first new dataset: CC-News is a dataset containing 63 

million news articles in English. The second new dataset: OpenWebText 

which is “an opensource recreation of the WebTest dataset used to train 

GPT-2.” Third new dataset: Stories which is “a dataset containing a subset 

of CommonCrawl data filtered to match the sotry-like style of Winograd 

schemas.” (Hugging Face model card). The model was trained on a total 

of 160GB of text. 

o Compute requirements: “The model was trained on 1024 V100 GPUs for 

500K steps with a batch size of 8K and a sequence length of 512. The 

optimizer used is Adam with a learning rate of 6e-4, 𝛽1=0.9, 𝛽2=0.98, 



and 𝜖=1𝑒−6, a weight decay of 0.01, learning rate warmup for 24,000 

steps and linear decay of the learning rate after.” (Hugging Face model 

card). 

o Bias: The same as distilbert/distilbert-base-cased 

o Limitations: The same as google-bert/bert-base-cased 

 

• emma7897/bert_one 

o Training procedure: The same as google-bert/bert-base-cased 

o Training data: The same as google-bert/bert-base-cased 

o Compute requirements: The same as google-bert/bert-base-cased 

o Bias: The same as google-bert/bert-base-cased 

o Limitations: The same as google-bert/bert-base-cased 

o Fine tuning: This model was fine-tuned on the dataset “rcds/Wikipedia-

for-mask-filling”. The training dataset was made up of 10000 entries from 

the “original_512” subset. The test dataset was made up of 2500 entries 

from the “original_4096” subset. It was fine-tuned for masked language 

modeling. 

 

• emma7897/distilbert_one 

o Training procedure: The same as distilbert/distilbert-base-cased 

o Training data: The same as distilbert/distilbert-base-cased 

o Compute requirements: The same as distilbert/distilbert-base-cased 

o Bias: The same as distilbert/distilbert-base-cased 

o Limitations: The same as distilbert/distilbert-base-cased 

o Fine tuning: The same as emma7897/bert_one 

 

• emma7897/bert_two 

o Training procedure: The same as google-bert/bert-base-cased 

o Training data: The same as google-bert/bert-base-cased 

o Compute requirements: The same as google-bert/bert-base-cased 

o Bias: The same as google-bert/bert-base-cased 



o Limitations: The same as google-bert/bert-base-cased 

o Fine tuning: This model was fine-tuned on the dataset “ajibawa-

2023/Children-Stories-Collection”. The training data was made up of 

10000 randomly selected entries from the dataset, and the test data was 

made up of 2500 randomly selected entries from the dataset. The test data 

and training data did not have any overlap. The model was fine tuned for 

masked language modeling. 

 

• emma7897/distilbert_two 

o Training procedure: The same as distilbert/distilbert-base-cased 

o Training data: The same as distilbert/distilbert-base-cased 

o Compute requirements: The same as distilbert/distilbert-base-cased 

o Bias: The same as distilbert/distilbert-base-cased 

o Limitations: The same as distilbert/distilbert-base-cased 

o Fine tuning: The same as emma7897/bert_two 

 

Datasets: 

• rcds/wikipedia-for-mask-filling 

o Information on the content: Contains about 70,000 pages from Wikipedia. 

Each page describes a person, but the person’s name is replaced with 

“<mask>”. 

o Information on dataset creation: “Created by using the tokenizer from 

allenai/longformer-base-4096 for the 4096 token per chunk version, and 

the xml-roberta-large tokenizer for the 512 token version. Chunks are split 

to fit those token sizes, with the splits ensuring no words are split in half.” 

o Usage: Used 12500 randomly selected entries from the texts and masks 

columns to fine-tune my BERT and DistilBERT models. 10000 entries 

made up the test data, and the remaining 2500 entries made up the test 

data. 

 

• ajibawa-2023/Children-Stories-Collection 



o Information on content: Contains the prompt given to an unknown AI 

model, how many tokens are in each text, and the text section is made up 

of AI-generated stories for children. 

o Information on dataset creation: The stories for children were written by 

an unknown AI model. 

o Usage: Used 12500 randomly selected entries from the text column to 

fine-tune my BERT and DistilBERT models. 10000 entries made up the 

test data, and the remaining 2500 entries made up the test data. 

 

Core components used: 

• Gradio: Utilized Gradio to build my user interface. I used a Gradio interface 

containing multiple choice buttons (gr.Radio), a text box for user input 

(gr.Textbox), an HTML element for the output from the model (gr.HTML), and a 

table containing examples of possible inputs. 

• Models and datasets discussed above. 

• textGenerator function: This function accepted two types of user input: a model 

and a string. This function is responsible for filling the “[MASK]” tokens. After 

establishing the fill-mask pipeline and splitting the user’s input into sentences, the 

function checks the model’s name. The “FacebookAI/roberta-base” model 

requires the input to contain <mask> instead of [MASK], so if this model is 

selected, then each [MASK] is replaced with <mask>. However, all of the models 

examine each sentence in the user input individually and replace the masked 

token with one of the top ten predictions. The new token is also highlighted 

yellow. Then, the completed sentence is added to an array. After the model has 

iterated through all the sentences in the user input, the completed sentences in the 

array are joined together to form one string. This final string is returned by the 

function and printed on the screen. 

 

How was the data processed from user input to output? 

• It was processed by the textGenerator function which I explained above. It was 

split into sentences and processed by the chosen model. 



 

 External frameworks: 

• Google Colab: This tool was used to create my four finetuned models: 

emma7897/bert_one, emma7897/distilbert_one, emma7897/bert_two, and 

emma7897/distilbert_two. 

 

4. Contributions 

To build my application, I started by using pre-trained models (BERT, DistilBERT, and 

RoBERTa). I experimented with many different inputs and adjusted my example inputs 

accordingly. Also, at first my application just filled in the “[MASK]” and returned the 

completed prompt to the user. When I began prompting the models with longer 

paragraphs, I found it difficult to easily identify the words that replaced each “[MASK]”. 

This led me to highlight each of the added words. One thing I noticed while 

experimenting with different inputs is that my BERT and DistilBERT models often 

produced output that did not make any sense when given the prompts: “My favorite place 

to go is [MASK]”, or “Hello, my name is [MASK]”. They would only produce 

comprehensible output part of the time when given either prompt. However, RoBERTa 

performed quite well. Based on the poor performance of my BERT and DistilBERT 

models, I decided to fine-tune both, but I did not fine-tune RoBERTa because it performs 

well on its own. I found a dataset on Hugging Face meant for mask-filling tasks 

(rcds/wikipedia-for-mask-filling), so I used this to fine tune both models. My code for 

fine-tuning the models on this dataset is contained in fine_tuning_number_one.py. I also 

chose to fine tune both models on a Hugging Face dataset of AI-generated stories for 

children (ajibawa-2023/Children-Stories-Collection). My code for fine-tuning the models 

on this dataset is contained in fine_tuning_number_two.py. I chose the first dataset 

because I thought that it would help my models produce more accurate output as it is 

designed for the exact task that I am performing. I chose the second dataset because many 

of my example prompts are short stories, so I thought that fine-tuning my models on this 

dataset would also produce higher quality output than the base models. Below is an 

image of my project in the early stage, but it is an example of the poor output that I was 

receiving that led me to fine tune my pretrained models. 



 

 

5. Limitations 

There are two limitations to my application. The first limitation is that the user can only 

use one “[MASK]” per sentence. The second limitation is that the model has no 

knowledge of the sentences in the paragraph outside of the sentence that it is currently 

working with. In my app.py file, I split the input into sentences. Then, each sentence is 

passed to the model individually to fill the “[MASK]”. In the image below, the model 

outputs the name “Kate” which is a feminine name, but it states that Kate wants to be a 

girl when she grows up. This is incomprehensible output.  

 



Another issue with my application is that it can sometimes produce disturbing, or morbid 

output without realizing it. Below I have attached two examples of this issue.

 

 

 


