import gradio as gr import pandas as pd from pathlib import Path import ast gene_scores_df = pd.read_csv('gene_discovery_scores.csv') exomiser_gene_scores_df = pd.read_csv('exomiser_gene_discovery_scores.csv') patient_scores_df = pd.read_csv('patients_like_me_scores.csv') dx_scores_df = pd.read_csv('dx_characterization_scores.csv') plm_attn_df = pd.read_csv('patients_like_me_scores_attn.csv') dx_attn_df = pd.read_csv('dx_characterization_scores_attn.csv') gene_attn_df = pd.read_csv('gene_discovery_scores_attn.csv') exomiser_gene_attn_df = pd.read_csv('exomiser_gene_discovery_scores_attn.csv') diseases_map = {'UDN-P1': 'POLR3-releated leukodystrophy', 'UDN-P2': 'Novel PRKAR1B-Related Neurodevelopmental Disorder', 'UDN-P3':'Coffin-Lowry syndrome' , 'UDN-P4': 'automsomal recessive spastic paraplegia type 76', 'UDN-P5': 'atypical presentation of familial cold autoinflammatory syndrome', 'UDN-P6': '*GATAD2B*-associated syndrome', 'UDN-P7': 'AR limb-girdle muscular atrophy type 2D', 'UDN-P8': '*ATP5PO*-related Leigh syndrome', 'UDN-P9': 'Spondyloepimetaphyseal dysplasia, Isidor-Toutain type'} genes_map = {'UDN-P3': 'RPS6KA3', 'UDN-P4': 'CAPN1', 'UDN-P5': 'NLRP12, RAPGEFL1', 'UDN-P6': 'GATAD2B', 'UDN-P7': 'SGCA', 'UDN-P8': 'ATP5P0', 'UDN-P9': 'RPL13'} def get_patient(patient_id, attn_df): ''' Returns phenotypes, candidate genes, Causal gene, disease ''' if patient_id in genes_map: gene = genes_map[patient_id] else: patient_gene_scores_df = gene_scores_df.loc[gene_scores_df['patient_id'] == patient_id] gene = ', '.join(patient_gene_scores_df.loc[patient_gene_scores_df['correct_gene_label'] == 1, 'genes'].tolist()) if patient_id in diseases_map: disease = diseases_map[patient_id] else: patient_dx_scores_df = dx_scores_df.loc[dx_scores_df['patient_id'] == patient_id] disease = ', '.join(patient_dx_scores_df.loc[patient_dx_scores_df['correct_label'] == 1, 'diseases'].tolist()) patient_attn_df = attn_df.loc[attn_df['patient_id'] == patient_id] phenotypes = ', '.join(patient_attn_df['phenotypes'].tolist()) patient_str = f''' **Selected Patient:** {patient_id}
**Causal Gene:** *{gene}*
**Disease:** {disease}
**Phenotypes:** {phenotypes}

''' return patient_str def read_file(filename): with open(filename, 'r') as file: f = file.read() return f def causal_gene_discovery(patient_id, prioritization_type): if prioritization_type == 'Variant Filtered': scores_df = exomiser_gene_scores_df.loc[exomiser_gene_scores_df['patient_id'] == patient_id] else: scores_df = gene_scores_df.loc[gene_scores_df['patient_id'] == patient_id] # read in gene scores scores_df = scores_df.sort_values("similarities", ascending=False) scores_df['similarities'] = scores_df['similarities'].round(3).astype(str) # add links to gene cards scores_df['genes'] = scores_df['genes'].apply(lambda x: f'[{x}](https://www.genecards.org/cgi-bin/carddisp.pl?gene={x})') # bold/color causal gene scores_df.loc[scores_df['correct_gene_label'] == 1, 'similarities'] = scores_df.loc[scores_df['correct_gene_label'] == 1, 'similarities'].apply(lambda x: f'**{x}**') scores_df.loc[scores_df['correct_gene_label'] == 1, 'genes'] = scores_df.loc[scores_df['correct_gene_label'] == 1, 'genes'].apply(lambda x: f'**{x}**') #filter df scores_df = scores_df.drop(columns=['patient_id', 'correct_gene_label']).rename(columns={ 'similarities': 'SHEPHERD Score', 'genes': 'Candidate Genes'}) #'correct_gene_label' : 'Is Causal Gene', ############# # Attention #read in phenotype attention if prioritization_type == 'Variant Filtered': attn_df = exomiser_gene_attn_df.loc[exomiser_gene_attn_df['patient_id'] == patient_id] else: attn_df = gene_attn_df.loc[gene_attn_df['patient_id'] == patient_id] attn_df = attn_df.sort_values("attention", ascending=False) attn_df['attention'] = attn_df['attention'].round(4) attn_df = attn_df.drop(columns=['patient_id', 'degrees']) ############# # KG neighborhood #image_loc = f'images/{patient_id}.png' html_file = f'https://michellemli.github.io/test_html/{patient_id}.html' kg_html = f'''''' #patient_info patient = get_patient(patient_id, gene_attn_df) return patient, scores_df, attn_df, kg_html def patients_like_me(patient_id, k=10): scores_df = patient_scores_df.loc[patient_scores_df['patient_id'] == patient_id] scores_df = scores_df.sort_values("similarities", ascending=False) #scores_df['phenotypes'] ='PHEN' # add links to disease pages scores_df['disease_ids'] = scores_df['disease_ids'].apply(lambda x: f'(https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert={x})') scores_df['diseases'] = scores_df['diseases'].apply(lambda x: f'[{x}]') scores_df['diseases'] = scores_df['diseases'] + scores_df['disease_ids'] scores_df['genes'] = scores_df['genes'].apply(lambda x: f'[{x}](https://www.genecards.org/cgi-bin/carddisp.pl?gene={x})') # bold/color patients with same causal gene scores_df.loc[scores_df['correct_label'] == 1, 'candidate_patients'] = scores_df.loc[scores_df['correct_label'] == 1, 'candidate_patients'].apply(lambda x: f'**{x}**') scores_df.loc[scores_df['correct_label'] == 1, 'genes'] = scores_df.loc[scores_df['correct_label'] == 1, 'genes'].apply(lambda x: f'**{x}**') scores_df.loc[scores_df['correct_label'] == 1, 'diseases'] = scores_df.loc[scores_df['correct_label'] == 1, 'diseases'].apply(lambda x: f'**{x}**') scores_df = scores_df.drop(columns=['patient_id', 'similarities', 'correct_label', 'disease_ids']).rename(columns={'candidate_patients': 'Candidate Patient', 'genes': 'Candidate Patient\'s Gene', 'diseases': 'Candidate Patient\'s Disease' }) #'phenotypes': 'Candidate Patient\'s Phenotypes' scores_df = scores_df.head(k) #read in phenotype attention attn_df = plm_attn_df.loc[plm_attn_df['patient_id'] == patient_id] attn_df = attn_df.sort_values("attention", ascending=False) attn_df['attention'] = attn_df['attention'].round(4) attn_df = attn_df.drop(columns=['patient_id', 'degrees']) #patient_info patient = get_patient(patient_id, plm_attn_df) return patient, scores_df, attn_df def disease_characterization(patient_id, k=10): #TODO: limit # of rows scores_df = dx_scores_df.loc[dx_scores_df['patient_id'] == patient_id] scores_df = scores_df.sort_values("similarities", ascending=False) scores_df = scores_df.head(k) scores_df.loc[ scores_df['disease_ids'].str.contains('Coxa vara'), 'disease_ids'] = '2812' scores_df.loc[ scores_df['disease_ids'].str.contains('Multiple epiphyseal dysplasia'), 'disease_ids'] = '2654' scores_df['disease_ids'] = scores_df['disease_ids'].apply(lambda x: ast.literal_eval(x)) scores_df['type_disease_ids'] = scores_df['disease_ids'].apply(lambda x: type(x)) scores_df.loc[scores_df['type_disease_ids'] == list, 'disease_ids'] = scores_df.loc[scores_df['type_disease_ids'] == list, 'disease_ids'].apply(lambda x: x[0]) # add links to disease pages scores_df['disease_ids'] = scores_df['disease_ids'].apply(lambda x: f'(https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert={x})') scores_df['diseases'] = scores_df['diseases'].apply(lambda x: f'[{x}]') scores_df['diseases'] = scores_df['diseases'] + scores_df['disease_ids'] # one disease couldn't map to orphanet scores_df.loc[ scores_df['disease_ids'].str.contains('33657'), 'diseases'] = '[leukodystrophy, hypomyelinating, 20](https://www.omim.org/entry/619071)' scores_df.loc[ scores_df['disease_ids'].str.contains('2654'), 'diseases'] = '[Multiple epiphyseal dysplasia](https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=251)' scores_df.loc[ scores_df['disease_ids'].str.contains('2812'), 'diseases'] = '[Coxa vara](https://omim.org/entry/122750)' scores_df = scores_df.drop(columns=['patient_id', 'similarities', 'correct_label', 'disease_ids','type_disease_ids']).rename(columns={'diseases' : 'Disease'}) #read in phenotype attention attn_df = dx_attn_df.loc[dx_attn_df['patient_id'] == patient_id] attn_df = attn_df.sort_values("attention", ascending=False) attn_df['attention'] = attn_df['attention'].round(4) attn_df = attn_df.drop(columns=['patient_id', 'degrees']) #patient_info patient = get_patient(patient_id, dx_attn_df) return patient, scores_df, attn_df def get_umap(umap_type): # get UMAP if umap_type == 'disease': html_file = 'https://michellemli.github.io/test_html/shepherd_disease_characterization_umap.html' #html_file = read_file('images/udn_orphafit_patient_umap_nneigh=50_mindist=0.9_spread=1.0colored_by_disease_category.html') elif umap_type == 'patient': html_file = 'https://michellemli.github.io/test_html/shepherd_patient_umap.html' else: raise NotImplementedError # return f"""""" return f'''''' #return f'''''' with gr.Blocks() as demo: #css="#gene_attn_accordion {text-align: center}" css="kg_neigh {width: 70%}" gr.Markdown('

AI-assisted Rare Disease Diagnosis with SHEPHERD

') #gr.Markdown('

A few SHot Explainable Predictor for Hard-to-diagnosE Rare Diseases

') with gr.Tabs(): with gr.TabItem("Causal Gene Discovery"): with gr.Column(): gr.Markdown('

Select a patient to view SHEPHERD\'s predictions

') gene_dropdown = gr.Dropdown(choices=['UDN-P1', 'UDN-P2'], label='Rare Disease Patients', type='value') #value='UDN-P1', gene_radio = gr.Radio(choices=['Expert Curated', 'Variant Filtered'], value='Expert Curated', label='Type of Gene List') patient_info = gr.Markdown() #get_patient('UDN-P1') with gr.Accordion(label=f'SHEPHERD\'s Ranking of Patient\'s Candidate Genes', open=True, elem_id='gene_accordion'): #gr.Markdown(f'

SHEPHERD\'s Ranking of Patient\'s Candidate Genes

') gr.Markdown('Below are SHEPHERD\'s ranking of either all Expert Curated candidate genes or the top 10 Variant Filtered candidate genes. The patient\'s causal gene (i.e. gene harboring a variant that explains the patient\'s symptoms) is colored in green.') gene_dataframe = gr.Dataframe( elem_id="gene_df", datatype = 'markdown', headers=['Candidate Genes', 'SHEPHERD Score' ], overflow_row_behaviour='paginate') # label='Candidate Genes', show_label=False, with gr.Accordion(label=f'SHEPHERD\'s Attention to Patient\'s Phenotypes', open=False, elem_id='gene_attn_accordion'): #gr.Markdown(f'

SHEPHERD\'s Attention to Patient\'s Phenotypes

') gene_attn_dataframe = gr.Dataframe( elem_id="gene_attn_df", headers=['Phenotypes', 'Attention' ], overflow_row_behaviour='paginate') # label='Candidate Genes', show_label=False, with gr.Accordion(label=f'Visualization of Patient\'s Neighborhood in the Knowledge Graph', open=False, elem_id='kg_neigh_accordion'): #kg_neighborhood_image = gr.Image(elem_id='kg_neigh')#.style(height=200, width=200) kg_neighborhood_image = gr.HTML(elem_id = 'kg_patient_neighborhood') #gene_button = gr.Button("Go") with gr.TabItem("Patients Like Me"): gr.HTML(get_umap('patient')) gr.Markdown('

Select a patient to view SHEPHERD\'s predictions

') patient_dropdown = gr.Dropdown(choices=['UDN-P3','UDN-P4','UDN-P5','UDN-P6'], label='Rare Disease Patients', type='value') p_patient_info = gr.Markdown() with gr.Accordion(label=f'Top 10 Most Similar Patients according to SHEPHERD', open=True, elem_id='pt_accordion'): # patient_dataframe = gr.Dataframe(max_rows=10, datatype = 'markdown', show_label=False, elem_id="pat_df", headers=['Candidate Patient', 'Candidate Patient\'s Gene', 'Candidate Patient\'s Disease' ]) #'Candidate Patient\'s Phenotypes' #patient_button = gr.Button("Go") with gr.Accordion(label='SHEPHERD\'s Attention to Patient\'s Phenotypes', open=False, elem_id='pt_attn_accordion'): pt_attn_dataframe = gr.Dataframe( elem_id="pt_attn_df", headers=['Phenotypes', 'Attention' ], overflow_row_behaviour='paginate') with gr.TabItem("Disease Characterization"): gr.HTML(get_umap('disease')) gr.Markdown('

Select a patient to view SHEPHERD\'s predictions

') dx_dropdown = gr.Dropdown(choices=['UDN-P7','UDN-P8','UDN-P9','UDN-P2'], label='Rare Disease Patients', type='value') dx_patient_info = gr.Markdown() with gr.Accordion(label='Top 10 Most Similar Diseases according to SHEPHERD', open=True, elem_id='pt_accordion'): # dx_dataframe = gr.Dataframe(max_rows=10, datatype = 'markdown', show_label=False, elem_id="dx_df", headers=['Diseases']) with gr.Accordion(label='SHEPHERD\'s Attention to Patient\'s Phenotypes', open=False, elem_id='dx_attn_accordion'): dx_attn_dataframe = gr.Dataframe( elem_id="dx_attn_df", headers=['Phenotypes', 'Attention' ], overflow_row_behaviour='paginate') #dx_button = gr.Button("Go") gene_dropdown.change(causal_gene_discovery, inputs=[gene_dropdown,gene_radio], outputs=[patient_info, gene_dataframe, gene_attn_dataframe, kg_neighborhood_image]) gene_radio.change(causal_gene_discovery, inputs=[gene_dropdown,gene_radio], outputs=[patient_info, gene_dataframe, gene_attn_dataframe, kg_neighborhood_image]) patient_dropdown.change(patients_like_me, inputs=patient_dropdown, outputs=[p_patient_info, patient_dataframe, pt_attn_dataframe]) dx_dropdown.change(disease_characterization, inputs=dx_dropdown, outputs=[dx_patient_info, dx_dataframe, dx_attn_dataframe]) #gene_dropdown.change(get_patient, inputs=gene_dropdown, outputs=patient_info) #gene_button.click(causal_gene_discovery, inputs=gene_dropdown, outputs=[gene_dataframe,gene_attn_dataframe, kg_neighborhood_image]) #patient_button.click(patients_like_me, inputs=patient_dropdown, outputs=patient_dataframe) #dx_button.click(disease_characterization, inputs=dx_dropdown, outputs=dx_dataframe) demo.launch( ) #server_port=50018, share=True