## INSTALLATION if you've noticed your python3 bin doens't point to your conda env when using --prefix to point to your scratch dir, then you need to do the following: * conda config --set always_copy True * conda config --show | grep always_copy now continue as normal: * conda create --prefix /MotionDiffuse/env python=3.7 * conda activate /MotionDiffuse/env * double check your GCC is 5+ by running `gcc --version`; if not, do module load gcc/5.4.0 * module load cuda/10.1 # you must run these icuda commands before installing torch otherwise it will say version not found!! * module load cudnn/v7.6.5.32-prod-cuda-10.1 * conda install pytorch=1.7.1 torchvision=0.8.2 cudatoolkit=10.1 -c pytorch * python3 -m pip install "mmcv-full>=1.3.17,<=1.5.3" -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.1/index.html * python3 -m pip install -r requirements.txt * python3 -m pip install --upgrade protobuf==3.20.0 fyi there is an annoying warning in the logs (https://stackoverflow.com/questions/57381430/synonym-of-type-is-deprecated-in-a-future-version-of-numpy-it-will-be-underst) that can be silenced by downgrading numpy:to 1.16.4 BUT this is incompatible with the other package versions, so don't do it fyi: (/work3/s222376/MotionDiffuseNew) s222376@n-62-20-1 /work3/s222376/MotionDiffuse/text2motion (train_baseline)$ module list Currently Loaded Modulefiles: 1) latex/TeXLive19(default) 3) cudnn/v7.6.5.32-prod-cuda-10.1 5) gcc/5.4.0 2) cuda/10.1 4) binutils/2.29(default) ## TRAINING * download KIT-ML data from <> and put the zip for it in text2motion/data/ * cd text2motion/data && unzip KIT-ML-20231122T121619Z-001.zip * cd KIT-ML && unrar x new_joint_vecs.rar * unrar x new_joints.rar * unrar x texts.rar * dirs should look like ``` text2motion/data/KIT-ML ├── new_joint_vecs │   ├─� ├── new_joints │   ├─� └── texts ├─� --all.txt -- ``` * voltash (dtu hpc command to go to interactive gpu node) * make train * verify above works without errors and then kill training because you're on interactive gpu, you will likely run out of memory anyway (can decrease --batchsize but then it's slow) * to do full training, edit jobscript.sh to use your email and submit job via "make queue" ## INFERENCE with pretrained model * download...checkpoints?? idk look at their README.md ## Changes I made * ignore standardization * tokens are [] empty... * reusing kit_chain thing lol * only training on one sequence from grab TO KEEP IN MIND: * they specify best way to train in readme somewhere -- follow this when doing real training! * need to add the emotion text to the caption!!