File size: 10,392 Bytes
07423df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
from dataclasses import dataclass, field
from typing import Any, Dict, List

import llm_studio.src.models.text_rlhf_language_modeling_model
from llm_studio.python_configs.base import DefaultConfigProblemBase
from llm_studio.python_configs.text_causal_language_modeling_config import (
    ConfigNLPAugmentation,
    ConfigNLPCausalLMArchitecture,
    ConfigNLPCausalLMDataset,
    ConfigNLPCausalLMEnvironment,
    ConfigNLPCausalLMLogging,
    ConfigNLPCausalLMPrediction,
    ConfigNLPCausalLMTokenizer,
    ConfigNLPCausalLMTraining,
)
from llm_studio.src import possible_values
from llm_studio.src.datasets.text_rlhf_modeling_ds import CustomDataset
from llm_studio.src.models import text_reward_model
from llm_studio.src.utils.modeling_utils import generate_experiment_name


@dataclass
class ConfigRLHFLMDataset(ConfigNLPCausalLMDataset):
    dataset_class: Any = CustomDataset

    text_prompt_start: str = (
        "<s>[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n"  # noqa: E501
    )
    text_answer_separator: str = " [/INST]"
    add_eos_token_to_prompt: bool = False
    add_eos_token_to_answer: bool = False
    limit_chained_samples: bool = False
    mask_prompt_labels: bool = True

    def __post_init__(self):
        super().__post_init__()
        # RLHF is not compatible with system column.
        self.system_column = "None"

        # Incompatible with RLHF
        self._visibility["system_column"] = -1
        self._visibility["limit_chained_samples"] = -1
        self._visibility["mask_prompt_labels"] = -1


class LossClass:
    @classmethod
    def names(cls):
        return []


class ConfigRLHFLMAugmentation(ConfigNLPAugmentation):
    def __post_init__(self):
        super().__post_init__()
        self._visibility["skip_parent_probability"] = -1
        self._visibility["random_parent_probability"] = -1


@dataclass
class ConfigRLHFLMTraining(ConfigNLPCausalLMTraining):
    loss_class: Any = LossClass
    loss_function: str = "RLHF"

    batch_size: int = 4
    gradient_clip: float = 1.0
    grad_accumulation: int = 16
    evaluation_epochs: float = 0.25

    rollout_steps: int = 64
    adaptive_kl_control: bool = True
    full_kl_penalty: bool = True
    initial_kl_coefficient: float = 0.2
    kl_target: float = 6.0
    kl_horizon: int = 10000
    advantages_gamma: float = 0.99
    advantages_lambda: float = 0.95
    ppo_clip_policy: float = 0.2
    ppo_clip_value: float = 0.2
    scaling_factor_value_loss: float = 0.1
    ppo_epochs: int = 4
    ppo_batch_size: int = 8
    ppo_generate_temperature: float = 1.0
    offload_reward_model: bool = False

    def __post_init__(self):
        super().__post_init__()
        self.lora = True
        self._possible_values["differential_learning_rate_layers"] = (
            possible_values.String(
                values=("backbone", "value_head"),
                allow_custom=False,
                placeholder="Select optional layers...",
            )
        )
        self._possible_values["grad_accumulation"] = (1, 128, 1)

        self._possible_values["rollout_steps"] = (1, 1024, 1)
        self._possible_values["initial_kl_coefficient"] = (0.01, 0.5, 0.01)
        self._possible_values["kl_target"] = (0.1, 16, 0.1)
        self._possible_values["kl_horizon"] = (1000, 20000, 1000)
        self._possible_values["advantages_gamma"] = (0.800, 0.999, 0.001)
        self._possible_values["advantages_lambda"] = (0.8, 1.0, 0.01)
        self._possible_values["ppo_clip_policy"] = (0.1, 0.5, 0.05)
        self._possible_values["ppo_clip_value"] = (0.1, 0.5, 0.05)
        self._possible_values["scaling_factor_value_loss"] = (0.01, 1, 0.01)
        self._possible_values["ppo_epochs"] = (1, 16, 1)
        self._possible_values["ppo_generate_temperature"] = (0.1, 1.0, 0.1)
        self._possible_values["ppo_batch_size"] = (1, 256, 1)

        self._order.insert(
            "rollout_steps",
            "offload_reward_model",
            "adaptive_kl_control",
            "full_kl_penalty",
            "advantages_gamma",
            "kl_horizon",
            "ppo_generate_temperature",
            "kl_target",
            "scaling_factor_value_loss",
            "ppo_clip_value",
            "ppo_clip_policy",
            "initial_kl_coefficient",
            "advantages_lambda",
            "ppo_batch_size",
            "ppo_epochs",
            after="learning_rate",
        )

        self._visibility["lora"] = -1
        self._visibility["loss_function"] = -1


@dataclass
class ConfigRLHFLMArchitecture(ConfigNLPCausalLMArchitecture):
    model_class: Any = llm_studio.src.models.text_rlhf_language_modeling_model.Model
    reward_model_class: Any = text_reward_model.RewardModel

    def __post_init__(self):
        super().__post_init__()
        # RLHF is not supported with force_embedding_gradients.
        self.force_embedding_gradients = False
        self._visibility["reward_model_class"] = -1
        self._visibility["force_embedding_gradients"] = -1


@dataclass
class ConfigRLHFLMPrediction(ConfigNLPCausalLMPrediction):
    do_sample: bool = True
    repetition_penalty: float = 1.0
    num_beams: int = 1
    top_k: int = 0
    top_p: float = 1.0
    temperature: float = 1.0

    def __post_init__(self):
        super().__post_init__()
        # These values are fixed for RLHF
        self._visibility["do_sample"] = -1
        self._visibility["repetition_penalty"] = -1
        self._visibility["top_p"] = -1
        self._visibility["top_k"] = -1
        self._visibility["num_beams"] = -1


@dataclass
class ConfigRLHFLMEnvironment(ConfigNLPCausalLMEnvironment):
    compile_model: bool = False

    def __post_init__(self):
        super().__post_init__()
        self._visibility["compile_model"] = -1


@dataclass
class ConfigProblemBase(DefaultConfigProblemBase):
    output_directory: str = f"output/{os.path.basename(__file__).split('.')[0]}"
    experiment_name: str = field(default_factory=generate_experiment_name)
    _parent_experiment: str = ""
    llm_backbone: str = "h2oai/h2ogpt-4096-llama2-7b-chat"
    reward_model: str = "OpenAssistant/reward-model-deberta-v3-large-v2"

    dataset: ConfigRLHFLMDataset = field(default_factory=ConfigRLHFLMDataset)
    tokenizer: ConfigNLPCausalLMTokenizer = field(
        default_factory=ConfigNLPCausalLMTokenizer
    )
    architecture: ConfigRLHFLMArchitecture = field(
        default_factory=ConfigRLHFLMArchitecture
    )
    training: ConfigRLHFLMTraining = field(default_factory=ConfigRLHFLMTraining)
    augmentation: ConfigRLHFLMAugmentation = field(
        default_factory=ConfigRLHFLMAugmentation
    )
    prediction: ConfigRLHFLMPrediction = field(default_factory=ConfigRLHFLMPrediction)
    environment: ConfigRLHFLMEnvironment = field(
        default_factory=ConfigRLHFLMEnvironment
    )
    logging: ConfigNLPCausalLMLogging = field(default_factory=ConfigNLPCausalLMLogging)

    def __post_init__(self):
        super().__post_init__()

        self._possible_values["llm_backbone"] = possible_values.String(
            values=(
                "h2oai/h2o-danube2-1.8b-base",
                "h2oai/h2o-danube2-1.8b-chat",
                "h2oai/h2ogpt-4096-llama2-7b",
                "h2oai/h2ogpt-4096-llama2-7b-chat",
                "h2oai/h2ogpt-4096-llama2-13b",
                "h2oai/h2ogpt-4096-llama2-13b-chat",
                "h2oai/h2ogpt-4096-llama2-70b",
                "h2oai/h2ogpt-4096-llama2-70b-chat",
                "tiiuae/falcon-7b",
                "mistralai/Mistral-7B-v0.1",
                "HuggingFaceH4/zephyr-7b-beta",
                "google/gemma-2b",
                "google/gemma-7b",
                "stabilityai/stablelm-3b-4e1t",
                "microsoft/phi-2",
                "facebook/opt-125m",
            ),
            allow_custom=True,
        )

        self._possible_values["reward_model"] = possible_values.String(
            values=(
                "OpenAssistant/reward-model-deberta-v3-large-v2",
                "OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5",
                "OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1",
            ),
            # Custom models are not supported, as they would need to be implemented in
            # /src/models/text_reward_model.py
            allow_custom=False,
        )

        self._order.insert(
            "reward_model",
            after="llm_backbone",
        )
        self._visibility["output_directory"] = -1

    def check(self) -> Dict[str, List]:
        errors: Dict[str, List] = {"title": [], "message": []}
        if not self.training.lora:
            errors["title"] += ["LoRA must be True for RLHF"]
            errors["message"] += [
                "LoRA must be True for RLHF. "
                "Please set LoRA to True or change the problem type. "
            ]

        # see CustomDataset for RLHF
        if self.dataset.system_column != "None":
            errors["title"] += ["RLHF is not compatible with system column."]
            errors["message"] += [
                "RLHF is not compatible with system column. "
                "Please set system column to None or change the problem type. "
            ]
        if self.dataset.limit_chained_samples:
            errors["title"] += ["RLHF is not compatible with limit_chained_samples."]
            errors["message"] += [
                "RLHF is not compatible with limit_chained_samples. "
                "Please set limit_chained_samples to False or change the problem type. "
            ]
        if not self.dataset.mask_prompt_labels:
            errors["title"] += ["RLHF is not compatible with mask_prompt_labels."]
            errors["message"] += [
                "RLHF is not compatible with mask_prompt_labels. "
                "Please set mask_prompt_labels to True or change the problem type. "
            ]
        return errors