# from transformers import pipeline # import gradio as gr # # Load the pipeline with the cache_dir parameter # pipe = pipeline(model="tarteel-ai/whisper-base-ar-quran") # def transcribe(audio): # text = pipe(audio)["text"] # return text # iface = gr.Interface( # fn=transcribe, # inputs=gr.Audio(source="upload", type="filepath"), # outputs="text", # ) # iface.launch() from transformers import pipeline model_id = "tarteel-ai/whisper-base-ar-quran" # update with your model id pipe = pipeline("automatic-speech-recognition", model=model_id) def transcribe(filepath): output = pipe( filepath, max_new_tokens=10000, ) return output["text"] import gradio as gr iface = gr.Interface( fn=transcribe, inputs=gr.Audio(source="upload", type="filepath"), outputs="text", ) iface.launch()