import streamlit as st from tensorflow.keras.models import load_model from PIL import Image import numpy as np model=load_model('Vehice_detection.h5') def process_image(img): img=img.resize((120,120)) #boyutunu 120*120 pixel yaptık img=np.array(img) img=img/255.0 #Normalize ettik img=np.expand_dims(img,axis=0) return img st.title('Vehicle vs Non-Vehicle') st.write("Choose a picture and guess whether it's a vehicle or Not Vehicle") file=st.file_uploader('Choose a picture', type=['jpg','jpeg','png']) if file is not None: img=Image.open(file) st.image(img,caption='uploaded image') image=process_image(img) prediction=model.predict(image) predicted_class=np.argmax(prediction) class_names=['non-vehicles','vehicles'] st.write(class_names[predicted_class])