import streamlit as st from tensorflow.keras.models import load_model from PIL import Image import numpy as np model=load_model('my_fish_model.h5') def process_image(img): img=img.resize((170,170)) #boyutunu 170*170 pixel yaptık img=np.array(img) img=img/255.0 #Normalize ettik img=np.expand_dims(img,axis=0) return img st.title('Large Scale Fish :fish:') st.write('Resim seç ve hangi balik türü olduğunu tahmin etsin') file=st.file_uploader('Bir Resim Sec', type=['jpg','jpeg','png']) if file is not None: img=Image.open(file) st.image(img,caption='yuklenen resim') image=process_image(img) prediction=model.predict(image) predicted_class=np.argmax(prediction) class_names=['Black Sea Sprat','Gilt-Head Bream','Hourse Mackerel','Red Mullet', 'Red Sea Bream','Sea Bass','Shrimp','Striped Red Mullet','Trout'] st.write(class_names[predicted_class])