Spaces:
Running
on
Zero
Running
on
Zero
Elea Zhong
commited on
Commit
·
6d99887
1
Parent(s):
2dd3815
update demo
Browse files- app.py +52 -147
- qwenimage/datamodels.py +3 -3
- qwenimage/foundation.py +6 -25
- scripts/inf.ipynb +0 -0
app.py
CHANGED
|
@@ -11,53 +11,44 @@ from PIL import Image
|
|
| 11 |
import gradio as gr
|
| 12 |
import spaces
|
| 13 |
|
|
|
|
| 14 |
from qwenimage.debug import ctimed, ftimed
|
| 15 |
from qwenimage.experiments.experiments_qwen import ExperimentRegistry
|
|
|
|
|
|
|
| 16 |
from qwenimage.prompt import build_camera_prompt
|
| 17 |
|
| 18 |
# --- Model Loading ---
|
| 19 |
-
dtype = torch.bfloat16
|
| 20 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
exp = ExperimentRegistry.get("qwen_lightning_fa3_aot_int8_fuse_downsize512")()
|
| 25 |
-
exp.load()
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
@spaces.GPU(duration=1500)
|
| 29 |
-
def optim_pipe():
|
| 30 |
-
print(f"func cuda: {torch.cuda.is_available()=}")
|
| 31 |
-
exp.optimize()
|
| 32 |
-
|
| 33 |
-
optim_pipe()
|
| 34 |
|
| 35 |
|
| 36 |
MAX_SEED = np.iinfo(np.int32).max
|
| 37 |
|
| 38 |
|
| 39 |
@spaces.GPU
|
| 40 |
-
def
|
| 41 |
image,
|
| 42 |
-
|
| 43 |
-
move_forward,
|
| 44 |
-
vertical_tilt,
|
| 45 |
-
wideangle,
|
| 46 |
seed,
|
| 47 |
randomize_seed,
|
| 48 |
-
true_guidance_scale,
|
| 49 |
num_inference_steps,
|
| 50 |
-
|
| 51 |
-
width,
|
| 52 |
prev_output = None,
|
| 53 |
progress=gr.Progress(track_tqdm=True)
|
| 54 |
):
|
| 55 |
with ctimed("pre pipe"):
|
| 56 |
-
prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
|
| 57 |
-
print(f"Generated Prompt: {prompt}")
|
| 58 |
|
| 59 |
if randomize_seed:
|
| 60 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
| 61 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 62 |
|
| 63 |
# Choose input image (prefer uploaded, else last output)
|
|
@@ -75,150 +66,64 @@ def infer_camera_edit(
|
|
| 75 |
|
| 76 |
print(f"{len(pil_images)=}")
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
image=pil_images,
|
| 82 |
prompt=prompt,
|
| 83 |
-
height=height if height != 0 else None,
|
| 84 |
-
width=width if width != 0 else None,
|
| 85 |
num_inference_steps=num_inference_steps,
|
| 86 |
generator=generator,
|
| 87 |
-
|
| 88 |
-
num_images_per_prompt=1,
|
| 89 |
-
)
|
| 90 |
|
| 91 |
-
return result, seed
|
| 92 |
|
| 93 |
|
| 94 |
# --- UI ---
|
| 95 |
-
css = '''#col-container { max-width: 800px; margin: 0 auto; }
|
| 96 |
-
.dark .progress-text{color: white !important}
|
| 97 |
-
#examples{max-width: 800px; margin: 0 auto; }'''
|
| 98 |
|
| 99 |
-
def reset_all():
|
| 100 |
-
return [0, 0, 0, 0, False]
|
| 101 |
|
| 102 |
-
|
| 103 |
-
return False
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
|
| 128 |
-
with gr.Column(elem_id="col-container"):
|
| 129 |
-
gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control")
|
| 130 |
-
gr.Markdown("""
|
| 131 |
-
Qwen Image Edit 2509 for Camera Control ✨
|
| 132 |
-
Using [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles) and [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) for 4-step inference 💨
|
| 133 |
-
"""
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
with gr.Row():
|
| 137 |
-
with gr.Column():
|
| 138 |
-
image = gr.Image(label="Input Image", type="pil")
|
| 139 |
-
prev_output = gr.Image(value=None, visible=False)
|
| 140 |
-
is_reset = gr.Checkbox(value=False, visible=False)
|
| 141 |
-
|
| 142 |
-
with gr.Tab("Camera Controls"):
|
| 143 |
-
rotate_deg = gr.Slider(label="Rotate Right-Left (degrees °)", minimum=-90, maximum=90, step=45, value=0)
|
| 144 |
-
move_forward = gr.Slider(label="Move Forward → Close-Up", minimum=0, maximum=10, step=5, value=0)
|
| 145 |
-
vertical_tilt = gr.Slider(label="Vertical Angle (Bird ↔ Worm)", minimum=-1, maximum=1, step=1, value=0)
|
| 146 |
-
wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False)
|
| 147 |
-
with gr.Row():
|
| 148 |
-
reset_btn = gr.Button("Reset")
|
| 149 |
-
run_btn = gr.Button("Generate", variant="primary")
|
| 150 |
-
|
| 151 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 152 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 153 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 154 |
-
true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
|
| 155 |
-
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=2)
|
| 156 |
-
height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024)
|
| 157 |
-
width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024)
|
| 158 |
-
|
| 159 |
-
with gr.Column():
|
| 160 |
-
result = gr.Image(label="Output Image", interactive=False)
|
| 161 |
-
prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
|
| 162 |
|
| 163 |
inputs = [
|
| 164 |
-
image,
|
| 165 |
-
|
| 166 |
-
seed,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
]
|
| 168 |
-
outputs = [result, seed
|
| 169 |
-
|
| 170 |
-
# Reset behavior
|
| 171 |
-
reset_btn.click(
|
| 172 |
-
fn=reset_all,
|
| 173 |
-
inputs=None,
|
| 174 |
-
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
|
| 175 |
-
queue=False
|
| 176 |
-
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
|
| 177 |
|
| 178 |
run_event = run_btn.click(
|
| 179 |
-
fn=
|
| 180 |
inputs=inputs,
|
| 181 |
outputs=outputs
|
| 182 |
)
|
| 183 |
-
|
| 184 |
-
# Image upload triggers dimension update and control reset
|
| 185 |
-
image.upload(
|
| 186 |
-
fn=update_dimensions_on_upload,
|
| 187 |
-
inputs=[image],
|
| 188 |
-
outputs=[width, height]
|
| 189 |
-
).then(
|
| 190 |
-
fn=reset_all,
|
| 191 |
-
inputs=None,
|
| 192 |
-
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
|
| 193 |
-
queue=False
|
| 194 |
-
).then(
|
| 195 |
-
fn=end_reset,
|
| 196 |
-
inputs=None,
|
| 197 |
-
outputs=[is_reset],
|
| 198 |
-
queue=False
|
| 199 |
-
)
|
| 200 |
|
| 201 |
-
|
| 202 |
-
# Live updates
|
| 203 |
-
@ftimed
|
| 204 |
-
def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args):
|
| 205 |
-
if is_reset:
|
| 206 |
-
return gr.update(), gr.update(), gr.update(), gr.update()
|
| 207 |
-
else:
|
| 208 |
-
return infer_camera_edit(*args)
|
| 209 |
-
|
| 210 |
-
control_inputs = [
|
| 211 |
-
image, rotate_deg, move_forward,
|
| 212 |
-
vertical_tilt, wideangle,
|
| 213 |
-
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
|
| 214 |
-
]
|
| 215 |
-
control_inputs_with_flag = [is_reset] + control_inputs
|
| 216 |
-
|
| 217 |
-
for control in [rotate_deg, move_forward, vertical_tilt]:
|
| 218 |
-
control.release(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs)
|
| 219 |
-
|
| 220 |
-
wideangle.input(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs)
|
| 221 |
-
|
| 222 |
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
|
| 223 |
|
| 224 |
demo.launch()
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
import spaces
|
| 13 |
|
| 14 |
+
from qwenimage.datamodels import QwenConfig
|
| 15 |
from qwenimage.debug import ctimed, ftimed
|
| 16 |
from qwenimage.experiments.experiments_qwen import ExperimentRegistry
|
| 17 |
+
from qwenimage.finetuner import QwenLoraFinetuner
|
| 18 |
+
from qwenimage.foundation import QwenImageFoundation
|
| 19 |
from qwenimage.prompt import build_camera_prompt
|
| 20 |
|
| 21 |
# --- Model Loading ---
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
foundation = QwenImageFoundation(QwenConfig(
|
| 24 |
+
vae_image_size=1024 * 1024,
|
| 25 |
+
regression_base_pipe_steps=4,
|
| 26 |
+
))
|
| 27 |
+
finetuner = QwenLoraFinetuner(foundation, foundation.config)
|
| 28 |
+
finetuner.load("checkpoints/reg-mse-pixel-lpips_005000", lora_rank=32)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
MAX_SEED = np.iinfo(np.int32).max
|
| 33 |
|
| 34 |
|
| 35 |
@spaces.GPU
|
| 36 |
+
def run_pipe(
|
| 37 |
image,
|
| 38 |
+
prompt,
|
|
|
|
|
|
|
|
|
|
| 39 |
seed,
|
| 40 |
randomize_seed,
|
|
|
|
| 41 |
num_inference_steps,
|
| 42 |
+
shift,
|
|
|
|
| 43 |
prev_output = None,
|
| 44 |
progress=gr.Progress(track_tqdm=True)
|
| 45 |
):
|
| 46 |
with ctimed("pre pipe"):
|
|
|
|
|
|
|
| 47 |
|
| 48 |
if randomize_seed:
|
| 49 |
seed = random.randint(0, MAX_SEED)
|
| 50 |
+
|
| 51 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 52 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 53 |
|
| 54 |
# Choose input image (prefer uploaded, else last output)
|
|
|
|
| 66 |
|
| 67 |
print(f"{len(pil_images)=}")
|
| 68 |
|
| 69 |
+
finetuner.enable()
|
| 70 |
+
foundation.scheduler.config["base_shift"] = shift
|
| 71 |
+
foundation.scheduler.config["max_shift"] = shift
|
| 72 |
+
|
| 73 |
+
result = foundation.base_pipe(foundation.INPUT_MODEL(
|
| 74 |
image=pil_images,
|
| 75 |
prompt=prompt,
|
|
|
|
|
|
|
| 76 |
num_inference_steps=num_inference_steps,
|
| 77 |
generator=generator,
|
| 78 |
+
))[0]
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
return result, seed
|
| 81 |
|
| 82 |
|
| 83 |
# --- UI ---
|
|
|
|
|
|
|
|
|
|
| 84 |
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
with gr.Blocks(theme=gr.themes.Citrus()) as demo:
|
|
|
|
| 87 |
|
| 88 |
+
gr.Markdown("Qwen Image Demo")
|
| 89 |
+
|
| 90 |
+
with gr.Row():
|
| 91 |
+
with gr.Column():
|
| 92 |
+
image = gr.Image(label="Input Image", type="pil")
|
| 93 |
+
prev_output = gr.Image(value=None, visible=False)
|
| 94 |
+
is_reset = gr.Checkbox(value=False, visible=False)
|
| 95 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Prompt", lines=2)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
run_btn = gr.Button("Generate", variant="primary")
|
| 99 |
+
|
| 100 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 101 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 102 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 103 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=2)
|
| 104 |
+
shift = gr.Slider(label="Timestep Shift", minimum=0.0, maximum=4.0, step=0.1, value=2.0)
|
| 105 |
+
|
| 106 |
+
with gr.Column():
|
| 107 |
+
result = gr.Image(label="Output Image", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
inputs = [
|
| 110 |
+
image,
|
| 111 |
+
prompt,
|
| 112 |
+
seed,
|
| 113 |
+
randomize_seed,
|
| 114 |
+
num_inference_steps,
|
| 115 |
+
shift,
|
| 116 |
+
prev_output,
|
| 117 |
]
|
| 118 |
+
outputs = [result, seed]
|
| 119 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
run_event = run_btn.click(
|
| 122 |
+
fn=run_pipe,
|
| 123 |
inputs=inputs,
|
| 124 |
outputs=outputs
|
| 125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
|
| 128 |
|
| 129 |
demo.launch()
|
qwenimage/datamodels.py
CHANGED
|
@@ -21,8 +21,8 @@ class QwenInputs(BaseModel):
|
|
| 21 |
num_inference_steps: int = 50
|
| 22 |
generator: torch.Generator | list[torch.Generator] | None = None
|
| 23 |
max_sequence_length: int = 512
|
| 24 |
-
vae_image_override: int | None =
|
| 25 |
-
latent_size_override: int | None =
|
| 26 |
|
| 27 |
model_config = ConfigDict(
|
| 28 |
arbitrary_types_allowed=True,
|
|
@@ -75,7 +75,7 @@ class QwenConfig(ExperimentTrainerParameters):
|
|
| 75 |
static_mu: float | None = None
|
| 76 |
loss_weight_dist: str | None = None # "scaled_clipped_gaussian", "logit-normal"
|
| 77 |
|
| 78 |
-
vae_image_size: int =
|
| 79 |
offload_text_encoder: bool = True
|
| 80 |
quantize_text_encoder: bool = False
|
| 81 |
quantize_transformer: bool = False
|
|
|
|
| 21 |
num_inference_steps: int = 50
|
| 22 |
generator: torch.Generator | list[torch.Generator] | None = None
|
| 23 |
max_sequence_length: int = 512
|
| 24 |
+
vae_image_override: int | None = None
|
| 25 |
+
latent_size_override: int | None = None
|
| 26 |
|
| 27 |
model_config = ConfigDict(
|
| 28 |
arbitrary_types_allowed=True,
|
|
|
|
| 75 |
static_mu: float | None = None
|
| 76 |
loss_weight_dist: str | None = None # "scaled_clipped_gaussian", "logit-normal"
|
| 77 |
|
| 78 |
+
vae_image_size: int = 1024 * 1024
|
| 79 |
offload_text_encoder: bool = True
|
| 80 |
quantize_text_encoder: bool = False
|
| 81 |
quantize_transformer: bool = False
|
qwenimage/foundation.py
CHANGED
|
@@ -327,26 +327,16 @@ class QwenImageFoundation(WandModel):
|
|
| 327 |
def base_pipe(self, inputs: QwenInputs) -> list[Image]:
|
| 328 |
print(inputs)
|
| 329 |
self.offload_text_encoder("cuda")
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
inputs.image = [image]
|
| 335 |
return self.pipe(**inputs.model_dump()).images
|
| 336 |
|
| 337 |
|
| 338 |
|
| 339 |
class QwenImageFoundationSaveInterm(QwenImageFoundation):
|
| 340 |
PIPELINE = QwenImageEditSaveIntermPipeline
|
| 341 |
-
|
| 342 |
-
def base_pipe(self, inputs: QwenInputs) -> list[Image]:
|
| 343 |
-
print(inputs)
|
| 344 |
-
image = inputs.image[0]
|
| 345 |
-
w,h = image.size
|
| 346 |
-
h_r, w_r = calculate_dimensions(self.config.vae_image_size, h/w)
|
| 347 |
-
image = TF.resize(image, (h_r, w_r))
|
| 348 |
-
inputs.image = [image]
|
| 349 |
-
return self.pipe(**inputs.model_dump())
|
| 350 |
|
| 351 |
|
| 352 |
class QwenImageRegressionFoundation(QwenImageFoundation):
|
|
@@ -589,15 +579,6 @@ class QwenImageRegressionFoundation(QwenImageFoundation):
|
|
| 589 |
|
| 590 |
|
| 591 |
def base_pipe(self, inputs: QwenInputs) -> list[Image]:
|
| 592 |
-
# config overrides
|
| 593 |
inputs.num_inference_steps = self.config.regression_base_pipe_steps
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
image = inputs.image[0]
|
| 597 |
-
w,h = image.size
|
| 598 |
-
h_r, w_r = calculate_dimensions(self.config.vae_image_size, h/w)
|
| 599 |
-
image = TF.resize(image, (h_r, w_r))
|
| 600 |
-
inputs.image = [image]
|
| 601 |
-
inputs.height = h_r
|
| 602 |
-
inputs.width = w_r
|
| 603 |
-
return super().base_pipe(inputs)
|
|
|
|
| 327 |
def base_pipe(self, inputs: QwenInputs) -> list[Image]:
|
| 328 |
print(inputs)
|
| 329 |
self.offload_text_encoder("cuda")
|
| 330 |
+
if inputs.vae_image_override is None:
|
| 331 |
+
inputs.vae_image_override = self.config.vae_image_size
|
| 332 |
+
if inputs.latent_size_override is None:
|
| 333 |
+
inputs.latent_size_override = self.config.vae_image_size
|
|
|
|
| 334 |
return self.pipe(**inputs.model_dump()).images
|
| 335 |
|
| 336 |
|
| 337 |
|
| 338 |
class QwenImageFoundationSaveInterm(QwenImageFoundation):
|
| 339 |
PIPELINE = QwenImageEditSaveIntermPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
|
| 342 |
class QwenImageRegressionFoundation(QwenImageFoundation):
|
|
|
|
| 579 |
|
| 580 |
|
| 581 |
def base_pipe(self, inputs: QwenInputs) -> list[Image]:
|
|
|
|
| 582 |
inputs.num_inference_steps = self.config.regression_base_pipe_steps
|
| 583 |
+
return super().base_pipe(inputs)
|
| 584 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/inf.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|