import spaces import os import torch import logging import random import gradio as gr import diffusers from models.upscaler import upscaler_dict_gui from stablepy import Model_Diffusers from utils.download_utils import download_things logging.getLogger("diffusers").setLevel(logging.ERROR) diffusers.utils.logging.set_verbosity(40) hf_token: str = os.environ.get("HF_TOKEN") class GuiSD: def __init__(self, model_list, task_stablepy, lora_model_list, embed_list, stream=True): self.model = None print("Loading model...") self.model = Model_Diffusers( base_model_id="models/animaPencilXL_v500.safetensors", task_name="txt2img", vae_model="vaes/sdXL_v10VAEFix.safetensors", type_model_precision=torch.float16, retain_task_model_in_cache=False, ) self.model_list = model_list self.task_stablepy = task_stablepy self.lora_model_list = lora_model_list self.embed_list = embed_list self.stream = stream def load_new_model( self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)): """ :param model_name: :param vae_model: :param task: :param progress: """ yield f"Loading model: {model_name}" vae_model = vae_model if vae_model != "None" else None if model_name in self.model_list: model_is_xl = "xl" in model_name.lower() sdxl_in_vae = vae_model and "sdxl" in vae_model.lower() model_type = "SDXL" if model_is_xl else "SD 1.5" incompatible_vae = (( model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)) if incompatible_vae: vae_model = None self.model.load_pipe( model_name, task_name=self.task_stablepy[task], vae_model=vae_model if vae_model != "None" else None, type_model_precision=torch.float16, retain_task_model_in_cache=False, ) yield f"Model loaded: {model_name}" @spaces.GPU def generate_pipeline( self, prompt, neg_prompt, num_images, steps, cfg, clip_skip, seed, lora1, lora_scale1, lora2, lora_scale2, lora3, lora_scale3, lora4, lora_scale4, lora5, lora_scale5, sampler, img_height, img_width, model_name, vae_model, task, image_control, preprocessor_name, preprocess_resolution, image_resolution, style_prompt, # list [] style_json_file, image_mask, strength, low_threshold, high_threshold, value_threshold, distance_threshold, controlnet_output_scaling_in_unet, controlnet_start_threshold, controlnet_stop_threshold, textual_inversion, syntax_weights, upscaler_model_path, upscaler_increases_size, esrgan_tile, esrgan_tile_overlap, hires_steps, hires_denoising_strength, hires_sampler, hires_prompt, hires_negative_prompt, hires_before_adetailer, hires_after_adetailer, loop_generation, leave_progress_bar, disable_progress_bar, image_previews, display_images, save_generated_images, image_storage_location, retain_compel_previous_load, retain_detailfix_model_previous_load, retain_hires_model_previous_load, t2i_adapter_preprocessor, t2i_adapter_conditioning_scale, t2i_adapter_conditioning_factor, xformers_memory_efficient_attention, freeu, generator_in_cpu, adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b, retain_task_cache_gui, image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1, image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2): vae_model = vae_model if vae_model != "None" else None loras_list: list = [lora1, lora2, lora3, lora4, lora5] vae_msg: str = f"VAE: {vae_model}" if vae_model else "" msg_lora: list = [] if model_name in self.model_list: model_is_xl = "xl" in model_name.lower() sdxl_in_vae = vae_model and "sdxl" in vae_model.lower() model_type = "SDXL" if model_is_xl else "SD 1.5" incompatible_vae = ((model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)) if incompatible_vae: msg_inc_vae = ( f"The selected VAE is for a {'SD 1.5' if model_is_xl else 'SDXL'} model, but you" f" are using a {model_type} model. The default VAE " "will be used." ) gr.Info(msg_inc_vae) vae_msg = msg_inc_vae vae_model = None for la in loras_list: if la is None or la == "None" or la not in self.lora_model_list: continue print(la) lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower()) if (model_is_xl and lora_type) or (not model_is_xl and not lora_type): msg_inc_lora = f"The LoRA {la} is for {'SD 1.5' if model_is_xl else 'SDXL'}, but you are using {model_type}." gr.Info(msg_inc_lora) msg_lora.append(msg_inc_lora) task = self.task_stablepy[task] params_ip_img: list = [] params_ip_msk: list = [] params_ip_model: list = [] params_ip_mode: list = [] params_ip_scale: list = [] all_adapters = [ (image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1), (image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2), ] for (imgip, mskip, modelip, modeip, scaleip) in all_adapters: if imgip: params_ip_img.append(imgip) if mskip: params_ip_msk.append(mskip) params_ip_model.append(modelip) params_ip_mode.append(modeip) params_ip_scale.append(scaleip) # First load model_precision = torch.float16 if not self.model: from modelstream import Model_Diffusers2 print("Loading model...") self.model = Model_Diffusers2( base_model_id=model_name, task_name=task, vae_model=vae_model if vae_model != "None" else None, type_model_precision=model_precision, retain_task_model_in_cache=retain_task_cache_gui, ) if task != "txt2img" and not image_control: raise ValueError( "No control image found: To use this function, " "you have to upload an image in 'Image ControlNet/Inpaint/Img2img'" ) if task == "inpaint" and not image_mask: raise ValueError("No mask image found: Specify one in 'Image Mask'") if upscaler_model_path in [ None, "Lanczos", "Nearest" ]: upscaler_model = upscaler_model_path else: directory_upscalers = 'upscalers' os.makedirs( directory_upscalers, exist_ok=True ) url_upscaler = upscaler_dict_gui[upscaler_model_path] if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"): download_things( directory_upscalers, url_upscaler, hf_token ) upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}" logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR) print("Config model:", model_name, vae_model, loras_list) self.model.load_pipe( model_name, task_name=task, vae_model=vae_model if vae_model != "None" else None, type_model_precision=model_precision, retain_task_model_in_cache=retain_task_cache_gui, ) if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline": print("No Textual inversion for SDXL") adetailer_params_A: dict = { "face_detector_ad": face_detector_ad_a, "person_detector_ad": person_detector_ad_a, "hand_detector_ad": hand_detector_ad_a, "prompt": prompt_ad_a, "negative_prompt": negative_prompt_ad_a, "strength": strength_ad_a, # "image_list_task" : None, "mask_dilation": mask_dilation_a, "mask_blur": mask_blur_a, "mask_padding": mask_padding_a, "inpaint_only": adetailer_inpaint_only, "sampler": adetailer_sampler, } adetailer_params_B: dict = { "face_detector_ad": face_detector_ad_b, "person_detector_ad": person_detector_ad_b, "hand_detector_ad": hand_detector_ad_b, "prompt": prompt_ad_b, "negative_prompt": negative_prompt_ad_b, "strength": strength_ad_b, # "image_list_task" : None, "mask_dilation": mask_dilation_b, "mask_blur": mask_blur_b, "mask_padding": mask_padding_b, } pipe_params: dict = { "prompt": prompt, "negative_prompt": neg_prompt, "img_height": img_height, "img_width": img_width, "num_images": num_images, "num_steps": steps, "guidance_scale": cfg, "clip_skip": clip_skip, "seed": seed, "image": image_control, "preprocessor_name": preprocessor_name, "preprocess_resolution": preprocess_resolution, "image_resolution": image_resolution, "style_prompt": style_prompt if style_prompt else "", "style_json_file": "", "image_mask": image_mask, # only for Inpaint "strength": strength, # only for Inpaint or ... "low_threshold": low_threshold, "high_threshold": high_threshold, "value_threshold": value_threshold, "distance_threshold": distance_threshold, "lora_A": lora1 if lora1 != "None" else None, "lora_scale_A": lora_scale1, "lora_B": lora2 if lora2 != "None" else None, "lora_scale_B": lora_scale2, "lora_C": lora3 if lora3 != "None" else None, "lora_scale_C": lora_scale3, "lora_D": lora4 if lora4 != "None" else None, "lora_scale_D": lora_scale4, "lora_E": lora5 if lora5 != "None" else None, "lora_scale_E": lora_scale5, "textual_inversion": self.embed_list if textual_inversion and self.model.class_name != "StableDiffusionXLPipeline" else [], "syntax_weights": syntax_weights, # "Classic" "sampler": sampler, "xformers_memory_efficient_attention": xformers_memory_efficient_attention, "gui_active": True, "loop_generation": loop_generation, "controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet), "control_guidance_start": float(controlnet_start_threshold), "control_guidance_end": float(controlnet_stop_threshold), "generator_in_cpu": generator_in_cpu, "FreeU": freeu, "adetailer_A": adetailer_active_a, "adetailer_A_params": adetailer_params_A, "adetailer_B": adetailer_active_b, "adetailer_B_params": adetailer_params_B, "leave_progress_bar": leave_progress_bar, "disable_progress_bar": disable_progress_bar, "image_previews": image_previews, "display_images": display_images, "save_generated_images": save_generated_images, "image_storage_location": image_storage_location, "retain_compel_previous_load": retain_compel_previous_load, "retain_detailfix_model_previous_load": retain_detailfix_model_previous_load, "retain_hires_model_previous_load": retain_hires_model_previous_load, "t2i_adapter_preprocessor": t2i_adapter_preprocessor, "t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale), "t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor), "upscaler_model_path": upscaler_model, "upscaler_increases_size": upscaler_increases_size, "esrgan_tile": esrgan_tile, "esrgan_tile_overlap": esrgan_tile_overlap, "hires_steps": hires_steps, "hires_denoising_strength": hires_denoising_strength, "hires_prompt": hires_prompt, "hires_negative_prompt": hires_negative_prompt, "hires_sampler": hires_sampler, "hires_before_adetailer": hires_before_adetailer, "hires_after_adetailer": hires_after_adetailer, "ip_adapter_image": params_ip_img, "ip_adapter_mask": params_ip_msk, "ip_adapter_model": params_ip_model, "ip_adapter_mode": params_ip_mode, "ip_adapter_scale": params_ip_scale, } random_number: int = random.randint(1, 100) if random_number < 25 and num_images < 3: if (not upscaler_model and steps < 45 and task in ["txt2img", "img2img"] and not adetailer_active_a and not adetailer_active_b): num_images *= 2 pipe_params["num_images"] = num_images gr.Info("Num images x 2 🎉") # Maybe fix lora issue: 'Cannot copy out of meta tensor; no data!'' self.model.pipe.to("cuda:0" if torch.cuda.is_available() else "cpu") info_state = f"PROCESSING" for img, seed, data in self.model(**pipe_params): info_state += "." if data: info_state = f"COMPLETED. Seeds: {str(seed)}" if vae_msg: info_state = info_state + "
" + vae_msg if msg_lora: info_state = info_state + "
" + "
".join(msg_lora) yield img, info_state